Step | Hyp | Ref
| Expression |
1 | | elex 3492 |
. 2
β’ (π β π β π β V) |
2 | | lpolset.p |
. . 3
β’ π = (LPolβπ) |
3 | | fveq2 6888 |
. . . . . . 7
β’ (π€ = π β (LSubSpβπ€) = (LSubSpβπ)) |
4 | | lpolset.s |
. . . . . . 7
β’ π = (LSubSpβπ) |
5 | 3, 4 | eqtr4di 2790 |
. . . . . 6
β’ (π€ = π β (LSubSpβπ€) = π) |
6 | | fveq2 6888 |
. . . . . . . 8
β’ (π€ = π β (Baseβπ€) = (Baseβπ)) |
7 | | lpolset.v |
. . . . . . . 8
β’ π = (Baseβπ) |
8 | 6, 7 | eqtr4di 2790 |
. . . . . . 7
β’ (π€ = π β (Baseβπ€) = π) |
9 | 8 | pweqd 4618 |
. . . . . 6
β’ (π€ = π β π« (Baseβπ€) = π« π) |
10 | 5, 9 | oveq12d 7423 |
. . . . 5
β’ (π€ = π β ((LSubSpβπ€) βm π«
(Baseβπ€)) = (π βm π«
π)) |
11 | 8 | fveq2d 6892 |
. . . . . . 7
β’ (π€ = π β (πβ(Baseβπ€)) = (πβπ)) |
12 | | fveq2 6888 |
. . . . . . . . 9
β’ (π€ = π β (0gβπ€) = (0gβπ)) |
13 | | lpolset.z |
. . . . . . . . 9
β’ 0 =
(0gβπ) |
14 | 12, 13 | eqtr4di 2790 |
. . . . . . . 8
β’ (π€ = π β (0gβπ€) = 0 ) |
15 | 14 | sneqd 4639 |
. . . . . . 7
β’ (π€ = π β {(0gβπ€)} = { 0 }) |
16 | 11, 15 | eqeq12d 2748 |
. . . . . 6
β’ (π€ = π β ((πβ(Baseβπ€)) = {(0gβπ€)} β (πβπ) = { 0 })) |
17 | 8 | sseq2d 4013 |
. . . . . . . . 9
β’ (π€ = π β (π₯ β (Baseβπ€) β π₯ β π)) |
18 | 8 | sseq2d 4013 |
. . . . . . . . 9
β’ (π€ = π β (π¦ β (Baseβπ€) β π¦ β π)) |
19 | 17, 18 | 3anbi12d 1437 |
. . . . . . . 8
β’ (π€ = π β ((π₯ β (Baseβπ€) β§ π¦ β (Baseβπ€) β§ π₯ β π¦) β (π₯ β π β§ π¦ β π β§ π₯ β π¦))) |
20 | 19 | imbi1d 341 |
. . . . . . 7
β’ (π€ = π β (((π₯ β (Baseβπ€) β§ π¦ β (Baseβπ€) β§ π₯ β π¦) β (πβπ¦) β (πβπ₯)) β ((π₯ β π β§ π¦ β π β§ π₯ β π¦) β (πβπ¦) β (πβπ₯)))) |
21 | 20 | 2albidv 1926 |
. . . . . 6
β’ (π€ = π β (βπ₯βπ¦((π₯ β (Baseβπ€) β§ π¦ β (Baseβπ€) β§ π₯ β π¦) β (πβπ¦) β (πβπ₯)) β βπ₯βπ¦((π₯ β π β§ π¦ β π β§ π₯ β π¦) β (πβπ¦) β (πβπ₯)))) |
22 | | fveq2 6888 |
. . . . . . . 8
β’ (π€ = π β (LSAtomsβπ€) = (LSAtomsβπ)) |
23 | | lpolset.a |
. . . . . . . 8
β’ π΄ = (LSAtomsβπ) |
24 | 22, 23 | eqtr4di 2790 |
. . . . . . 7
β’ (π€ = π β (LSAtomsβπ€) = π΄) |
25 | | fveq2 6888 |
. . . . . . . . . 10
β’ (π€ = π β (LSHypβπ€) = (LSHypβπ)) |
26 | | lpolset.h |
. . . . . . . . . 10
β’ π» = (LSHypβπ) |
27 | 25, 26 | eqtr4di 2790 |
. . . . . . . . 9
β’ (π€ = π β (LSHypβπ€) = π») |
28 | 27 | eleq2d 2819 |
. . . . . . . 8
β’ (π€ = π β ((πβπ₯) β (LSHypβπ€) β (πβπ₯) β π»)) |
29 | 28 | anbi1d 630 |
. . . . . . 7
β’ (π€ = π β (((πβπ₯) β (LSHypβπ€) β§ (πβ(πβπ₯)) = π₯) β ((πβπ₯) β π» β§ (πβ(πβπ₯)) = π₯))) |
30 | 24, 29 | raleqbidv 3342 |
. . . . . 6
β’ (π€ = π β (βπ₯ β (LSAtomsβπ€)((πβπ₯) β (LSHypβπ€) β§ (πβ(πβπ₯)) = π₯) β βπ₯ β π΄ ((πβπ₯) β π» β§ (πβ(πβπ₯)) = π₯))) |
31 | 16, 21, 30 | 3anbi123d 1436 |
. . . . 5
β’ (π€ = π β (((πβ(Baseβπ€)) = {(0gβπ€)} β§ βπ₯βπ¦((π₯ β (Baseβπ€) β§ π¦ β (Baseβπ€) β§ π₯ β π¦) β (πβπ¦) β (πβπ₯)) β§ βπ₯ β (LSAtomsβπ€)((πβπ₯) β (LSHypβπ€) β§ (πβ(πβπ₯)) = π₯)) β ((πβπ) = { 0 } β§ βπ₯βπ¦((π₯ β π β§ π¦ β π β§ π₯ β π¦) β (πβπ¦) β (πβπ₯)) β§ βπ₯ β π΄ ((πβπ₯) β π» β§ (πβ(πβπ₯)) = π₯)))) |
32 | 10, 31 | rabeqbidv 3449 |
. . . 4
β’ (π€ = π β {π β ((LSubSpβπ€) βm π«
(Baseβπ€)) β£
((πβ(Baseβπ€)) = {(0gβπ€)} β§ βπ₯βπ¦((π₯ β (Baseβπ€) β§ π¦ β (Baseβπ€) β§ π₯ β π¦) β (πβπ¦) β (πβπ₯)) β§ βπ₯ β (LSAtomsβπ€)((πβπ₯) β (LSHypβπ€) β§ (πβ(πβπ₯)) = π₯))} = {π β (π βm π« π) β£ ((πβπ) = { 0 } β§ βπ₯βπ¦((π₯ β π β§ π¦ β π β§ π₯ β π¦) β (πβπ¦) β (πβπ₯)) β§ βπ₯ β π΄ ((πβπ₯) β π» β§ (πβ(πβπ₯)) = π₯))}) |
33 | | df-lpolN 40340 |
. . . 4
β’ LPol =
(π€ β V β¦ {π β ((LSubSpβπ€) βm π«
(Baseβπ€)) β£
((πβ(Baseβπ€)) = {(0gβπ€)} β§ βπ₯βπ¦((π₯ β (Baseβπ€) β§ π¦ β (Baseβπ€) β§ π₯ β π¦) β (πβπ¦) β (πβπ₯)) β§ βπ₯ β (LSAtomsβπ€)((πβπ₯) β (LSHypβπ€) β§ (πβ(πβπ₯)) = π₯))}) |
34 | | ovex 7438 |
. . . . 5
β’ (π βm π«
π) β
V |
35 | 34 | rabex 5331 |
. . . 4
β’ {π β (π βm π« π) β£ ((πβπ) = { 0 } β§ βπ₯βπ¦((π₯ β π β§ π¦ β π β§ π₯ β π¦) β (πβπ¦) β (πβπ₯)) β§ βπ₯ β π΄ ((πβπ₯) β π» β§ (πβ(πβπ₯)) = π₯))} β V |
36 | 32, 33, 35 | fvmpt 6995 |
. . 3
β’ (π β V β
(LPolβπ) = {π β (π βm π« π) β£ ((πβπ) = { 0 } β§ βπ₯βπ¦((π₯ β π β§ π¦ β π β§ π₯ β π¦) β (πβπ¦) β (πβπ₯)) β§ βπ₯ β π΄ ((πβπ₯) β π» β§ (πβ(πβπ₯)) = π₯))}) |
37 | 2, 36 | eqtrid 2784 |
. 2
β’ (π β V β π = {π β (π βm π« π) β£ ((πβπ) = { 0 } β§ βπ₯βπ¦((π₯ β π β§ π¦ β π β§ π₯ β π¦) β (πβπ¦) β (πβπ₯)) β§ βπ₯ β π΄ ((πβπ₯) β π» β§ (πβ(πβπ₯)) = π₯))}) |
38 | 1, 37 | syl 17 |
1
β’ (π β π β π = {π β (π βm π« π) β£ ((πβπ) = { 0 } β§ βπ₯βπ¦((π₯ β π β§ π¦ β π β§ π₯ β π¦) β (πβπ¦) β (πβπ₯)) β§ βπ₯ β π΄ ((πβπ₯) β π» β§ (πβ(πβπ₯)) = π₯))}) |