MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ltrelnq Structured version   Visualization version   GIF version

Theorem ltrelnq 10682
Description: Positive fraction 'less than' is a relation on positive fractions. (Contributed by NM, 14-Feb-1996.) (Revised by Mario Carneiro, 27-Apr-2013.) (New usage is discouraged.)
Assertion
Ref Expression
ltrelnq <Q ⊆ (Q × Q)

Proof of Theorem ltrelnq
StepHypRef Expression
1 df-ltnq 10674 . 2 <Q = ( <pQ ∩ (Q × Q))
2 inss2 4163 . 2 ( <pQ ∩ (Q × Q)) ⊆ (Q × Q)
31, 2eqsstri 3955 1 <Q ⊆ (Q × Q)
Colors of variables: wff setvar class
Syntax hints:  cin 3886  wss 3887   × cxp 5587   <pQ cltpq 10606  Qcnq 10608   <Q cltq 10614
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-tru 1542  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-rab 3073  df-v 3434  df-in 3894  df-ss 3904  df-ltnq 10674
This theorem is referenced by:  lterpq  10726  ltanq  10727  ltmnq  10728  ltexnq  10731  ltbtwnnq  10734  ltrnq  10735  prcdnq  10749  prnmadd  10753  genpcd  10762  nqpr  10770  1idpr  10785  prlem934  10789  ltexprlem4  10795  prlem936  10803  reclem2pr  10804  reclem3pr  10805  reclem4pr  10806
  Copyright terms: Public domain W3C validator