![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ltrelnq | Structured version Visualization version GIF version |
Description: Positive fraction 'less than' is a relation on positive fractions. (Contributed by NM, 14-Feb-1996.) (Revised by Mario Carneiro, 27-Apr-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
ltrelnq | ⊢ <Q ⊆ (Q × Q) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ltnq 10956 | . 2 ⊢ <Q = ( <pQ ∩ (Q × Q)) | |
2 | inss2 4246 | . 2 ⊢ ( <pQ ∩ (Q × Q)) ⊆ (Q × Q) | |
3 | 1, 2 | eqsstri 4030 | 1 ⊢ <Q ⊆ (Q × Q) |
Colors of variables: wff setvar class |
Syntax hints: ∩ cin 3962 ⊆ wss 3963 × cxp 5687 <pQ cltpq 10888 Qcnq 10890 <Q cltq 10896 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-rab 3434 df-v 3480 df-in 3970 df-ss 3980 df-ltnq 10956 |
This theorem is referenced by: lterpq 11008 ltanq 11009 ltmnq 11010 ltexnq 11013 ltbtwnnq 11016 ltrnq 11017 prcdnq 11031 prnmadd 11035 genpcd 11044 nqpr 11052 1idpr 11067 prlem934 11071 ltexprlem4 11077 prlem936 11085 reclem2pr 11086 reclem3pr 11087 reclem4pr 11088 |
Copyright terms: Public domain | W3C validator |