Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ordpinq | Structured version Visualization version GIF version |
Description: Ordering of positive fractions in terms of positive integers. (Contributed by NM, 13-Feb-1996.) (Revised by Mario Carneiro, 28-Apr-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
ordpinq | ⊢ ((𝐴 ∈ Q ∧ 𝐵 ∈ Q) → (𝐴 <Q 𝐵 ↔ ((1st ‘𝐴) ·N (2nd ‘𝐵)) <N ((1st ‘𝐵) ·N (2nd ‘𝐴)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | brinxp 5656 | . . 3 ⊢ ((𝐴 ∈ Q ∧ 𝐵 ∈ Q) → (𝐴 <pQ 𝐵 ↔ 𝐴( <pQ ∩ (Q × Q))𝐵)) | |
2 | df-ltnq 10605 | . . . 4 ⊢ <Q = ( <pQ ∩ (Q × Q)) | |
3 | 2 | breqi 5076 | . . 3 ⊢ (𝐴 <Q 𝐵 ↔ 𝐴( <pQ ∩ (Q × Q))𝐵) |
4 | 1, 3 | bitr4di 288 | . 2 ⊢ ((𝐴 ∈ Q ∧ 𝐵 ∈ Q) → (𝐴 <pQ 𝐵 ↔ 𝐴 <Q 𝐵)) |
5 | relxp 5598 | . . . . 5 ⊢ Rel (N × N) | |
6 | elpqn 10612 | . . . . 5 ⊢ (𝐴 ∈ Q → 𝐴 ∈ (N × N)) | |
7 | 1st2nd 7853 | . . . . 5 ⊢ ((Rel (N × N) ∧ 𝐴 ∈ (N × N)) → 𝐴 = 〈(1st ‘𝐴), (2nd ‘𝐴)〉) | |
8 | 5, 6, 7 | sylancr 586 | . . . 4 ⊢ (𝐴 ∈ Q → 𝐴 = 〈(1st ‘𝐴), (2nd ‘𝐴)〉) |
9 | elpqn 10612 | . . . . 5 ⊢ (𝐵 ∈ Q → 𝐵 ∈ (N × N)) | |
10 | 1st2nd 7853 | . . . . 5 ⊢ ((Rel (N × N) ∧ 𝐵 ∈ (N × N)) → 𝐵 = 〈(1st ‘𝐵), (2nd ‘𝐵)〉) | |
11 | 5, 9, 10 | sylancr 586 | . . . 4 ⊢ (𝐵 ∈ Q → 𝐵 = 〈(1st ‘𝐵), (2nd ‘𝐵)〉) |
12 | 8, 11 | breqan12d 5086 | . . 3 ⊢ ((𝐴 ∈ Q ∧ 𝐵 ∈ Q) → (𝐴 <pQ 𝐵 ↔ 〈(1st ‘𝐴), (2nd ‘𝐴)〉 <pQ 〈(1st ‘𝐵), (2nd ‘𝐵)〉)) |
13 | ordpipq 10629 | . . 3 ⊢ (〈(1st ‘𝐴), (2nd ‘𝐴)〉 <pQ 〈(1st ‘𝐵), (2nd ‘𝐵)〉 ↔ ((1st ‘𝐴) ·N (2nd ‘𝐵)) <N ((1st ‘𝐵) ·N (2nd ‘𝐴))) | |
14 | 12, 13 | bitrdi 286 | . 2 ⊢ ((𝐴 ∈ Q ∧ 𝐵 ∈ Q) → (𝐴 <pQ 𝐵 ↔ ((1st ‘𝐴) ·N (2nd ‘𝐵)) <N ((1st ‘𝐵) ·N (2nd ‘𝐴)))) |
15 | 4, 14 | bitr3d 280 | 1 ⊢ ((𝐴 ∈ Q ∧ 𝐵 ∈ Q) → (𝐴 <Q 𝐵 ↔ ((1st ‘𝐴) ·N (2nd ‘𝐵)) <N ((1st ‘𝐵) ·N (2nd ‘𝐴)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∩ cin 3882 〈cop 4564 class class class wbr 5070 × cxp 5578 Rel wrel 5585 ‘cfv 6418 (class class class)co 7255 1st c1st 7802 2nd c2nd 7803 Ncnpi 10531 ·N cmi 10533 <N clti 10534 <pQ cltpq 10537 Qcnq 10539 <Q cltq 10545 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-omul 8272 df-ni 10559 df-mi 10561 df-lti 10562 df-ltpq 10597 df-nq 10599 df-ltnq 10605 |
This theorem is referenced by: ltsonq 10656 lterpq 10657 ltanq 10658 ltmnq 10659 ltexnq 10662 archnq 10667 |
Copyright terms: Public domain | W3C validator |