MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ltrelnq Structured version   Visualization version   GIF version

Theorem ltrelnq 10814
Description: Positive fraction 'less than' is a relation on positive fractions. (Contributed by NM, 14-Feb-1996.) (Revised by Mario Carneiro, 27-Apr-2013.) (New usage is discouraged.)
Assertion
Ref Expression
ltrelnq <Q ⊆ (Q × Q)

Proof of Theorem ltrelnq
StepHypRef Expression
1 df-ltnq 10806 . 2 <Q = ( <pQ ∩ (Q × Q))
2 inss2 4188 . 2 ( <pQ ∩ (Q × Q)) ⊆ (Q × Q)
31, 2eqsstri 3981 1 <Q ⊆ (Q × Q)
Colors of variables: wff setvar class
Syntax hints:  cin 3901  wss 3902   × cxp 5614   <pQ cltpq 10738  Qcnq 10740   <Q cltq 10746
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1544  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-rab 3396  df-v 3438  df-in 3909  df-ss 3919  df-ltnq 10806
This theorem is referenced by:  lterpq  10858  ltanq  10859  ltmnq  10860  ltexnq  10863  ltbtwnnq  10866  ltrnq  10867  prcdnq  10881  prnmadd  10885  genpcd  10894  nqpr  10902  1idpr  10917  prlem934  10921  ltexprlem4  10927  prlem936  10935  reclem2pr  10936  reclem3pr  10937  reclem4pr  10938
  Copyright terms: Public domain W3C validator