| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ltrelnq | Structured version Visualization version GIF version | ||
| Description: Positive fraction 'less than' is a relation on positive fractions. (Contributed by NM, 14-Feb-1996.) (Revised by Mario Carneiro, 27-Apr-2013.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| ltrelnq | ⊢ <Q ⊆ (Q × Q) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ltnq 10878 | . 2 ⊢ <Q = ( <pQ ∩ (Q × Q)) | |
| 2 | inss2 4204 | . 2 ⊢ ( <pQ ∩ (Q × Q)) ⊆ (Q × Q) | |
| 3 | 1, 2 | eqsstri 3996 | 1 ⊢ <Q ⊆ (Q × Q) |
| Colors of variables: wff setvar class |
| Syntax hints: ∩ cin 3916 ⊆ wss 3917 × cxp 5639 <pQ cltpq 10810 Qcnq 10812 <Q cltq 10818 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-rab 3409 df-v 3452 df-in 3924 df-ss 3934 df-ltnq 10878 |
| This theorem is referenced by: lterpq 10930 ltanq 10931 ltmnq 10932 ltexnq 10935 ltbtwnnq 10938 ltrnq 10939 prcdnq 10953 prnmadd 10957 genpcd 10966 nqpr 10974 1idpr 10989 prlem934 10993 ltexprlem4 10999 prlem936 11007 reclem2pr 11008 reclem3pr 11009 reclem4pr 11010 |
| Copyright terms: Public domain | W3C validator |