MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-ltnq Structured version   Visualization version   GIF version

Definition df-ltnq 10605
Description: Define ordering relation on positive fractions. This is a "temporary" set used in the construction of complex numbers df-c 10808, and is intended to be used only by the construction. Similar to Definition 5 of [Suppes] p. 162. (Contributed by NM, 13-Feb-1996.) (New usage is discouraged.)
Assertion
Ref Expression
df-ltnq <Q = ( <pQ ∩ (Q × Q))

Detailed syntax breakdown of Definition df-ltnq
StepHypRef Expression
1 cltq 10545 . 2 class <Q
2 cltpq 10537 . . 3 class <pQ
3 cnq 10539 . . . 4 class Q
43, 3cxp 5578 . . 3 class (Q × Q)
52, 4cin 3882 . 2 class ( <pQ ∩ (Q × Q))
61, 5wceq 1539 1 wff <Q = ( <pQ ∩ (Q × Q))
Colors of variables: wff setvar class
This definition is referenced by:  ltrelnq  10613  ordpinq  10630
  Copyright terms: Public domain W3C validator