Detailed syntax breakdown of Definition df-lss
| Step | Hyp | Ref
| Expression |
| 1 | | clss 20929 |
. 2
class
LSubSp |
| 2 | | vw |
. . 3
setvar 𝑤 |
| 3 | | cvv 3480 |
. . 3
class
V |
| 4 | | vx |
. . . . . . . . . . 11
setvar 𝑥 |
| 5 | 4 | cv 1539 |
. . . . . . . . . 10
class 𝑥 |
| 6 | | va |
. . . . . . . . . . 11
setvar 𝑎 |
| 7 | 6 | cv 1539 |
. . . . . . . . . 10
class 𝑎 |
| 8 | 2 | cv 1539 |
. . . . . . . . . . 11
class 𝑤 |
| 9 | | cvsca 17301 |
. . . . . . . . . . 11
class
·𝑠 |
| 10 | 8, 9 | cfv 6561 |
. . . . . . . . . 10
class (
·𝑠 ‘𝑤) |
| 11 | 5, 7, 10 | co 7431 |
. . . . . . . . 9
class (𝑥(
·𝑠 ‘𝑤)𝑎) |
| 12 | | vb |
. . . . . . . . . 10
setvar 𝑏 |
| 13 | 12 | cv 1539 |
. . . . . . . . 9
class 𝑏 |
| 14 | | cplusg 17297 |
. . . . . . . . . 10
class
+g |
| 15 | 8, 14 | cfv 6561 |
. . . . . . . . 9
class
(+g‘𝑤) |
| 16 | 11, 13, 15 | co 7431 |
. . . . . . . 8
class ((𝑥(
·𝑠 ‘𝑤)𝑎)(+g‘𝑤)𝑏) |
| 17 | | vs |
. . . . . . . . 9
setvar 𝑠 |
| 18 | 17 | cv 1539 |
. . . . . . . 8
class 𝑠 |
| 19 | 16, 18 | wcel 2108 |
. . . . . . 7
wff ((𝑥(
·𝑠 ‘𝑤)𝑎)(+g‘𝑤)𝑏) ∈ 𝑠 |
| 20 | 19, 12, 18 | wral 3061 |
. . . . . 6
wff
∀𝑏 ∈
𝑠 ((𝑥( ·𝑠
‘𝑤)𝑎)(+g‘𝑤)𝑏) ∈ 𝑠 |
| 21 | 20, 6, 18 | wral 3061 |
. . . . 5
wff
∀𝑎 ∈
𝑠 ∀𝑏 ∈ 𝑠 ((𝑥( ·𝑠
‘𝑤)𝑎)(+g‘𝑤)𝑏) ∈ 𝑠 |
| 22 | | csca 17300 |
. . . . . . 7
class
Scalar |
| 23 | 8, 22 | cfv 6561 |
. . . . . 6
class
(Scalar‘𝑤) |
| 24 | | cbs 17247 |
. . . . . 6
class
Base |
| 25 | 23, 24 | cfv 6561 |
. . . . 5
class
(Base‘(Scalar‘𝑤)) |
| 26 | 21, 4, 25 | wral 3061 |
. . . 4
wff
∀𝑥 ∈
(Base‘(Scalar‘𝑤))∀𝑎 ∈ 𝑠 ∀𝑏 ∈ 𝑠 ((𝑥( ·𝑠
‘𝑤)𝑎)(+g‘𝑤)𝑏) ∈ 𝑠 |
| 27 | 8, 24 | cfv 6561 |
. . . . . 6
class
(Base‘𝑤) |
| 28 | 27 | cpw 4600 |
. . . . 5
class 𝒫
(Base‘𝑤) |
| 29 | | c0 4333 |
. . . . . 6
class
∅ |
| 30 | 29 | csn 4626 |
. . . . 5
class
{∅} |
| 31 | 28, 30 | cdif 3948 |
. . . 4
class
(𝒫 (Base‘𝑤) ∖ {∅}) |
| 32 | 26, 17, 31 | crab 3436 |
. . 3
class {𝑠 ∈ (𝒫
(Base‘𝑤) ∖
{∅}) ∣ ∀𝑥 ∈ (Base‘(Scalar‘𝑤))∀𝑎 ∈ 𝑠 ∀𝑏 ∈ 𝑠 ((𝑥( ·𝑠
‘𝑤)𝑎)(+g‘𝑤)𝑏) ∈ 𝑠} |
| 33 | 2, 3, 32 | cmpt 5225 |
. 2
class (𝑤 ∈ V ↦ {𝑠 ∈ (𝒫
(Base‘𝑤) ∖
{∅}) ∣ ∀𝑥 ∈ (Base‘(Scalar‘𝑤))∀𝑎 ∈ 𝑠 ∀𝑏 ∈ 𝑠 ((𝑥( ·𝑠
‘𝑤)𝑎)(+g‘𝑤)𝑏) ∈ 𝑠}) |
| 34 | 1, 33 | wceq 1540 |
1
wff LSubSp =
(𝑤 ∈ V ↦ {𝑠 ∈ (𝒫
(Base‘𝑤) ∖
{∅}) ∣ ∀𝑥 ∈ (Base‘(Scalar‘𝑤))∀𝑎 ∈ 𝑠 ∀𝑏 ∈ 𝑠 ((𝑥( ·𝑠
‘𝑤)𝑎)(+g‘𝑤)𝑏) ∈ 𝑠}) |