Detailed syntax breakdown of Definition df-lpolN
Step | Hyp | Ref
| Expression |
1 | | clpoN 39090 |
. 2
class
LPol |
2 | | vw |
. . 3
setvar 𝑤 |
3 | | cvv 3409 |
. . 3
class
V |
4 | 2 | cv 1537 |
. . . . . . . 8
class 𝑤 |
5 | | cbs 16554 |
. . . . . . . 8
class
Base |
6 | 4, 5 | cfv 6340 |
. . . . . . 7
class
(Base‘𝑤) |
7 | | vo |
. . . . . . . 8
setvar 𝑜 |
8 | 7 | cv 1537 |
. . . . . . 7
class 𝑜 |
9 | 6, 8 | cfv 6340 |
. . . . . 6
class (𝑜‘(Base‘𝑤)) |
10 | | c0g 16784 |
. . . . . . . 8
class
0g |
11 | 4, 10 | cfv 6340 |
. . . . . . 7
class
(0g‘𝑤) |
12 | 11 | csn 4525 |
. . . . . 6
class
{(0g‘𝑤)} |
13 | 9, 12 | wceq 1538 |
. . . . 5
wff (𝑜‘(Base‘𝑤)) = {(0g‘𝑤)} |
14 | | vx |
. . . . . . . . . . 11
setvar 𝑥 |
15 | 14 | cv 1537 |
. . . . . . . . . 10
class 𝑥 |
16 | 15, 6 | wss 3860 |
. . . . . . . . 9
wff 𝑥 ⊆ (Base‘𝑤) |
17 | | vy |
. . . . . . . . . . 11
setvar 𝑦 |
18 | 17 | cv 1537 |
. . . . . . . . . 10
class 𝑦 |
19 | 18, 6 | wss 3860 |
. . . . . . . . 9
wff 𝑦 ⊆ (Base‘𝑤) |
20 | 15, 18 | wss 3860 |
. . . . . . . . 9
wff 𝑥 ⊆ 𝑦 |
21 | 16, 19, 20 | w3a 1084 |
. . . . . . . 8
wff (𝑥 ⊆ (Base‘𝑤) ∧ 𝑦 ⊆ (Base‘𝑤) ∧ 𝑥 ⊆ 𝑦) |
22 | 18, 8 | cfv 6340 |
. . . . . . . . 9
class (𝑜‘𝑦) |
23 | 15, 8 | cfv 6340 |
. . . . . . . . 9
class (𝑜‘𝑥) |
24 | 22, 23 | wss 3860 |
. . . . . . . 8
wff (𝑜‘𝑦) ⊆ (𝑜‘𝑥) |
25 | 21, 24 | wi 4 |
. . . . . . 7
wff ((𝑥 ⊆ (Base‘𝑤) ∧ 𝑦 ⊆ (Base‘𝑤) ∧ 𝑥 ⊆ 𝑦) → (𝑜‘𝑦) ⊆ (𝑜‘𝑥)) |
26 | 25, 17 | wal 1536 |
. . . . . 6
wff
∀𝑦((𝑥 ⊆ (Base‘𝑤) ∧ 𝑦 ⊆ (Base‘𝑤) ∧ 𝑥 ⊆ 𝑦) → (𝑜‘𝑦) ⊆ (𝑜‘𝑥)) |
27 | 26, 14 | wal 1536 |
. . . . 5
wff
∀𝑥∀𝑦((𝑥 ⊆ (Base‘𝑤) ∧ 𝑦 ⊆ (Base‘𝑤) ∧ 𝑥 ⊆ 𝑦) → (𝑜‘𝑦) ⊆ (𝑜‘𝑥)) |
28 | | clsh 36585 |
. . . . . . . . 9
class
LSHyp |
29 | 4, 28 | cfv 6340 |
. . . . . . . 8
class
(LSHyp‘𝑤) |
30 | 23, 29 | wcel 2111 |
. . . . . . 7
wff (𝑜‘𝑥) ∈ (LSHyp‘𝑤) |
31 | 23, 8 | cfv 6340 |
. . . . . . . 8
class (𝑜‘(𝑜‘𝑥)) |
32 | 31, 15 | wceq 1538 |
. . . . . . 7
wff (𝑜‘(𝑜‘𝑥)) = 𝑥 |
33 | 30, 32 | wa 399 |
. . . . . 6
wff ((𝑜‘𝑥) ∈ (LSHyp‘𝑤) ∧ (𝑜‘(𝑜‘𝑥)) = 𝑥) |
34 | | clsa 36584 |
. . . . . . 7
class
LSAtoms |
35 | 4, 34 | cfv 6340 |
. . . . . 6
class
(LSAtoms‘𝑤) |
36 | 33, 14, 35 | wral 3070 |
. . . . 5
wff
∀𝑥 ∈
(LSAtoms‘𝑤)((𝑜‘𝑥) ∈ (LSHyp‘𝑤) ∧ (𝑜‘(𝑜‘𝑥)) = 𝑥) |
37 | 13, 27, 36 | w3a 1084 |
. . . 4
wff ((𝑜‘(Base‘𝑤)) = {(0g‘𝑤)} ∧ ∀𝑥∀𝑦((𝑥 ⊆ (Base‘𝑤) ∧ 𝑦 ⊆ (Base‘𝑤) ∧ 𝑥 ⊆ 𝑦) → (𝑜‘𝑦) ⊆ (𝑜‘𝑥)) ∧ ∀𝑥 ∈ (LSAtoms‘𝑤)((𝑜‘𝑥) ∈ (LSHyp‘𝑤) ∧ (𝑜‘(𝑜‘𝑥)) = 𝑥)) |
38 | | clss 19784 |
. . . . . 6
class
LSubSp |
39 | 4, 38 | cfv 6340 |
. . . . 5
class
(LSubSp‘𝑤) |
40 | 6 | cpw 4497 |
. . . . 5
class 𝒫
(Base‘𝑤) |
41 | | cmap 8422 |
. . . . 5
class
↑m |
42 | 39, 40, 41 | co 7156 |
. . . 4
class
((LSubSp‘𝑤)
↑m 𝒫 (Base‘𝑤)) |
43 | 37, 7, 42 | crab 3074 |
. . 3
class {𝑜 ∈ ((LSubSp‘𝑤) ↑m 𝒫
(Base‘𝑤)) ∣
((𝑜‘(Base‘𝑤)) = {(0g‘𝑤)} ∧ ∀𝑥∀𝑦((𝑥 ⊆ (Base‘𝑤) ∧ 𝑦 ⊆ (Base‘𝑤) ∧ 𝑥 ⊆ 𝑦) → (𝑜‘𝑦) ⊆ (𝑜‘𝑥)) ∧ ∀𝑥 ∈ (LSAtoms‘𝑤)((𝑜‘𝑥) ∈ (LSHyp‘𝑤) ∧ (𝑜‘(𝑜‘𝑥)) = 𝑥))} |
44 | 2, 3, 43 | cmpt 5116 |
. 2
class (𝑤 ∈ V ↦ {𝑜 ∈ ((LSubSp‘𝑤) ↑m 𝒫
(Base‘𝑤)) ∣
((𝑜‘(Base‘𝑤)) = {(0g‘𝑤)} ∧ ∀𝑥∀𝑦((𝑥 ⊆ (Base‘𝑤) ∧ 𝑦 ⊆ (Base‘𝑤) ∧ 𝑥 ⊆ 𝑦) → (𝑜‘𝑦) ⊆ (𝑜‘𝑥)) ∧ ∀𝑥 ∈ (LSAtoms‘𝑤)((𝑜‘𝑥) ∈ (LSHyp‘𝑤) ∧ (𝑜‘(𝑜‘𝑥)) = 𝑥))}) |
45 | 1, 44 | wceq 1538 |
1
wff LPol =
(𝑤 ∈ V ↦ {𝑜 ∈ ((LSubSp‘𝑤) ↑m 𝒫
(Base‘𝑤)) ∣
((𝑜‘(Base‘𝑤)) = {(0g‘𝑤)} ∧ ∀𝑥∀𝑦((𝑥 ⊆ (Base‘𝑤) ∧ 𝑦 ⊆ (Base‘𝑤) ∧ 𝑥 ⊆ 𝑦) → (𝑜‘𝑦) ⊆ (𝑜‘𝑥)) ∧ ∀𝑥 ∈ (LSAtoms‘𝑤)((𝑜‘𝑥) ∈ (LSHyp‘𝑤) ∧ (𝑜‘(𝑜‘𝑥)) = 𝑥))}) |