MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ltrelnq Structured version   Visualization version   GIF version

Theorem ltrelnq 10995
Description: Positive fraction 'less than' is a relation on positive fractions. (Contributed by NM, 14-Feb-1996.) (Revised by Mario Carneiro, 27-Apr-2013.) (New usage is discouraged.)
Assertion
Ref Expression
ltrelnq <Q ⊆ (Q × Q)

Proof of Theorem ltrelnq
StepHypRef Expression
1 df-ltnq 10987 . 2 <Q = ( <pQ ∩ (Q × Q))
2 inss2 4259 . 2 ( <pQ ∩ (Q × Q)) ⊆ (Q × Q)
31, 2eqsstri 4043 1 <Q ⊆ (Q × Q)
Colors of variables: wff setvar class
Syntax hints:  cin 3975  wss 3976   × cxp 5698   <pQ cltpq 10919  Qcnq 10921   <Q cltq 10927
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1540  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-rab 3444  df-v 3490  df-in 3983  df-ss 3993  df-ltnq 10987
This theorem is referenced by:  lterpq  11039  ltanq  11040  ltmnq  11041  ltexnq  11044  ltbtwnnq  11047  ltrnq  11048  prcdnq  11062  prnmadd  11066  genpcd  11075  nqpr  11083  1idpr  11098  prlem934  11102  ltexprlem4  11108  prlem936  11116  reclem2pr  11117  reclem3pr  11118  reclem4pr  11119
  Copyright terms: Public domain W3C validator