MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lssset Structured version   Visualization version   GIF version

Theorem lssset 19395
Description: The set of all (not necessarily closed) linear subspaces of a left module or left vector space. (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 15-Jul-2014.)
Hypotheses
Ref Expression
lssset.f 𝐹 = (Scalar‘𝑊)
lssset.b 𝐵 = (Base‘𝐹)
lssset.v 𝑉 = (Base‘𝑊)
lssset.p + = (+g𝑊)
lssset.t · = ( ·𝑠𝑊)
lssset.s 𝑆 = (LSubSp‘𝑊)
Assertion
Ref Expression
lssset (𝑊𝑋𝑆 = {𝑠 ∈ (𝒫 𝑉 ∖ {∅}) ∣ ∀𝑥𝐵𝑎𝑠𝑏𝑠 ((𝑥 · 𝑎) + 𝑏) ∈ 𝑠})
Distinct variable groups:   + ,𝑠   𝑥,𝑠,𝐵   𝑉,𝑠   𝑎,𝑏,𝑠,𝑥,𝑊   · ,𝑠
Allowed substitution hints:   𝐵(𝑎,𝑏)   + (𝑥,𝑎,𝑏)   𝑆(𝑥,𝑠,𝑎,𝑏)   · (𝑥,𝑎,𝑏)   𝐹(𝑥,𝑠,𝑎,𝑏)   𝑉(𝑥,𝑎,𝑏)   𝑋(𝑥,𝑠,𝑎,𝑏)

Proof of Theorem lssset
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 lssset.s . 2 𝑆 = (LSubSp‘𝑊)
2 elex 3455 . . 3 (𝑊𝑋𝑊 ∈ V)
3 fveq2 6538 . . . . . . . 8 (𝑤 = 𝑊 → (Base‘𝑤) = (Base‘𝑊))
4 lssset.v . . . . . . . 8 𝑉 = (Base‘𝑊)
53, 4syl6eqr 2849 . . . . . . 7 (𝑤 = 𝑊 → (Base‘𝑤) = 𝑉)
65pweqd 4458 . . . . . 6 (𝑤 = 𝑊 → 𝒫 (Base‘𝑤) = 𝒫 𝑉)
76difeq1d 4019 . . . . 5 (𝑤 = 𝑊 → (𝒫 (Base‘𝑤) ∖ {∅}) = (𝒫 𝑉 ∖ {∅}))
8 fveq2 6538 . . . . . . . . 9 (𝑤 = 𝑊 → (Scalar‘𝑤) = (Scalar‘𝑊))
9 lssset.f . . . . . . . . 9 𝐹 = (Scalar‘𝑊)
108, 9syl6eqr 2849 . . . . . . . 8 (𝑤 = 𝑊 → (Scalar‘𝑤) = 𝐹)
1110fveq2d 6542 . . . . . . 7 (𝑤 = 𝑊 → (Base‘(Scalar‘𝑤)) = (Base‘𝐹))
12 lssset.b . . . . . . 7 𝐵 = (Base‘𝐹)
1311, 12syl6eqr 2849 . . . . . 6 (𝑤 = 𝑊 → (Base‘(Scalar‘𝑤)) = 𝐵)
14 fveq2 6538 . . . . . . . . . . . 12 (𝑤 = 𝑊 → ( ·𝑠𝑤) = ( ·𝑠𝑊))
15 lssset.t . . . . . . . . . . . 12 · = ( ·𝑠𝑊)
1614, 15syl6eqr 2849 . . . . . . . . . . 11 (𝑤 = 𝑊 → ( ·𝑠𝑤) = · )
1716oveqd 7033 . . . . . . . . . 10 (𝑤 = 𝑊 → (𝑥( ·𝑠𝑤)𝑎) = (𝑥 · 𝑎))
1817oveq1d 7031 . . . . . . . . 9 (𝑤 = 𝑊 → ((𝑥( ·𝑠𝑤)𝑎)(+g𝑤)𝑏) = ((𝑥 · 𝑎)(+g𝑤)𝑏))
19 fveq2 6538 . . . . . . . . . . 11 (𝑤 = 𝑊 → (+g𝑤) = (+g𝑊))
20 lssset.p . . . . . . . . . . 11 + = (+g𝑊)
2119, 20syl6eqr 2849 . . . . . . . . . 10 (𝑤 = 𝑊 → (+g𝑤) = + )
2221oveqd 7033 . . . . . . . . 9 (𝑤 = 𝑊 → ((𝑥 · 𝑎)(+g𝑤)𝑏) = ((𝑥 · 𝑎) + 𝑏))
2318, 22eqtrd 2831 . . . . . . . 8 (𝑤 = 𝑊 → ((𝑥( ·𝑠𝑤)𝑎)(+g𝑤)𝑏) = ((𝑥 · 𝑎) + 𝑏))
2423eleq1d 2867 . . . . . . 7 (𝑤 = 𝑊 → (((𝑥( ·𝑠𝑤)𝑎)(+g𝑤)𝑏) ∈ 𝑠 ↔ ((𝑥 · 𝑎) + 𝑏) ∈ 𝑠))
25242ralbidv 3166 . . . . . 6 (𝑤 = 𝑊 → (∀𝑎𝑠𝑏𝑠 ((𝑥( ·𝑠𝑤)𝑎)(+g𝑤)𝑏) ∈ 𝑠 ↔ ∀𝑎𝑠𝑏𝑠 ((𝑥 · 𝑎) + 𝑏) ∈ 𝑠))
2613, 25raleqbidv 3361 . . . . 5 (𝑤 = 𝑊 → (∀𝑥 ∈ (Base‘(Scalar‘𝑤))∀𝑎𝑠𝑏𝑠 ((𝑥( ·𝑠𝑤)𝑎)(+g𝑤)𝑏) ∈ 𝑠 ↔ ∀𝑥𝐵𝑎𝑠𝑏𝑠 ((𝑥 · 𝑎) + 𝑏) ∈ 𝑠))
277, 26rabeqbidv 3430 . . . 4 (𝑤 = 𝑊 → {𝑠 ∈ (𝒫 (Base‘𝑤) ∖ {∅}) ∣ ∀𝑥 ∈ (Base‘(Scalar‘𝑤))∀𝑎𝑠𝑏𝑠 ((𝑥( ·𝑠𝑤)𝑎)(+g𝑤)𝑏) ∈ 𝑠} = {𝑠 ∈ (𝒫 𝑉 ∖ {∅}) ∣ ∀𝑥𝐵𝑎𝑠𝑏𝑠 ((𝑥 · 𝑎) + 𝑏) ∈ 𝑠})
28 df-lss 19394 . . . 4 LSubSp = (𝑤 ∈ V ↦ {𝑠 ∈ (𝒫 (Base‘𝑤) ∖ {∅}) ∣ ∀𝑥 ∈ (Base‘(Scalar‘𝑤))∀𝑎𝑠𝑏𝑠 ((𝑥( ·𝑠𝑤)𝑎)(+g𝑤)𝑏) ∈ 𝑠})
294fvexi 6552 . . . . . . 7 𝑉 ∈ V
3029pwex 5172 . . . . . 6 𝒫 𝑉 ∈ V
3130difexi 5123 . . . . 5 (𝒫 𝑉 ∖ {∅}) ∈ V
3231rabex 5126 . . . 4 {𝑠 ∈ (𝒫 𝑉 ∖ {∅}) ∣ ∀𝑥𝐵𝑎𝑠𝑏𝑠 ((𝑥 · 𝑎) + 𝑏) ∈ 𝑠} ∈ V
3327, 28, 32fvmpt 6635 . . 3 (𝑊 ∈ V → (LSubSp‘𝑊) = {𝑠 ∈ (𝒫 𝑉 ∖ {∅}) ∣ ∀𝑥𝐵𝑎𝑠𝑏𝑠 ((𝑥 · 𝑎) + 𝑏) ∈ 𝑠})
342, 33syl 17 . 2 (𝑊𝑋 → (LSubSp‘𝑊) = {𝑠 ∈ (𝒫 𝑉 ∖ {∅}) ∣ ∀𝑥𝐵𝑎𝑠𝑏𝑠 ((𝑥 · 𝑎) + 𝑏) ∈ 𝑠})
351, 34syl5eq 2843 1 (𝑊𝑋𝑆 = {𝑠 ∈ (𝒫 𝑉 ∖ {∅}) ∣ ∀𝑥𝐵𝑎𝑠𝑏𝑠 ((𝑥 · 𝑎) + 𝑏) ∈ 𝑠})
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1522  wcel 2081  wral 3105  {crab 3109  Vcvv 3437  cdif 3856  c0 4211  𝒫 cpw 4453  {csn 4472  cfv 6225  (class class class)co 7016  Basecbs 16312  +gcplusg 16394  Scalarcsca 16397   ·𝑠 cvsca 16398  LSubSpclss 19393
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1777  ax-4 1791  ax-5 1888  ax-6 1947  ax-7 1992  ax-8 2083  ax-9 2091  ax-10 2112  ax-11 2126  ax-12 2141  ax-13 2344  ax-ext 2769  ax-sep 5094  ax-nul 5101  ax-pow 5157  ax-pr 5221
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3an 1082  df-tru 1525  df-ex 1762  df-nf 1766  df-sb 2043  df-mo 2576  df-eu 2612  df-clab 2776  df-cleq 2788  df-clel 2863  df-nfc 2935  df-ral 3110  df-rex 3111  df-rab 3114  df-v 3439  df-sbc 3707  df-dif 3862  df-un 3864  df-in 3866  df-ss 3874  df-nul 4212  df-if 4382  df-pw 4455  df-sn 4473  df-pr 4475  df-op 4479  df-uni 4746  df-br 4963  df-opab 5025  df-mpt 5042  df-id 5348  df-xp 5449  df-rel 5450  df-cnv 5451  df-co 5452  df-dm 5453  df-iota 6189  df-fun 6227  df-fv 6233  df-ov 7019  df-lss 19394
This theorem is referenced by:  islss  19396
  Copyright terms: Public domain W3C validator