| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ltrelnq | Structured version Visualization version GIF version | ||
| Description: Positive fraction 'less than' is a relation on positive fractions. (Contributed by NM, 14-Feb-1996.) (Revised by Mario Carneiro, 27-Apr-2013.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| ltrelnq | ⊢ <Q ⊆ (Q × Q) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ltnq 10831 | . 2 ⊢ <Q = ( <pQ ∩ (Q × Q)) | |
| 2 | inss2 4191 | . 2 ⊢ ( <pQ ∩ (Q × Q)) ⊆ (Q × Q) | |
| 3 | 1, 2 | eqsstri 3984 | 1 ⊢ <Q ⊆ (Q × Q) |
| Colors of variables: wff setvar class |
| Syntax hints: ∩ cin 3904 ⊆ wss 3905 × cxp 5621 <pQ cltpq 10763 Qcnq 10765 <Q cltq 10771 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3397 df-v 3440 df-in 3912 df-ss 3922 df-ltnq 10831 |
| This theorem is referenced by: lterpq 10883 ltanq 10884 ltmnq 10885 ltexnq 10888 ltbtwnnq 10891 ltrnq 10892 prcdnq 10906 prnmadd 10910 genpcd 10919 nqpr 10927 1idpr 10942 prlem934 10946 ltexprlem4 10952 prlem936 10960 reclem2pr 10961 reclem3pr 10962 reclem4pr 10963 |
| Copyright terms: Public domain | W3C validator |