| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ltrelnq | Structured version Visualization version GIF version | ||
| Description: Positive fraction 'less than' is a relation on positive fractions. (Contributed by NM, 14-Feb-1996.) (Revised by Mario Carneiro, 27-Apr-2013.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| ltrelnq | ⊢ <Q ⊆ (Q × Q) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ltnq 10871 | . 2 ⊢ <Q = ( <pQ ∩ (Q × Q)) | |
| 2 | inss2 4201 | . 2 ⊢ ( <pQ ∩ (Q × Q)) ⊆ (Q × Q) | |
| 3 | 1, 2 | eqsstri 3993 | 1 ⊢ <Q ⊆ (Q × Q) |
| Colors of variables: wff setvar class |
| Syntax hints: ∩ cin 3913 ⊆ wss 3914 × cxp 5636 <pQ cltpq 10803 Qcnq 10805 <Q cltq 10811 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3406 df-v 3449 df-in 3921 df-ss 3931 df-ltnq 10871 |
| This theorem is referenced by: lterpq 10923 ltanq 10924 ltmnq 10925 ltexnq 10928 ltbtwnnq 10931 ltrnq 10932 prcdnq 10946 prnmadd 10950 genpcd 10959 nqpr 10967 1idpr 10982 prlem934 10986 ltexprlem4 10992 prlem936 11000 reclem2pr 11001 reclem3pr 11002 reclem4pr 11003 |
| Copyright terms: Public domain | W3C validator |