Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ltrelnq | Structured version Visualization version GIF version |
Description: Positive fraction 'less than' is a relation on positive fractions. (Contributed by NM, 14-Feb-1996.) (Revised by Mario Carneiro, 27-Apr-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
ltrelnq | ⊢ <Q ⊆ (Q × Q) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ltnq 10674 | . 2 ⊢ <Q = ( <pQ ∩ (Q × Q)) | |
2 | inss2 4163 | . 2 ⊢ ( <pQ ∩ (Q × Q)) ⊆ (Q × Q) | |
3 | 1, 2 | eqsstri 3955 | 1 ⊢ <Q ⊆ (Q × Q) |
Colors of variables: wff setvar class |
Syntax hints: ∩ cin 3886 ⊆ wss 3887 × cxp 5587 <pQ cltpq 10606 Qcnq 10608 <Q cltq 10614 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-rab 3073 df-v 3434 df-in 3894 df-ss 3904 df-ltnq 10674 |
This theorem is referenced by: lterpq 10726 ltanq 10727 ltmnq 10728 ltexnq 10731 ltbtwnnq 10734 ltrnq 10735 prcdnq 10749 prnmadd 10753 genpcd 10762 nqpr 10770 1idpr 10785 prlem934 10789 ltexprlem4 10795 prlem936 10803 reclem2pr 10804 reclem3pr 10805 reclem4pr 10806 |
Copyright terms: Public domain | W3C validator |