Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ltrelnq | Structured version Visualization version GIF version |
Description: Positive fraction 'less than' is a relation on positive fractions. (Contributed by NM, 14-Feb-1996.) (Revised by Mario Carneiro, 27-Apr-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
ltrelnq | ⊢ <Q ⊆ (Q × Q) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ltnq 10675 | . 2 ⊢ <Q = ( <pQ ∩ (Q × Q)) | |
2 | inss2 4169 | . 2 ⊢ ( <pQ ∩ (Q × Q)) ⊆ (Q × Q) | |
3 | 1, 2 | eqsstri 3960 | 1 ⊢ <Q ⊆ (Q × Q) |
Colors of variables: wff setvar class |
Syntax hints: ∩ cin 3891 ⊆ wss 3892 × cxp 5588 <pQ cltpq 10607 Qcnq 10609 <Q cltq 10615 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-ext 2711 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1545 df-ex 1787 df-sb 2072 df-clab 2718 df-cleq 2732 df-clel 2818 df-rab 3075 df-v 3433 df-in 3899 df-ss 3909 df-ltnq 10675 |
This theorem is referenced by: lterpq 10727 ltanq 10728 ltmnq 10729 ltexnq 10732 ltbtwnnq 10735 ltrnq 10736 prcdnq 10750 prnmadd 10754 genpcd 10763 nqpr 10771 1idpr 10786 prlem934 10790 ltexprlem4 10796 prlem936 10804 reclem2pr 10805 reclem3pr 10806 reclem4pr 10807 |
Copyright terms: Public domain | W3C validator |