Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lpolsetN Structured version   Visualization version   GIF version

Theorem lpolsetN 41506
Description: The set of polarities of a left module or left vector space. (Contributed by NM, 24-Nov-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
lpolset.v 𝑉 = (Base‘𝑊)
lpolset.s 𝑆 = (LSubSp‘𝑊)
lpolset.z 0 = (0g𝑊)
lpolset.a 𝐴 = (LSAtoms‘𝑊)
lpolset.h 𝐻 = (LSHyp‘𝑊)
lpolset.p 𝑃 = (LPol‘𝑊)
Assertion
Ref Expression
lpolsetN (𝑊𝑋𝑃 = {𝑜 ∈ (𝑆m 𝒫 𝑉) ∣ ((𝑜𝑉) = { 0 } ∧ ∀𝑥𝑦((𝑥𝑉𝑦𝑉𝑥𝑦) → (𝑜𝑦) ⊆ (𝑜𝑥)) ∧ ∀𝑥𝐴 ((𝑜𝑥) ∈ 𝐻 ∧ (𝑜‘(𝑜𝑥)) = 𝑥))})
Distinct variable groups:   𝑥,𝐴   𝑆,𝑜   𝑜,𝑉   𝑥,𝑜,𝑦,𝑊
Allowed substitution hints:   𝐴(𝑦,𝑜)   𝑃(𝑥,𝑦,𝑜)   𝑆(𝑥,𝑦)   𝐻(𝑥,𝑦,𝑜)   𝑉(𝑥,𝑦)   𝑋(𝑥,𝑦,𝑜)   0 (𝑥,𝑦,𝑜)

Proof of Theorem lpolsetN
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 elex 3485 . 2 (𝑊𝑋𝑊 ∈ V)
2 lpolset.p . . 3 𝑃 = (LPol‘𝑊)
3 fveq2 6881 . . . . . . 7 (𝑤 = 𝑊 → (LSubSp‘𝑤) = (LSubSp‘𝑊))
4 lpolset.s . . . . . . 7 𝑆 = (LSubSp‘𝑊)
53, 4eqtr4di 2789 . . . . . 6 (𝑤 = 𝑊 → (LSubSp‘𝑤) = 𝑆)
6 fveq2 6881 . . . . . . . 8 (𝑤 = 𝑊 → (Base‘𝑤) = (Base‘𝑊))
7 lpolset.v . . . . . . . 8 𝑉 = (Base‘𝑊)
86, 7eqtr4di 2789 . . . . . . 7 (𝑤 = 𝑊 → (Base‘𝑤) = 𝑉)
98pweqd 4597 . . . . . 6 (𝑤 = 𝑊 → 𝒫 (Base‘𝑤) = 𝒫 𝑉)
105, 9oveq12d 7428 . . . . 5 (𝑤 = 𝑊 → ((LSubSp‘𝑤) ↑m 𝒫 (Base‘𝑤)) = (𝑆m 𝒫 𝑉))
118fveq2d 6885 . . . . . . 7 (𝑤 = 𝑊 → (𝑜‘(Base‘𝑤)) = (𝑜𝑉))
12 fveq2 6881 . . . . . . . . 9 (𝑤 = 𝑊 → (0g𝑤) = (0g𝑊))
13 lpolset.z . . . . . . . . 9 0 = (0g𝑊)
1412, 13eqtr4di 2789 . . . . . . . 8 (𝑤 = 𝑊 → (0g𝑤) = 0 )
1514sneqd 4618 . . . . . . 7 (𝑤 = 𝑊 → {(0g𝑤)} = { 0 })
1611, 15eqeq12d 2752 . . . . . 6 (𝑤 = 𝑊 → ((𝑜‘(Base‘𝑤)) = {(0g𝑤)} ↔ (𝑜𝑉) = { 0 }))
178sseq2d 3996 . . . . . . . . 9 (𝑤 = 𝑊 → (𝑥 ⊆ (Base‘𝑤) ↔ 𝑥𝑉))
188sseq2d 3996 . . . . . . . . 9 (𝑤 = 𝑊 → (𝑦 ⊆ (Base‘𝑤) ↔ 𝑦𝑉))
1917, 183anbi12d 1439 . . . . . . . 8 (𝑤 = 𝑊 → ((𝑥 ⊆ (Base‘𝑤) ∧ 𝑦 ⊆ (Base‘𝑤) ∧ 𝑥𝑦) ↔ (𝑥𝑉𝑦𝑉𝑥𝑦)))
2019imbi1d 341 . . . . . . 7 (𝑤 = 𝑊 → (((𝑥 ⊆ (Base‘𝑤) ∧ 𝑦 ⊆ (Base‘𝑤) ∧ 𝑥𝑦) → (𝑜𝑦) ⊆ (𝑜𝑥)) ↔ ((𝑥𝑉𝑦𝑉𝑥𝑦) → (𝑜𝑦) ⊆ (𝑜𝑥))))
21202albidv 1923 . . . . . 6 (𝑤 = 𝑊 → (∀𝑥𝑦((𝑥 ⊆ (Base‘𝑤) ∧ 𝑦 ⊆ (Base‘𝑤) ∧ 𝑥𝑦) → (𝑜𝑦) ⊆ (𝑜𝑥)) ↔ ∀𝑥𝑦((𝑥𝑉𝑦𝑉𝑥𝑦) → (𝑜𝑦) ⊆ (𝑜𝑥))))
22 fveq2 6881 . . . . . . . 8 (𝑤 = 𝑊 → (LSAtoms‘𝑤) = (LSAtoms‘𝑊))
23 lpolset.a . . . . . . . 8 𝐴 = (LSAtoms‘𝑊)
2422, 23eqtr4di 2789 . . . . . . 7 (𝑤 = 𝑊 → (LSAtoms‘𝑤) = 𝐴)
25 fveq2 6881 . . . . . . . . . 10 (𝑤 = 𝑊 → (LSHyp‘𝑤) = (LSHyp‘𝑊))
26 lpolset.h . . . . . . . . . 10 𝐻 = (LSHyp‘𝑊)
2725, 26eqtr4di 2789 . . . . . . . . 9 (𝑤 = 𝑊 → (LSHyp‘𝑤) = 𝐻)
2827eleq2d 2821 . . . . . . . 8 (𝑤 = 𝑊 → ((𝑜𝑥) ∈ (LSHyp‘𝑤) ↔ (𝑜𝑥) ∈ 𝐻))
2928anbi1d 631 . . . . . . 7 (𝑤 = 𝑊 → (((𝑜𝑥) ∈ (LSHyp‘𝑤) ∧ (𝑜‘(𝑜𝑥)) = 𝑥) ↔ ((𝑜𝑥) ∈ 𝐻 ∧ (𝑜‘(𝑜𝑥)) = 𝑥)))
3024, 29raleqbidv 3329 . . . . . 6 (𝑤 = 𝑊 → (∀𝑥 ∈ (LSAtoms‘𝑤)((𝑜𝑥) ∈ (LSHyp‘𝑤) ∧ (𝑜‘(𝑜𝑥)) = 𝑥) ↔ ∀𝑥𝐴 ((𝑜𝑥) ∈ 𝐻 ∧ (𝑜‘(𝑜𝑥)) = 𝑥)))
3116, 21, 303anbi123d 1438 . . . . 5 (𝑤 = 𝑊 → (((𝑜‘(Base‘𝑤)) = {(0g𝑤)} ∧ ∀𝑥𝑦((𝑥 ⊆ (Base‘𝑤) ∧ 𝑦 ⊆ (Base‘𝑤) ∧ 𝑥𝑦) → (𝑜𝑦) ⊆ (𝑜𝑥)) ∧ ∀𝑥 ∈ (LSAtoms‘𝑤)((𝑜𝑥) ∈ (LSHyp‘𝑤) ∧ (𝑜‘(𝑜𝑥)) = 𝑥)) ↔ ((𝑜𝑉) = { 0 } ∧ ∀𝑥𝑦((𝑥𝑉𝑦𝑉𝑥𝑦) → (𝑜𝑦) ⊆ (𝑜𝑥)) ∧ ∀𝑥𝐴 ((𝑜𝑥) ∈ 𝐻 ∧ (𝑜‘(𝑜𝑥)) = 𝑥))))
3210, 31rabeqbidv 3439 . . . 4 (𝑤 = 𝑊 → {𝑜 ∈ ((LSubSp‘𝑤) ↑m 𝒫 (Base‘𝑤)) ∣ ((𝑜‘(Base‘𝑤)) = {(0g𝑤)} ∧ ∀𝑥𝑦((𝑥 ⊆ (Base‘𝑤) ∧ 𝑦 ⊆ (Base‘𝑤) ∧ 𝑥𝑦) → (𝑜𝑦) ⊆ (𝑜𝑥)) ∧ ∀𝑥 ∈ (LSAtoms‘𝑤)((𝑜𝑥) ∈ (LSHyp‘𝑤) ∧ (𝑜‘(𝑜𝑥)) = 𝑥))} = {𝑜 ∈ (𝑆m 𝒫 𝑉) ∣ ((𝑜𝑉) = { 0 } ∧ ∀𝑥𝑦((𝑥𝑉𝑦𝑉𝑥𝑦) → (𝑜𝑦) ⊆ (𝑜𝑥)) ∧ ∀𝑥𝐴 ((𝑜𝑥) ∈ 𝐻 ∧ (𝑜‘(𝑜𝑥)) = 𝑥))})
33 df-lpolN 41505 . . . 4 LPol = (𝑤 ∈ V ↦ {𝑜 ∈ ((LSubSp‘𝑤) ↑m 𝒫 (Base‘𝑤)) ∣ ((𝑜‘(Base‘𝑤)) = {(0g𝑤)} ∧ ∀𝑥𝑦((𝑥 ⊆ (Base‘𝑤) ∧ 𝑦 ⊆ (Base‘𝑤) ∧ 𝑥𝑦) → (𝑜𝑦) ⊆ (𝑜𝑥)) ∧ ∀𝑥 ∈ (LSAtoms‘𝑤)((𝑜𝑥) ∈ (LSHyp‘𝑤) ∧ (𝑜‘(𝑜𝑥)) = 𝑥))})
34 ovex 7443 . . . . 5 (𝑆m 𝒫 𝑉) ∈ V
3534rabex 5314 . . . 4 {𝑜 ∈ (𝑆m 𝒫 𝑉) ∣ ((𝑜𝑉) = { 0 } ∧ ∀𝑥𝑦((𝑥𝑉𝑦𝑉𝑥𝑦) → (𝑜𝑦) ⊆ (𝑜𝑥)) ∧ ∀𝑥𝐴 ((𝑜𝑥) ∈ 𝐻 ∧ (𝑜‘(𝑜𝑥)) = 𝑥))} ∈ V
3632, 33, 35fvmpt 6991 . . 3 (𝑊 ∈ V → (LPol‘𝑊) = {𝑜 ∈ (𝑆m 𝒫 𝑉) ∣ ((𝑜𝑉) = { 0 } ∧ ∀𝑥𝑦((𝑥𝑉𝑦𝑉𝑥𝑦) → (𝑜𝑦) ⊆ (𝑜𝑥)) ∧ ∀𝑥𝐴 ((𝑜𝑥) ∈ 𝐻 ∧ (𝑜‘(𝑜𝑥)) = 𝑥))})
372, 36eqtrid 2783 . 2 (𝑊 ∈ V → 𝑃 = {𝑜 ∈ (𝑆m 𝒫 𝑉) ∣ ((𝑜𝑉) = { 0 } ∧ ∀𝑥𝑦((𝑥𝑉𝑦𝑉𝑥𝑦) → (𝑜𝑦) ⊆ (𝑜𝑥)) ∧ ∀𝑥𝐴 ((𝑜𝑥) ∈ 𝐻 ∧ (𝑜‘(𝑜𝑥)) = 𝑥))})
381, 37syl 17 1 (𝑊𝑋𝑃 = {𝑜 ∈ (𝑆m 𝒫 𝑉) ∣ ((𝑜𝑉) = { 0 } ∧ ∀𝑥𝑦((𝑥𝑉𝑦𝑉𝑥𝑦) → (𝑜𝑦) ⊆ (𝑜𝑥)) ∧ ∀𝑥𝐴 ((𝑜𝑥) ∈ 𝐻 ∧ (𝑜‘(𝑜𝑥)) = 𝑥))})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086  wal 1538   = wceq 1540  wcel 2109  wral 3052  {crab 3420  Vcvv 3464  wss 3931  𝒫 cpw 4580  {csn 4606  cfv 6536  (class class class)co 7410  m cmap 8845  Basecbs 17233  0gc0g 17458  LSubSpclss 20893  LSAtomsclsa 38997  LSHypclsh 38998  LPolclpoN 41504
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pr 5407
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-iota 6489  df-fun 6538  df-fv 6544  df-ov 7413  df-lpolN 41505
This theorem is referenced by:  islpolN  41507
  Copyright terms: Public domain W3C validator