Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  df-lpolN Structured version   Visualization version   GIF version

Definition df-lpolN 41500
Description: Define the set of all polarities of a left module or left vector space. A polarity is a kind of complementation operation on a subspace. The double polarity of a subspace is a closure operation. Based on Definition 3.2 of [Holland95] p. 214 for projective geometry polarities. For convenience, we open up the domain to include all vector subsets and not just subspaces, but any more restricted polarity can be converted to this one by taking the span of its argument. (Contributed by NM, 24-Nov-2014.)
Assertion
Ref Expression
df-lpolN LPol = (𝑤 ∈ V ↦ {𝑜 ∈ ((LSubSp‘𝑤) ↑m 𝒫 (Base‘𝑤)) ∣ ((𝑜‘(Base‘𝑤)) = {(0g𝑤)} ∧ ∀𝑥𝑦((𝑥 ⊆ (Base‘𝑤) ∧ 𝑦 ⊆ (Base‘𝑤) ∧ 𝑥𝑦) → (𝑜𝑦) ⊆ (𝑜𝑥)) ∧ ∀𝑥 ∈ (LSAtoms‘𝑤)((𝑜𝑥) ∈ (LSHyp‘𝑤) ∧ (𝑜‘(𝑜𝑥)) = 𝑥))})
Distinct variable group:   𝑤,𝑜,𝑥,𝑦

Detailed syntax breakdown of Definition df-lpolN
StepHypRef Expression
1 clpoN 41499 . 2 class LPol
2 vw . . 3 setvar 𝑤
3 cvv 3459 . . 3 class V
42cv 1539 . . . . . . . 8 class 𝑤
5 cbs 17228 . . . . . . . 8 class Base
64, 5cfv 6531 . . . . . . 7 class (Base‘𝑤)
7 vo . . . . . . . 8 setvar 𝑜
87cv 1539 . . . . . . 7 class 𝑜
96, 8cfv 6531 . . . . . 6 class (𝑜‘(Base‘𝑤))
10 c0g 17453 . . . . . . . 8 class 0g
114, 10cfv 6531 . . . . . . 7 class (0g𝑤)
1211csn 4601 . . . . . 6 class {(0g𝑤)}
139, 12wceq 1540 . . . . 5 wff (𝑜‘(Base‘𝑤)) = {(0g𝑤)}
14 vx . . . . . . . . . . 11 setvar 𝑥
1514cv 1539 . . . . . . . . . 10 class 𝑥
1615, 6wss 3926 . . . . . . . . 9 wff 𝑥 ⊆ (Base‘𝑤)
17 vy . . . . . . . . . . 11 setvar 𝑦
1817cv 1539 . . . . . . . . . 10 class 𝑦
1918, 6wss 3926 . . . . . . . . 9 wff 𝑦 ⊆ (Base‘𝑤)
2015, 18wss 3926 . . . . . . . . 9 wff 𝑥𝑦
2116, 19, 20w3a 1086 . . . . . . . 8 wff (𝑥 ⊆ (Base‘𝑤) ∧ 𝑦 ⊆ (Base‘𝑤) ∧ 𝑥𝑦)
2218, 8cfv 6531 . . . . . . . . 9 class (𝑜𝑦)
2315, 8cfv 6531 . . . . . . . . 9 class (𝑜𝑥)
2422, 23wss 3926 . . . . . . . 8 wff (𝑜𝑦) ⊆ (𝑜𝑥)
2521, 24wi 4 . . . . . . 7 wff ((𝑥 ⊆ (Base‘𝑤) ∧ 𝑦 ⊆ (Base‘𝑤) ∧ 𝑥𝑦) → (𝑜𝑦) ⊆ (𝑜𝑥))
2625, 17wal 1538 . . . . . 6 wff 𝑦((𝑥 ⊆ (Base‘𝑤) ∧ 𝑦 ⊆ (Base‘𝑤) ∧ 𝑥𝑦) → (𝑜𝑦) ⊆ (𝑜𝑥))
2726, 14wal 1538 . . . . 5 wff 𝑥𝑦((𝑥 ⊆ (Base‘𝑤) ∧ 𝑦 ⊆ (Base‘𝑤) ∧ 𝑥𝑦) → (𝑜𝑦) ⊆ (𝑜𝑥))
28 clsh 38993 . . . . . . . . 9 class LSHyp
294, 28cfv 6531 . . . . . . . 8 class (LSHyp‘𝑤)
3023, 29wcel 2108 . . . . . . 7 wff (𝑜𝑥) ∈ (LSHyp‘𝑤)
3123, 8cfv 6531 . . . . . . . 8 class (𝑜‘(𝑜𝑥))
3231, 15wceq 1540 . . . . . . 7 wff (𝑜‘(𝑜𝑥)) = 𝑥
3330, 32wa 395 . . . . . 6 wff ((𝑜𝑥) ∈ (LSHyp‘𝑤) ∧ (𝑜‘(𝑜𝑥)) = 𝑥)
34 clsa 38992 . . . . . . 7 class LSAtoms
354, 34cfv 6531 . . . . . 6 class (LSAtoms‘𝑤)
3633, 14, 35wral 3051 . . . . 5 wff 𝑥 ∈ (LSAtoms‘𝑤)((𝑜𝑥) ∈ (LSHyp‘𝑤) ∧ (𝑜‘(𝑜𝑥)) = 𝑥)
3713, 27, 36w3a 1086 . . . 4 wff ((𝑜‘(Base‘𝑤)) = {(0g𝑤)} ∧ ∀𝑥𝑦((𝑥 ⊆ (Base‘𝑤) ∧ 𝑦 ⊆ (Base‘𝑤) ∧ 𝑥𝑦) → (𝑜𝑦) ⊆ (𝑜𝑥)) ∧ ∀𝑥 ∈ (LSAtoms‘𝑤)((𝑜𝑥) ∈ (LSHyp‘𝑤) ∧ (𝑜‘(𝑜𝑥)) = 𝑥))
38 clss 20888 . . . . . 6 class LSubSp
394, 38cfv 6531 . . . . 5 class (LSubSp‘𝑤)
406cpw 4575 . . . . 5 class 𝒫 (Base‘𝑤)
41 cmap 8840 . . . . 5 class m
4239, 40, 41co 7405 . . . 4 class ((LSubSp‘𝑤) ↑m 𝒫 (Base‘𝑤))
4337, 7, 42crab 3415 . . 3 class {𝑜 ∈ ((LSubSp‘𝑤) ↑m 𝒫 (Base‘𝑤)) ∣ ((𝑜‘(Base‘𝑤)) = {(0g𝑤)} ∧ ∀𝑥𝑦((𝑥 ⊆ (Base‘𝑤) ∧ 𝑦 ⊆ (Base‘𝑤) ∧ 𝑥𝑦) → (𝑜𝑦) ⊆ (𝑜𝑥)) ∧ ∀𝑥 ∈ (LSAtoms‘𝑤)((𝑜𝑥) ∈ (LSHyp‘𝑤) ∧ (𝑜‘(𝑜𝑥)) = 𝑥))}
442, 3, 43cmpt 5201 . 2 class (𝑤 ∈ V ↦ {𝑜 ∈ ((LSubSp‘𝑤) ↑m 𝒫 (Base‘𝑤)) ∣ ((𝑜‘(Base‘𝑤)) = {(0g𝑤)} ∧ ∀𝑥𝑦((𝑥 ⊆ (Base‘𝑤) ∧ 𝑦 ⊆ (Base‘𝑤) ∧ 𝑥𝑦) → (𝑜𝑦) ⊆ (𝑜𝑥)) ∧ ∀𝑥 ∈ (LSAtoms‘𝑤)((𝑜𝑥) ∈ (LSHyp‘𝑤) ∧ (𝑜‘(𝑜𝑥)) = 𝑥))})
451, 44wceq 1540 1 wff LPol = (𝑤 ∈ V ↦ {𝑜 ∈ ((LSubSp‘𝑤) ↑m 𝒫 (Base‘𝑤)) ∣ ((𝑜‘(Base‘𝑤)) = {(0g𝑤)} ∧ ∀𝑥𝑦((𝑥 ⊆ (Base‘𝑤) ∧ 𝑦 ⊆ (Base‘𝑤) ∧ 𝑥𝑦) → (𝑜𝑦) ⊆ (𝑜𝑥)) ∧ ∀𝑥 ∈ (LSAtoms‘𝑤)((𝑜𝑥) ∈ (LSHyp‘𝑤) ∧ (𝑜‘(𝑜𝑥)) = 𝑥))})
Colors of variables: wff setvar class
This definition is referenced by:  lpolsetN  41501
  Copyright terms: Public domain W3C validator