Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ltrelnq | Structured version Visualization version GIF version |
Description: Positive fraction 'less than' is a relation on positive fractions. (Contributed by NM, 14-Feb-1996.) (Revised by Mario Carneiro, 27-Apr-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
ltrelnq | ⊢ <Q ⊆ (Q × Q) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ltnq 10605 | . 2 ⊢ <Q = ( <pQ ∩ (Q × Q)) | |
2 | inss2 4160 | . 2 ⊢ ( <pQ ∩ (Q × Q)) ⊆ (Q × Q) | |
3 | 1, 2 | eqsstri 3951 | 1 ⊢ <Q ⊆ (Q × Q) |
Colors of variables: wff setvar class |
Syntax hints: ∩ cin 3882 ⊆ wss 3883 × cxp 5578 <pQ cltpq 10537 Qcnq 10539 <Q cltq 10545 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-rab 3072 df-v 3424 df-in 3890 df-ss 3900 df-ltnq 10605 |
This theorem is referenced by: lterpq 10657 ltanq 10658 ltmnq 10659 ltexnq 10662 ltbtwnnq 10665 ltrnq 10666 prcdnq 10680 prnmadd 10684 genpcd 10693 nqpr 10701 1idpr 10716 prlem934 10720 ltexprlem4 10726 prlem936 10734 reclem2pr 10735 reclem3pr 10736 reclem4pr 10737 |
Copyright terms: Public domain | W3C validator |