Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  df-lpolN Structured version   Visualization version   GIF version

Definition df-lpolN 39495
Description: Define the set of all polarities of a left module or left vector space. A polarity is a kind of complementation operation on a subspace. The double polarity of a subspace is a closure operation. Based on Definition 3.2 of [Holland95] p. 214 for projective geometry polarities. For convenience, we open up the domain to include all vector subsets and not just subspaces, but any more restricted polarity can be converted to this one by taking the span of its argument. (Contributed by NM, 24-Nov-2014.)
Assertion
Ref Expression
df-lpolN LPol = (𝑤 ∈ V ↦ {𝑜 ∈ ((LSubSp‘𝑤) ↑m 𝒫 (Base‘𝑤)) ∣ ((𝑜‘(Base‘𝑤)) = {(0g𝑤)} ∧ ∀𝑥𝑦((𝑥 ⊆ (Base‘𝑤) ∧ 𝑦 ⊆ (Base‘𝑤) ∧ 𝑥𝑦) → (𝑜𝑦) ⊆ (𝑜𝑥)) ∧ ∀𝑥 ∈ (LSAtoms‘𝑤)((𝑜𝑥) ∈ (LSHyp‘𝑤) ∧ (𝑜‘(𝑜𝑥)) = 𝑥))})
Distinct variable group:   𝑤,𝑜,𝑥,𝑦

Detailed syntax breakdown of Definition df-lpolN
StepHypRef Expression
1 clpoN 39494 . 2 class LPol
2 vw . . 3 setvar 𝑤
3 cvv 3432 . . 3 class V
42cv 1538 . . . . . . . 8 class 𝑤
5 cbs 16912 . . . . . . . 8 class Base
64, 5cfv 6433 . . . . . . 7 class (Base‘𝑤)
7 vo . . . . . . . 8 setvar 𝑜
87cv 1538 . . . . . . 7 class 𝑜
96, 8cfv 6433 . . . . . 6 class (𝑜‘(Base‘𝑤))
10 c0g 17150 . . . . . . . 8 class 0g
114, 10cfv 6433 . . . . . . 7 class (0g𝑤)
1211csn 4561 . . . . . 6 class {(0g𝑤)}
139, 12wceq 1539 . . . . 5 wff (𝑜‘(Base‘𝑤)) = {(0g𝑤)}
14 vx . . . . . . . . . . 11 setvar 𝑥
1514cv 1538 . . . . . . . . . 10 class 𝑥
1615, 6wss 3887 . . . . . . . . 9 wff 𝑥 ⊆ (Base‘𝑤)
17 vy . . . . . . . . . . 11 setvar 𝑦
1817cv 1538 . . . . . . . . . 10 class 𝑦
1918, 6wss 3887 . . . . . . . . 9 wff 𝑦 ⊆ (Base‘𝑤)
2015, 18wss 3887 . . . . . . . . 9 wff 𝑥𝑦
2116, 19, 20w3a 1086 . . . . . . . 8 wff (𝑥 ⊆ (Base‘𝑤) ∧ 𝑦 ⊆ (Base‘𝑤) ∧ 𝑥𝑦)
2218, 8cfv 6433 . . . . . . . . 9 class (𝑜𝑦)
2315, 8cfv 6433 . . . . . . . . 9 class (𝑜𝑥)
2422, 23wss 3887 . . . . . . . 8 wff (𝑜𝑦) ⊆ (𝑜𝑥)
2521, 24wi 4 . . . . . . 7 wff ((𝑥 ⊆ (Base‘𝑤) ∧ 𝑦 ⊆ (Base‘𝑤) ∧ 𝑥𝑦) → (𝑜𝑦) ⊆ (𝑜𝑥))
2625, 17wal 1537 . . . . . 6 wff 𝑦((𝑥 ⊆ (Base‘𝑤) ∧ 𝑦 ⊆ (Base‘𝑤) ∧ 𝑥𝑦) → (𝑜𝑦) ⊆ (𝑜𝑥))
2726, 14wal 1537 . . . . 5 wff 𝑥𝑦((𝑥 ⊆ (Base‘𝑤) ∧ 𝑦 ⊆ (Base‘𝑤) ∧ 𝑥𝑦) → (𝑜𝑦) ⊆ (𝑜𝑥))
28 clsh 36989 . . . . . . . . 9 class LSHyp
294, 28cfv 6433 . . . . . . . 8 class (LSHyp‘𝑤)
3023, 29wcel 2106 . . . . . . 7 wff (𝑜𝑥) ∈ (LSHyp‘𝑤)
3123, 8cfv 6433 . . . . . . . 8 class (𝑜‘(𝑜𝑥))
3231, 15wceq 1539 . . . . . . 7 wff (𝑜‘(𝑜𝑥)) = 𝑥
3330, 32wa 396 . . . . . 6 wff ((𝑜𝑥) ∈ (LSHyp‘𝑤) ∧ (𝑜‘(𝑜𝑥)) = 𝑥)
34 clsa 36988 . . . . . . 7 class LSAtoms
354, 34cfv 6433 . . . . . 6 class (LSAtoms‘𝑤)
3633, 14, 35wral 3064 . . . . 5 wff 𝑥 ∈ (LSAtoms‘𝑤)((𝑜𝑥) ∈ (LSHyp‘𝑤) ∧ (𝑜‘(𝑜𝑥)) = 𝑥)
3713, 27, 36w3a 1086 . . . 4 wff ((𝑜‘(Base‘𝑤)) = {(0g𝑤)} ∧ ∀𝑥𝑦((𝑥 ⊆ (Base‘𝑤) ∧ 𝑦 ⊆ (Base‘𝑤) ∧ 𝑥𝑦) → (𝑜𝑦) ⊆ (𝑜𝑥)) ∧ ∀𝑥 ∈ (LSAtoms‘𝑤)((𝑜𝑥) ∈ (LSHyp‘𝑤) ∧ (𝑜‘(𝑜𝑥)) = 𝑥))
38 clss 20193 . . . . . 6 class LSubSp
394, 38cfv 6433 . . . . 5 class (LSubSp‘𝑤)
406cpw 4533 . . . . 5 class 𝒫 (Base‘𝑤)
41 cmap 8615 . . . . 5 class m
4239, 40, 41co 7275 . . . 4 class ((LSubSp‘𝑤) ↑m 𝒫 (Base‘𝑤))
4337, 7, 42crab 3068 . . 3 class {𝑜 ∈ ((LSubSp‘𝑤) ↑m 𝒫 (Base‘𝑤)) ∣ ((𝑜‘(Base‘𝑤)) = {(0g𝑤)} ∧ ∀𝑥𝑦((𝑥 ⊆ (Base‘𝑤) ∧ 𝑦 ⊆ (Base‘𝑤) ∧ 𝑥𝑦) → (𝑜𝑦) ⊆ (𝑜𝑥)) ∧ ∀𝑥 ∈ (LSAtoms‘𝑤)((𝑜𝑥) ∈ (LSHyp‘𝑤) ∧ (𝑜‘(𝑜𝑥)) = 𝑥))}
442, 3, 43cmpt 5157 . 2 class (𝑤 ∈ V ↦ {𝑜 ∈ ((LSubSp‘𝑤) ↑m 𝒫 (Base‘𝑤)) ∣ ((𝑜‘(Base‘𝑤)) = {(0g𝑤)} ∧ ∀𝑥𝑦((𝑥 ⊆ (Base‘𝑤) ∧ 𝑦 ⊆ (Base‘𝑤) ∧ 𝑥𝑦) → (𝑜𝑦) ⊆ (𝑜𝑥)) ∧ ∀𝑥 ∈ (LSAtoms‘𝑤)((𝑜𝑥) ∈ (LSHyp‘𝑤) ∧ (𝑜‘(𝑜𝑥)) = 𝑥))})
451, 44wceq 1539 1 wff LPol = (𝑤 ∈ V ↦ {𝑜 ∈ ((LSubSp‘𝑤) ↑m 𝒫 (Base‘𝑤)) ∣ ((𝑜‘(Base‘𝑤)) = {(0g𝑤)} ∧ ∀𝑥𝑦((𝑥 ⊆ (Base‘𝑤) ∧ 𝑦 ⊆ (Base‘𝑤) ∧ 𝑥𝑦) → (𝑜𝑦) ⊆ (𝑜𝑥)) ∧ ∀𝑥 ∈ (LSAtoms‘𝑤)((𝑜𝑥) ∈ (LSHyp‘𝑤) ∧ (𝑜‘(𝑜𝑥)) = 𝑥))})
Colors of variables: wff setvar class
This definition is referenced by:  lpolsetN  39496
  Copyright terms: Public domain W3C validator