MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-lss Structured version   Visualization version   GIF version

Definition df-lss 20775
Description: Define the set of linear subspaces of a left module or left vector space: a linear subspace of a left module or left vector space is a non-empty subset of the base set of the left module/vector space with a closure condition on vector addition and scalar multiplication. (Contributed by NM, 8-Dec-2013.)
Assertion
Ref Expression
df-lss LSubSp = (𝑀 ∈ V ↦ {𝑠 ∈ (𝒫 (Baseβ€˜π‘€) βˆ– {βˆ…}) ∣ βˆ€π‘₯ ∈ (Baseβ€˜(Scalarβ€˜π‘€))βˆ€π‘Ž ∈ 𝑠 βˆ€π‘ ∈ 𝑠 ((π‘₯( ·𝑠 β€˜π‘€)π‘Ž)(+gβ€˜π‘€)𝑏) ∈ 𝑠})
Distinct variable group:   π‘Ž,𝑏,𝑠,π‘₯,𝑀

Detailed syntax breakdown of Definition df-lss
StepHypRef Expression
1 clss 20774 . 2 class LSubSp
2 vw . . 3 setvar 𝑀
3 cvv 3473 . . 3 class V
4 vx . . . . . . . . . . 11 setvar π‘₯
54cv 1539 . . . . . . . . . 10 class π‘₯
6 va . . . . . . . . . . 11 setvar π‘Ž
76cv 1539 . . . . . . . . . 10 class π‘Ž
82cv 1539 . . . . . . . . . . 11 class 𝑀
9 cvsca 17208 . . . . . . . . . . 11 class ·𝑠
108, 9cfv 6543 . . . . . . . . . 10 class ( ·𝑠 β€˜π‘€)
115, 7, 10co 7412 . . . . . . . . 9 class (π‘₯( ·𝑠 β€˜π‘€)π‘Ž)
12 vb . . . . . . . . . 10 setvar 𝑏
1312cv 1539 . . . . . . . . 9 class 𝑏
14 cplusg 17204 . . . . . . . . . 10 class +g
158, 14cfv 6543 . . . . . . . . 9 class (+gβ€˜π‘€)
1611, 13, 15co 7412 . . . . . . . 8 class ((π‘₯( ·𝑠 β€˜π‘€)π‘Ž)(+gβ€˜π‘€)𝑏)
17 vs . . . . . . . . 9 setvar 𝑠
1817cv 1539 . . . . . . . 8 class 𝑠
1916, 18wcel 2105 . . . . . . 7 wff ((π‘₯( ·𝑠 β€˜π‘€)π‘Ž)(+gβ€˜π‘€)𝑏) ∈ 𝑠
2019, 12, 18wral 3060 . . . . . 6 wff βˆ€π‘ ∈ 𝑠 ((π‘₯( ·𝑠 β€˜π‘€)π‘Ž)(+gβ€˜π‘€)𝑏) ∈ 𝑠
2120, 6, 18wral 3060 . . . . 5 wff βˆ€π‘Ž ∈ 𝑠 βˆ€π‘ ∈ 𝑠 ((π‘₯( ·𝑠 β€˜π‘€)π‘Ž)(+gβ€˜π‘€)𝑏) ∈ 𝑠
22 csca 17207 . . . . . . 7 class Scalar
238, 22cfv 6543 . . . . . 6 class (Scalarβ€˜π‘€)
24 cbs 17151 . . . . . 6 class Base
2523, 24cfv 6543 . . . . 5 class (Baseβ€˜(Scalarβ€˜π‘€))
2621, 4, 25wral 3060 . . . 4 wff βˆ€π‘₯ ∈ (Baseβ€˜(Scalarβ€˜π‘€))βˆ€π‘Ž ∈ 𝑠 βˆ€π‘ ∈ 𝑠 ((π‘₯( ·𝑠 β€˜π‘€)π‘Ž)(+gβ€˜π‘€)𝑏) ∈ 𝑠
278, 24cfv 6543 . . . . . 6 class (Baseβ€˜π‘€)
2827cpw 4602 . . . . 5 class 𝒫 (Baseβ€˜π‘€)
29 c0 4322 . . . . . 6 class βˆ…
3029csn 4628 . . . . 5 class {βˆ…}
3128, 30cdif 3945 . . . 4 class (𝒫 (Baseβ€˜π‘€) βˆ– {βˆ…})
3226, 17, 31crab 3431 . . 3 class {𝑠 ∈ (𝒫 (Baseβ€˜π‘€) βˆ– {βˆ…}) ∣ βˆ€π‘₯ ∈ (Baseβ€˜(Scalarβ€˜π‘€))βˆ€π‘Ž ∈ 𝑠 βˆ€π‘ ∈ 𝑠 ((π‘₯( ·𝑠 β€˜π‘€)π‘Ž)(+gβ€˜π‘€)𝑏) ∈ 𝑠}
332, 3, 32cmpt 5231 . 2 class (𝑀 ∈ V ↦ {𝑠 ∈ (𝒫 (Baseβ€˜π‘€) βˆ– {βˆ…}) ∣ βˆ€π‘₯ ∈ (Baseβ€˜(Scalarβ€˜π‘€))βˆ€π‘Ž ∈ 𝑠 βˆ€π‘ ∈ 𝑠 ((π‘₯( ·𝑠 β€˜π‘€)π‘Ž)(+gβ€˜π‘€)𝑏) ∈ 𝑠})
341, 33wceq 1540 1 wff LSubSp = (𝑀 ∈ V ↦ {𝑠 ∈ (𝒫 (Baseβ€˜π‘€) βˆ– {βˆ…}) ∣ βˆ€π‘₯ ∈ (Baseβ€˜(Scalarβ€˜π‘€))βˆ€π‘Ž ∈ 𝑠 βˆ€π‘ ∈ 𝑠 ((π‘₯( ·𝑠 β€˜π‘€)π‘Ž)(+gβ€˜π‘€)𝑏) ∈ 𝑠})
Colors of variables: wff setvar class
This definition is referenced by:  lssset  20776
  Copyright terms: Public domain W3C validator