![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ltrelnq | Structured version Visualization version GIF version |
Description: Positive fraction 'less than' is a relation on positive fractions. (Contributed by NM, 14-Feb-1996.) (Revised by Mario Carneiro, 27-Apr-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
ltrelnq | ⊢ <Q ⊆ (Q × Q) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ltnq 10987 | . 2 ⊢ <Q = ( <pQ ∩ (Q × Q)) | |
2 | inss2 4259 | . 2 ⊢ ( <pQ ∩ (Q × Q)) ⊆ (Q × Q) | |
3 | 1, 2 | eqsstri 4043 | 1 ⊢ <Q ⊆ (Q × Q) |
Colors of variables: wff setvar class |
Syntax hints: ∩ cin 3975 ⊆ wss 3976 × cxp 5698 <pQ cltpq 10919 Qcnq 10921 <Q cltq 10927 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rab 3444 df-v 3490 df-in 3983 df-ss 3993 df-ltnq 10987 |
This theorem is referenced by: lterpq 11039 ltanq 11040 ltmnq 11041 ltexnq 11044 ltbtwnnq 11047 ltrnq 11048 prcdnq 11062 prnmadd 11066 genpcd 11075 nqpr 11083 1idpr 11098 prlem934 11102 ltexprlem4 11108 prlem936 11116 reclem2pr 11117 reclem3pr 11118 reclem4pr 11119 |
Copyright terms: Public domain | W3C validator |