| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ltrelnq | Structured version Visualization version GIF version | ||
| Description: Positive fraction 'less than' is a relation on positive fractions. (Contributed by NM, 14-Feb-1996.) (Revised by Mario Carneiro, 27-Apr-2013.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| ltrelnq | ⊢ <Q ⊆ (Q × Q) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ltnq 10816 | . 2 ⊢ <Q = ( <pQ ∩ (Q × Q)) | |
| 2 | inss2 4187 | . 2 ⊢ ( <pQ ∩ (Q × Q)) ⊆ (Q × Q) | |
| 3 | 1, 2 | eqsstri 3977 | 1 ⊢ <Q ⊆ (Q × Q) |
| Colors of variables: wff setvar class |
| Syntax hints: ∩ cin 3897 ⊆ wss 3898 × cxp 5617 <pQ cltpq 10748 Qcnq 10750 <Q cltq 10756 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-rab 3397 df-v 3439 df-in 3905 df-ss 3915 df-ltnq 10816 |
| This theorem is referenced by: lterpq 10868 ltanq 10869 ltmnq 10870 ltexnq 10873 ltbtwnnq 10876 ltrnq 10877 prcdnq 10891 prnmadd 10895 genpcd 10904 nqpr 10912 1idpr 10927 prlem934 10931 ltexprlem4 10937 prlem936 10945 reclem2pr 10946 reclem3pr 10947 reclem4pr 10948 |
| Copyright terms: Public domain | W3C validator |