| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ltrelnq | Structured version Visualization version GIF version | ||
| Description: Positive fraction 'less than' is a relation on positive fractions. (Contributed by NM, 14-Feb-1996.) (Revised by Mario Carneiro, 27-Apr-2013.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| ltrelnq | ⊢ <Q ⊆ (Q × Q) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ltnq 10806 | . 2 ⊢ <Q = ( <pQ ∩ (Q × Q)) | |
| 2 | inss2 4188 | . 2 ⊢ ( <pQ ∩ (Q × Q)) ⊆ (Q × Q) | |
| 3 | 1, 2 | eqsstri 3981 | 1 ⊢ <Q ⊆ (Q × Q) |
| Colors of variables: wff setvar class |
| Syntax hints: ∩ cin 3901 ⊆ wss 3902 × cxp 5614 <pQ cltpq 10738 Qcnq 10740 <Q cltq 10746 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rab 3396 df-v 3438 df-in 3909 df-ss 3919 df-ltnq 10806 |
| This theorem is referenced by: lterpq 10858 ltanq 10859 ltmnq 10860 ltexnq 10863 ltbtwnnq 10866 ltrnq 10867 prcdnq 10881 prnmadd 10885 genpcd 10894 nqpr 10902 1idpr 10917 prlem934 10921 ltexprlem4 10927 prlem936 10935 reclem2pr 10936 reclem3pr 10937 reclem4pr 10938 |
| Copyright terms: Public domain | W3C validator |