MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lssset Structured version   Visualization version   GIF version

Theorem lssset 19773
Description: The set of all (not necessarily closed) linear subspaces of a left module or left vector space. (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 15-Jul-2014.)
Hypotheses
Ref Expression
lssset.f 𝐹 = (Scalar‘𝑊)
lssset.b 𝐵 = (Base‘𝐹)
lssset.v 𝑉 = (Base‘𝑊)
lssset.p + = (+g𝑊)
lssset.t · = ( ·𝑠𝑊)
lssset.s 𝑆 = (LSubSp‘𝑊)
Assertion
Ref Expression
lssset (𝑊𝑋𝑆 = {𝑠 ∈ (𝒫 𝑉 ∖ {∅}) ∣ ∀𝑥𝐵𝑎𝑠𝑏𝑠 ((𝑥 · 𝑎) + 𝑏) ∈ 𝑠})
Distinct variable groups:   + ,𝑠   𝑥,𝑠,𝐵   𝑉,𝑠   𝑎,𝑏,𝑠,𝑥,𝑊   · ,𝑠
Allowed substitution hints:   𝐵(𝑎,𝑏)   + (𝑥,𝑎,𝑏)   𝑆(𝑥,𝑠,𝑎,𝑏)   · (𝑥,𝑎,𝑏)   𝐹(𝑥,𝑠,𝑎,𝑏)   𝑉(𝑥,𝑎,𝑏)   𝑋(𝑥,𝑠,𝑎,𝑏)

Proof of Theorem lssset
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 lssset.s . 2 𝑆 = (LSubSp‘𝑊)
2 elex 3428 . . 3 (𝑊𝑋𝑊 ∈ V)
3 fveq2 6658 . . . . . . . 8 (𝑤 = 𝑊 → (Base‘𝑤) = (Base‘𝑊))
4 lssset.v . . . . . . . 8 𝑉 = (Base‘𝑊)
53, 4eqtr4di 2811 . . . . . . 7 (𝑤 = 𝑊 → (Base‘𝑤) = 𝑉)
65pweqd 4513 . . . . . 6 (𝑤 = 𝑊 → 𝒫 (Base‘𝑤) = 𝒫 𝑉)
76difeq1d 4027 . . . . 5 (𝑤 = 𝑊 → (𝒫 (Base‘𝑤) ∖ {∅}) = (𝒫 𝑉 ∖ {∅}))
8 fveq2 6658 . . . . . . . . 9 (𝑤 = 𝑊 → (Scalar‘𝑤) = (Scalar‘𝑊))
9 lssset.f . . . . . . . . 9 𝐹 = (Scalar‘𝑊)
108, 9eqtr4di 2811 . . . . . . . 8 (𝑤 = 𝑊 → (Scalar‘𝑤) = 𝐹)
1110fveq2d 6662 . . . . . . 7 (𝑤 = 𝑊 → (Base‘(Scalar‘𝑤)) = (Base‘𝐹))
12 lssset.b . . . . . . 7 𝐵 = (Base‘𝐹)
1311, 12eqtr4di 2811 . . . . . 6 (𝑤 = 𝑊 → (Base‘(Scalar‘𝑤)) = 𝐵)
14 fveq2 6658 . . . . . . . . . . . 12 (𝑤 = 𝑊 → ( ·𝑠𝑤) = ( ·𝑠𝑊))
15 lssset.t . . . . . . . . . . . 12 · = ( ·𝑠𝑊)
1614, 15eqtr4di 2811 . . . . . . . . . . 11 (𝑤 = 𝑊 → ( ·𝑠𝑤) = · )
1716oveqd 7167 . . . . . . . . . 10 (𝑤 = 𝑊 → (𝑥( ·𝑠𝑤)𝑎) = (𝑥 · 𝑎))
1817oveq1d 7165 . . . . . . . . 9 (𝑤 = 𝑊 → ((𝑥( ·𝑠𝑤)𝑎)(+g𝑤)𝑏) = ((𝑥 · 𝑎)(+g𝑤)𝑏))
19 fveq2 6658 . . . . . . . . . . 11 (𝑤 = 𝑊 → (+g𝑤) = (+g𝑊))
20 lssset.p . . . . . . . . . . 11 + = (+g𝑊)
2119, 20eqtr4di 2811 . . . . . . . . . 10 (𝑤 = 𝑊 → (+g𝑤) = + )
2221oveqd 7167 . . . . . . . . 9 (𝑤 = 𝑊 → ((𝑥 · 𝑎)(+g𝑤)𝑏) = ((𝑥 · 𝑎) + 𝑏))
2318, 22eqtrd 2793 . . . . . . . 8 (𝑤 = 𝑊 → ((𝑥( ·𝑠𝑤)𝑎)(+g𝑤)𝑏) = ((𝑥 · 𝑎) + 𝑏))
2423eleq1d 2836 . . . . . . 7 (𝑤 = 𝑊 → (((𝑥( ·𝑠𝑤)𝑎)(+g𝑤)𝑏) ∈ 𝑠 ↔ ((𝑥 · 𝑎) + 𝑏) ∈ 𝑠))
25242ralbidv 3128 . . . . . 6 (𝑤 = 𝑊 → (∀𝑎𝑠𝑏𝑠 ((𝑥( ·𝑠𝑤)𝑎)(+g𝑤)𝑏) ∈ 𝑠 ↔ ∀𝑎𝑠𝑏𝑠 ((𝑥 · 𝑎) + 𝑏) ∈ 𝑠))
2613, 25raleqbidv 3319 . . . . 5 (𝑤 = 𝑊 → (∀𝑥 ∈ (Base‘(Scalar‘𝑤))∀𝑎𝑠𝑏𝑠 ((𝑥( ·𝑠𝑤)𝑎)(+g𝑤)𝑏) ∈ 𝑠 ↔ ∀𝑥𝐵𝑎𝑠𝑏𝑠 ((𝑥 · 𝑎) + 𝑏) ∈ 𝑠))
277, 26rabeqbidv 3398 . . . 4 (𝑤 = 𝑊 → {𝑠 ∈ (𝒫 (Base‘𝑤) ∖ {∅}) ∣ ∀𝑥 ∈ (Base‘(Scalar‘𝑤))∀𝑎𝑠𝑏𝑠 ((𝑥( ·𝑠𝑤)𝑎)(+g𝑤)𝑏) ∈ 𝑠} = {𝑠 ∈ (𝒫 𝑉 ∖ {∅}) ∣ ∀𝑥𝐵𝑎𝑠𝑏𝑠 ((𝑥 · 𝑎) + 𝑏) ∈ 𝑠})
28 df-lss 19772 . . . 4 LSubSp = (𝑤 ∈ V ↦ {𝑠 ∈ (𝒫 (Base‘𝑤) ∖ {∅}) ∣ ∀𝑥 ∈ (Base‘(Scalar‘𝑤))∀𝑎𝑠𝑏𝑠 ((𝑥( ·𝑠𝑤)𝑎)(+g𝑤)𝑏) ∈ 𝑠})
294fvexi 6672 . . . . . . 7 𝑉 ∈ V
3029pwex 5249 . . . . . 6 𝒫 𝑉 ∈ V
3130difexi 5198 . . . . 5 (𝒫 𝑉 ∖ {∅}) ∈ V
3231rabex 5202 . . . 4 {𝑠 ∈ (𝒫 𝑉 ∖ {∅}) ∣ ∀𝑥𝐵𝑎𝑠𝑏𝑠 ((𝑥 · 𝑎) + 𝑏) ∈ 𝑠} ∈ V
3327, 28, 32fvmpt 6759 . . 3 (𝑊 ∈ V → (LSubSp‘𝑊) = {𝑠 ∈ (𝒫 𝑉 ∖ {∅}) ∣ ∀𝑥𝐵𝑎𝑠𝑏𝑠 ((𝑥 · 𝑎) + 𝑏) ∈ 𝑠})
342, 33syl 17 . 2 (𝑊𝑋 → (LSubSp‘𝑊) = {𝑠 ∈ (𝒫 𝑉 ∖ {∅}) ∣ ∀𝑥𝐵𝑎𝑠𝑏𝑠 ((𝑥 · 𝑎) + 𝑏) ∈ 𝑠})
351, 34syl5eq 2805 1 (𝑊𝑋𝑆 = {𝑠 ∈ (𝒫 𝑉 ∖ {∅}) ∣ ∀𝑥𝐵𝑎𝑠𝑏𝑠 ((𝑥 · 𝑎) + 𝑏) ∈ 𝑠})
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1538  wcel 2111  wral 3070  {crab 3074  Vcvv 3409  cdif 3855  c0 4225  𝒫 cpw 4494  {csn 4522  cfv 6335  (class class class)co 7150  Basecbs 16541  +gcplusg 16623  Scalarcsca 16626   ·𝑠 cvsca 16627  LSubSpclss 19771
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-sep 5169  ax-nul 5176  ax-pow 5234  ax-pr 5298
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ral 3075  df-rex 3076  df-rab 3079  df-v 3411  df-sbc 3697  df-dif 3861  df-un 3863  df-in 3865  df-ss 3875  df-nul 4226  df-if 4421  df-pw 4496  df-sn 4523  df-pr 4525  df-op 4529  df-uni 4799  df-br 5033  df-opab 5095  df-mpt 5113  df-id 5430  df-xp 5530  df-rel 5531  df-cnv 5532  df-co 5533  df-dm 5534  df-iota 6294  df-fun 6337  df-fv 6343  df-ov 7153  df-lss 19772
This theorem is referenced by:  islss  19774
  Copyright terms: Public domain W3C validator