MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-ltnq Structured version   Visualization version   GIF version

Definition df-ltnq 10035
Description: Define ordering relation on positive fractions. This is a "temporary" set used in the construction of complex numbers df-c 10237, and is intended to be used only by the construction. Similar to Definition 5 of [Suppes] p. 162. (Contributed by NM, 13-Feb-1996.) (New usage is discouraged.)
Assertion
Ref Expression
df-ltnq <Q = ( <pQ ∩ (Q × Q))

Detailed syntax breakdown of Definition df-ltnq
StepHypRef Expression
1 cltq 9975 . 2 class <Q
2 cltpq 9967 . . 3 class <pQ
3 cnq 9969 . . . 4 class Q
43, 3cxp 5322 . . 3 class (Q × Q)
52, 4cin 3779 . 2 class ( <pQ ∩ (Q × Q))
61, 5wceq 1637 1 wff <Q = ( <pQ ∩ (Q × Q))
Colors of variables: wff setvar class
This definition is referenced by:  ltrelnq  10043  ordpinq  10060
  Copyright terms: Public domain W3C validator