Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  df-lpolN Structured version   Visualization version   GIF version

Definition df-lpolN 41586
Description: Define the set of all polarities of a left module or left vector space. A polarity is a kind of complementation operation on a subspace. The double polarity of a subspace is a closure operation. Based on Definition 3.2 of [Holland95] p. 214 for projective geometry polarities. For convenience, we open up the domain to include all vector subsets and not just subspaces, but any more restricted polarity can be converted to this one by taking the span of its argument. (Contributed by NM, 24-Nov-2014.)
Assertion
Ref Expression
df-lpolN LPol = (𝑤 ∈ V ↦ {𝑜 ∈ ((LSubSp‘𝑤) ↑m 𝒫 (Base‘𝑤)) ∣ ((𝑜‘(Base‘𝑤)) = {(0g𝑤)} ∧ ∀𝑥𝑦((𝑥 ⊆ (Base‘𝑤) ∧ 𝑦 ⊆ (Base‘𝑤) ∧ 𝑥𝑦) → (𝑜𝑦) ⊆ (𝑜𝑥)) ∧ ∀𝑥 ∈ (LSAtoms‘𝑤)((𝑜𝑥) ∈ (LSHyp‘𝑤) ∧ (𝑜‘(𝑜𝑥)) = 𝑥))})
Distinct variable group:   𝑤,𝑜,𝑥,𝑦

Detailed syntax breakdown of Definition df-lpolN
StepHypRef Expression
1 clpoN 41585 . 2 class LPol
2 vw . . 3 setvar 𝑤
3 cvv 3436 . . 3 class V
42cv 1540 . . . . . . . 8 class 𝑤
5 cbs 17126 . . . . . . . 8 class Base
64, 5cfv 6487 . . . . . . 7 class (Base‘𝑤)
7 vo . . . . . . . 8 setvar 𝑜
87cv 1540 . . . . . . 7 class 𝑜
96, 8cfv 6487 . . . . . 6 class (𝑜‘(Base‘𝑤))
10 c0g 17349 . . . . . . . 8 class 0g
114, 10cfv 6487 . . . . . . 7 class (0g𝑤)
1211csn 4575 . . . . . 6 class {(0g𝑤)}
139, 12wceq 1541 . . . . 5 wff (𝑜‘(Base‘𝑤)) = {(0g𝑤)}
14 vx . . . . . . . . . . 11 setvar 𝑥
1514cv 1540 . . . . . . . . . 10 class 𝑥
1615, 6wss 3897 . . . . . . . . 9 wff 𝑥 ⊆ (Base‘𝑤)
17 vy . . . . . . . . . . 11 setvar 𝑦
1817cv 1540 . . . . . . . . . 10 class 𝑦
1918, 6wss 3897 . . . . . . . . 9 wff 𝑦 ⊆ (Base‘𝑤)
2015, 18wss 3897 . . . . . . . . 9 wff 𝑥𝑦
2116, 19, 20w3a 1086 . . . . . . . 8 wff (𝑥 ⊆ (Base‘𝑤) ∧ 𝑦 ⊆ (Base‘𝑤) ∧ 𝑥𝑦)
2218, 8cfv 6487 . . . . . . . . 9 class (𝑜𝑦)
2315, 8cfv 6487 . . . . . . . . 9 class (𝑜𝑥)
2422, 23wss 3897 . . . . . . . 8 wff (𝑜𝑦) ⊆ (𝑜𝑥)
2521, 24wi 4 . . . . . . 7 wff ((𝑥 ⊆ (Base‘𝑤) ∧ 𝑦 ⊆ (Base‘𝑤) ∧ 𝑥𝑦) → (𝑜𝑦) ⊆ (𝑜𝑥))
2625, 17wal 1539 . . . . . 6 wff 𝑦((𝑥 ⊆ (Base‘𝑤) ∧ 𝑦 ⊆ (Base‘𝑤) ∧ 𝑥𝑦) → (𝑜𝑦) ⊆ (𝑜𝑥))
2726, 14wal 1539 . . . . 5 wff 𝑥𝑦((𝑥 ⊆ (Base‘𝑤) ∧ 𝑦 ⊆ (Base‘𝑤) ∧ 𝑥𝑦) → (𝑜𝑦) ⊆ (𝑜𝑥))
28 clsh 39080 . . . . . . . . 9 class LSHyp
294, 28cfv 6487 . . . . . . . 8 class (LSHyp‘𝑤)
3023, 29wcel 2111 . . . . . . 7 wff (𝑜𝑥) ∈ (LSHyp‘𝑤)
3123, 8cfv 6487 . . . . . . . 8 class (𝑜‘(𝑜𝑥))
3231, 15wceq 1541 . . . . . . 7 wff (𝑜‘(𝑜𝑥)) = 𝑥
3330, 32wa 395 . . . . . 6 wff ((𝑜𝑥) ∈ (LSHyp‘𝑤) ∧ (𝑜‘(𝑜𝑥)) = 𝑥)
34 clsa 39079 . . . . . . 7 class LSAtoms
354, 34cfv 6487 . . . . . 6 class (LSAtoms‘𝑤)
3633, 14, 35wral 3047 . . . . 5 wff 𝑥 ∈ (LSAtoms‘𝑤)((𝑜𝑥) ∈ (LSHyp‘𝑤) ∧ (𝑜‘(𝑜𝑥)) = 𝑥)
3713, 27, 36w3a 1086 . . . 4 wff ((𝑜‘(Base‘𝑤)) = {(0g𝑤)} ∧ ∀𝑥𝑦((𝑥 ⊆ (Base‘𝑤) ∧ 𝑦 ⊆ (Base‘𝑤) ∧ 𝑥𝑦) → (𝑜𝑦) ⊆ (𝑜𝑥)) ∧ ∀𝑥 ∈ (LSAtoms‘𝑤)((𝑜𝑥) ∈ (LSHyp‘𝑤) ∧ (𝑜‘(𝑜𝑥)) = 𝑥))
38 clss 20870 . . . . . 6 class LSubSp
394, 38cfv 6487 . . . . 5 class (LSubSp‘𝑤)
406cpw 4549 . . . . 5 class 𝒫 (Base‘𝑤)
41 cmap 8756 . . . . 5 class m
4239, 40, 41co 7352 . . . 4 class ((LSubSp‘𝑤) ↑m 𝒫 (Base‘𝑤))
4337, 7, 42crab 3395 . . 3 class {𝑜 ∈ ((LSubSp‘𝑤) ↑m 𝒫 (Base‘𝑤)) ∣ ((𝑜‘(Base‘𝑤)) = {(0g𝑤)} ∧ ∀𝑥𝑦((𝑥 ⊆ (Base‘𝑤) ∧ 𝑦 ⊆ (Base‘𝑤) ∧ 𝑥𝑦) → (𝑜𝑦) ⊆ (𝑜𝑥)) ∧ ∀𝑥 ∈ (LSAtoms‘𝑤)((𝑜𝑥) ∈ (LSHyp‘𝑤) ∧ (𝑜‘(𝑜𝑥)) = 𝑥))}
442, 3, 43cmpt 5174 . 2 class (𝑤 ∈ V ↦ {𝑜 ∈ ((LSubSp‘𝑤) ↑m 𝒫 (Base‘𝑤)) ∣ ((𝑜‘(Base‘𝑤)) = {(0g𝑤)} ∧ ∀𝑥𝑦((𝑥 ⊆ (Base‘𝑤) ∧ 𝑦 ⊆ (Base‘𝑤) ∧ 𝑥𝑦) → (𝑜𝑦) ⊆ (𝑜𝑥)) ∧ ∀𝑥 ∈ (LSAtoms‘𝑤)((𝑜𝑥) ∈ (LSHyp‘𝑤) ∧ (𝑜‘(𝑜𝑥)) = 𝑥))})
451, 44wceq 1541 1 wff LPol = (𝑤 ∈ V ↦ {𝑜 ∈ ((LSubSp‘𝑤) ↑m 𝒫 (Base‘𝑤)) ∣ ((𝑜‘(Base‘𝑤)) = {(0g𝑤)} ∧ ∀𝑥𝑦((𝑥 ⊆ (Base‘𝑤) ∧ 𝑦 ⊆ (Base‘𝑤) ∧ 𝑥𝑦) → (𝑜𝑦) ⊆ (𝑜𝑥)) ∧ ∀𝑥 ∈ (LSAtoms‘𝑤)((𝑜𝑥) ∈ (LSHyp‘𝑤) ∧ (𝑜‘(𝑜𝑥)) = 𝑥))})
Colors of variables: wff setvar class
This definition is referenced by:  lpolsetN  41587
  Copyright terms: Public domain W3C validator