![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ltrelnq | Structured version Visualization version GIF version |
Description: Positive fraction 'less than' is a relation on positive fractions. (Contributed by NM, 14-Feb-1996.) (Revised by Mario Carneiro, 27-Apr-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
ltrelnq | ⊢ <Q ⊆ (Q × Q) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ltnq 10913 | . 2 ⊢ <Q = ( <pQ ∩ (Q × Q)) | |
2 | inss2 4230 | . 2 ⊢ ( <pQ ∩ (Q × Q)) ⊆ (Q × Q) | |
3 | 1, 2 | eqsstri 4017 | 1 ⊢ <Q ⊆ (Q × Q) |
Colors of variables: wff setvar class |
Syntax hints: ∩ cin 3948 ⊆ wss 3949 × cxp 5675 <pQ cltpq 10845 Qcnq 10847 <Q cltq 10853 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 |
This theorem depends on definitions: df-bi 206 df-an 398 df-tru 1545 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-rab 3434 df-v 3477 df-in 3956 df-ss 3966 df-ltnq 10913 |
This theorem is referenced by: lterpq 10965 ltanq 10966 ltmnq 10967 ltexnq 10970 ltbtwnnq 10973 ltrnq 10974 prcdnq 10988 prnmadd 10992 genpcd 11001 nqpr 11009 1idpr 11024 prlem934 11028 ltexprlem4 11034 prlem936 11042 reclem2pr 11043 reclem3pr 11044 reclem4pr 11045 |
Copyright terms: Public domain | W3C validator |