MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ltrelnq Structured version   Visualization version   GIF version

Theorem ltrelnq 10613
Description: Positive fraction 'less than' is a relation on positive fractions. (Contributed by NM, 14-Feb-1996.) (Revised by Mario Carneiro, 27-Apr-2013.) (New usage is discouraged.)
Assertion
Ref Expression
ltrelnq <Q ⊆ (Q × Q)

Proof of Theorem ltrelnq
StepHypRef Expression
1 df-ltnq 10605 . 2 <Q = ( <pQ ∩ (Q × Q))
2 inss2 4160 . 2 ( <pQ ∩ (Q × Q)) ⊆ (Q × Q)
31, 2eqsstri 3951 1 <Q ⊆ (Q × Q)
Colors of variables: wff setvar class
Syntax hints:  cin 3882  wss 3883   × cxp 5578   <pQ cltpq 10537  Qcnq 10539   <Q cltq 10545
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1542  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-rab 3072  df-v 3424  df-in 3890  df-ss 3900  df-ltnq 10605
This theorem is referenced by:  lterpq  10657  ltanq  10658  ltmnq  10659  ltexnq  10662  ltbtwnnq  10665  ltrnq  10666  prcdnq  10680  prnmadd  10684  genpcd  10693  nqpr  10701  1idpr  10716  prlem934  10720  ltexprlem4  10726  prlem936  10734  reclem2pr  10735  reclem3pr  10736  reclem4pr  10737
  Copyright terms: Public domain W3C validator