MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ltrelnq Structured version   Visualization version   GIF version

Theorem ltrelnq 10879
Description: Positive fraction 'less than' is a relation on positive fractions. (Contributed by NM, 14-Feb-1996.) (Revised by Mario Carneiro, 27-Apr-2013.) (New usage is discouraged.)
Assertion
Ref Expression
ltrelnq <Q ⊆ (Q × Q)

Proof of Theorem ltrelnq
StepHypRef Expression
1 df-ltnq 10871 . 2 <Q = ( <pQ ∩ (Q × Q))
2 inss2 4201 . 2 ( <pQ ∩ (Q × Q)) ⊆ (Q × Q)
31, 2eqsstri 3993 1 <Q ⊆ (Q × Q)
Colors of variables: wff setvar class
Syntax hints:  cin 3913  wss 3914   × cxp 5636   <pQ cltpq 10803  Qcnq 10805   <Q cltq 10811
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-rab 3406  df-v 3449  df-in 3921  df-ss 3931  df-ltnq 10871
This theorem is referenced by:  lterpq  10923  ltanq  10924  ltmnq  10925  ltexnq  10928  ltbtwnnq  10931  ltrnq  10932  prcdnq  10946  prnmadd  10950  genpcd  10959  nqpr  10967  1idpr  10982  prlem934  10986  ltexprlem4  10992  prlem936  11000  reclem2pr  11001  reclem3pr  11002  reclem4pr  11003
  Copyright terms: Public domain W3C validator