Step | Hyp | Ref
| Expression |
1 | | lssset.s |
. 2
⊢ 𝑆 = (LSubSp‘𝑊) |
2 | | elex 3428 |
. . 3
⊢ (𝑊 ∈ 𝑋 → 𝑊 ∈ V) |
3 | | fveq2 6658 |
. . . . . . . 8
⊢ (𝑤 = 𝑊 → (Base‘𝑤) = (Base‘𝑊)) |
4 | | lssset.v |
. . . . . . . 8
⊢ 𝑉 = (Base‘𝑊) |
5 | 3, 4 | eqtr4di 2811 |
. . . . . . 7
⊢ (𝑤 = 𝑊 → (Base‘𝑤) = 𝑉) |
6 | 5 | pweqd 4513 |
. . . . . 6
⊢ (𝑤 = 𝑊 → 𝒫 (Base‘𝑤) = 𝒫 𝑉) |
7 | 6 | difeq1d 4027 |
. . . . 5
⊢ (𝑤 = 𝑊 → (𝒫 (Base‘𝑤) ∖ {∅}) =
(𝒫 𝑉 ∖
{∅})) |
8 | | fveq2 6658 |
. . . . . . . . 9
⊢ (𝑤 = 𝑊 → (Scalar‘𝑤) = (Scalar‘𝑊)) |
9 | | lssset.f |
. . . . . . . . 9
⊢ 𝐹 = (Scalar‘𝑊) |
10 | 8, 9 | eqtr4di 2811 |
. . . . . . . 8
⊢ (𝑤 = 𝑊 → (Scalar‘𝑤) = 𝐹) |
11 | 10 | fveq2d 6662 |
. . . . . . 7
⊢ (𝑤 = 𝑊 → (Base‘(Scalar‘𝑤)) = (Base‘𝐹)) |
12 | | lssset.b |
. . . . . . 7
⊢ 𝐵 = (Base‘𝐹) |
13 | 11, 12 | eqtr4di 2811 |
. . . . . 6
⊢ (𝑤 = 𝑊 → (Base‘(Scalar‘𝑤)) = 𝐵) |
14 | | fveq2 6658 |
. . . . . . . . . . . 12
⊢ (𝑤 = 𝑊 → (
·𝑠 ‘𝑤) = ( ·𝑠
‘𝑊)) |
15 | | lssset.t |
. . . . . . . . . . . 12
⊢ · = (
·𝑠 ‘𝑊) |
16 | 14, 15 | eqtr4di 2811 |
. . . . . . . . . . 11
⊢ (𝑤 = 𝑊 → (
·𝑠 ‘𝑤) = · ) |
17 | 16 | oveqd 7167 |
. . . . . . . . . 10
⊢ (𝑤 = 𝑊 → (𝑥( ·𝑠
‘𝑤)𝑎) = (𝑥 · 𝑎)) |
18 | 17 | oveq1d 7165 |
. . . . . . . . 9
⊢ (𝑤 = 𝑊 → ((𝑥( ·𝑠
‘𝑤)𝑎)(+g‘𝑤)𝑏) = ((𝑥 · 𝑎)(+g‘𝑤)𝑏)) |
19 | | fveq2 6658 |
. . . . . . . . . . 11
⊢ (𝑤 = 𝑊 → (+g‘𝑤) = (+g‘𝑊)) |
20 | | lssset.p |
. . . . . . . . . . 11
⊢ + =
(+g‘𝑊) |
21 | 19, 20 | eqtr4di 2811 |
. . . . . . . . . 10
⊢ (𝑤 = 𝑊 → (+g‘𝑤) = + ) |
22 | 21 | oveqd 7167 |
. . . . . . . . 9
⊢ (𝑤 = 𝑊 → ((𝑥 · 𝑎)(+g‘𝑤)𝑏) = ((𝑥 · 𝑎) + 𝑏)) |
23 | 18, 22 | eqtrd 2793 |
. . . . . . . 8
⊢ (𝑤 = 𝑊 → ((𝑥( ·𝑠
‘𝑤)𝑎)(+g‘𝑤)𝑏) = ((𝑥 · 𝑎) + 𝑏)) |
24 | 23 | eleq1d 2836 |
. . . . . . 7
⊢ (𝑤 = 𝑊 → (((𝑥( ·𝑠
‘𝑤)𝑎)(+g‘𝑤)𝑏) ∈ 𝑠 ↔ ((𝑥 · 𝑎) + 𝑏) ∈ 𝑠)) |
25 | 24 | 2ralbidv 3128 |
. . . . . 6
⊢ (𝑤 = 𝑊 → (∀𝑎 ∈ 𝑠 ∀𝑏 ∈ 𝑠 ((𝑥( ·𝑠
‘𝑤)𝑎)(+g‘𝑤)𝑏) ∈ 𝑠 ↔ ∀𝑎 ∈ 𝑠 ∀𝑏 ∈ 𝑠 ((𝑥 · 𝑎) + 𝑏) ∈ 𝑠)) |
26 | 13, 25 | raleqbidv 3319 |
. . . . 5
⊢ (𝑤 = 𝑊 → (∀𝑥 ∈ (Base‘(Scalar‘𝑤))∀𝑎 ∈ 𝑠 ∀𝑏 ∈ 𝑠 ((𝑥( ·𝑠
‘𝑤)𝑎)(+g‘𝑤)𝑏) ∈ 𝑠 ↔ ∀𝑥 ∈ 𝐵 ∀𝑎 ∈ 𝑠 ∀𝑏 ∈ 𝑠 ((𝑥 · 𝑎) + 𝑏) ∈ 𝑠)) |
27 | 7, 26 | rabeqbidv 3398 |
. . . 4
⊢ (𝑤 = 𝑊 → {𝑠 ∈ (𝒫 (Base‘𝑤) ∖ {∅}) ∣
∀𝑥 ∈
(Base‘(Scalar‘𝑤))∀𝑎 ∈ 𝑠 ∀𝑏 ∈ 𝑠 ((𝑥( ·𝑠
‘𝑤)𝑎)(+g‘𝑤)𝑏) ∈ 𝑠} = {𝑠 ∈ (𝒫 𝑉 ∖ {∅}) ∣ ∀𝑥 ∈ 𝐵 ∀𝑎 ∈ 𝑠 ∀𝑏 ∈ 𝑠 ((𝑥 · 𝑎) + 𝑏) ∈ 𝑠}) |
28 | | df-lss 19772 |
. . . 4
⊢ LSubSp =
(𝑤 ∈ V ↦ {𝑠 ∈ (𝒫
(Base‘𝑤) ∖
{∅}) ∣ ∀𝑥 ∈ (Base‘(Scalar‘𝑤))∀𝑎 ∈ 𝑠 ∀𝑏 ∈ 𝑠 ((𝑥( ·𝑠
‘𝑤)𝑎)(+g‘𝑤)𝑏) ∈ 𝑠}) |
29 | 4 | fvexi 6672 |
. . . . . . 7
⊢ 𝑉 ∈ V |
30 | 29 | pwex 5249 |
. . . . . 6
⊢ 𝒫
𝑉 ∈ V |
31 | 30 | difexi 5198 |
. . . . 5
⊢
(𝒫 𝑉 ∖
{∅}) ∈ V |
32 | 31 | rabex 5202 |
. . . 4
⊢ {𝑠 ∈ (𝒫 𝑉 ∖ {∅}) ∣
∀𝑥 ∈ 𝐵 ∀𝑎 ∈ 𝑠 ∀𝑏 ∈ 𝑠 ((𝑥 · 𝑎) + 𝑏) ∈ 𝑠} ∈ V |
33 | 27, 28, 32 | fvmpt 6759 |
. . 3
⊢ (𝑊 ∈ V →
(LSubSp‘𝑊) = {𝑠 ∈ (𝒫 𝑉 ∖ {∅}) ∣
∀𝑥 ∈ 𝐵 ∀𝑎 ∈ 𝑠 ∀𝑏 ∈ 𝑠 ((𝑥 · 𝑎) + 𝑏) ∈ 𝑠}) |
34 | 2, 33 | syl 17 |
. 2
⊢ (𝑊 ∈ 𝑋 → (LSubSp‘𝑊) = {𝑠 ∈ (𝒫 𝑉 ∖ {∅}) ∣ ∀𝑥 ∈ 𝐵 ∀𝑎 ∈ 𝑠 ∀𝑏 ∈ 𝑠 ((𝑥 · 𝑎) + 𝑏) ∈ 𝑠}) |
35 | 1, 34 | syl5eq 2805 |
1
⊢ (𝑊 ∈ 𝑋 → 𝑆 = {𝑠 ∈ (𝒫 𝑉 ∖ {∅}) ∣ ∀𝑥 ∈ 𝐵 ∀𝑎 ∈ 𝑠 ∀𝑏 ∈ 𝑠 ((𝑥 · 𝑎) + 𝑏) ∈ 𝑠}) |