![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ordpinq | Structured version Visualization version GIF version |
Description: Ordering of positive fractions in terms of positive integers. (Contributed by NM, 13-Feb-1996.) (Revised by Mario Carneiro, 28-Apr-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
ordpinq | ⊢ ((𝐴 ∈ Q ∧ 𝐵 ∈ Q) → (𝐴 <Q 𝐵 ↔ ((1st ‘𝐴) ·N (2nd ‘𝐵)) <N ((1st ‘𝐵) ·N (2nd ‘𝐴)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | brinxp 5767 | . . 3 ⊢ ((𝐴 ∈ Q ∧ 𝐵 ∈ Q) → (𝐴 <pQ 𝐵 ↔ 𝐴( <pQ ∩ (Q × Q))𝐵)) | |
2 | df-ltnq 10956 | . . . 4 ⊢ <Q = ( <pQ ∩ (Q × Q)) | |
3 | 2 | breqi 5154 | . . 3 ⊢ (𝐴 <Q 𝐵 ↔ 𝐴( <pQ ∩ (Q × Q))𝐵) |
4 | 1, 3 | bitr4di 289 | . 2 ⊢ ((𝐴 ∈ Q ∧ 𝐵 ∈ Q) → (𝐴 <pQ 𝐵 ↔ 𝐴 <Q 𝐵)) |
5 | relxp 5707 | . . . . 5 ⊢ Rel (N × N) | |
6 | elpqn 10963 | . . . . 5 ⊢ (𝐴 ∈ Q → 𝐴 ∈ (N × N)) | |
7 | 1st2nd 8063 | . . . . 5 ⊢ ((Rel (N × N) ∧ 𝐴 ∈ (N × N)) → 𝐴 = 〈(1st ‘𝐴), (2nd ‘𝐴)〉) | |
8 | 5, 6, 7 | sylancr 587 | . . . 4 ⊢ (𝐴 ∈ Q → 𝐴 = 〈(1st ‘𝐴), (2nd ‘𝐴)〉) |
9 | elpqn 10963 | . . . . 5 ⊢ (𝐵 ∈ Q → 𝐵 ∈ (N × N)) | |
10 | 1st2nd 8063 | . . . . 5 ⊢ ((Rel (N × N) ∧ 𝐵 ∈ (N × N)) → 𝐵 = 〈(1st ‘𝐵), (2nd ‘𝐵)〉) | |
11 | 5, 9, 10 | sylancr 587 | . . . 4 ⊢ (𝐵 ∈ Q → 𝐵 = 〈(1st ‘𝐵), (2nd ‘𝐵)〉) |
12 | 8, 11 | breqan12d 5164 | . . 3 ⊢ ((𝐴 ∈ Q ∧ 𝐵 ∈ Q) → (𝐴 <pQ 𝐵 ↔ 〈(1st ‘𝐴), (2nd ‘𝐴)〉 <pQ 〈(1st ‘𝐵), (2nd ‘𝐵)〉)) |
13 | ordpipq 10980 | . . 3 ⊢ (〈(1st ‘𝐴), (2nd ‘𝐴)〉 <pQ 〈(1st ‘𝐵), (2nd ‘𝐵)〉 ↔ ((1st ‘𝐴) ·N (2nd ‘𝐵)) <N ((1st ‘𝐵) ·N (2nd ‘𝐴))) | |
14 | 12, 13 | bitrdi 287 | . 2 ⊢ ((𝐴 ∈ Q ∧ 𝐵 ∈ Q) → (𝐴 <pQ 𝐵 ↔ ((1st ‘𝐴) ·N (2nd ‘𝐵)) <N ((1st ‘𝐵) ·N (2nd ‘𝐴)))) |
15 | 4, 14 | bitr3d 281 | 1 ⊢ ((𝐴 ∈ Q ∧ 𝐵 ∈ Q) → (𝐴 <Q 𝐵 ↔ ((1st ‘𝐴) ·N (2nd ‘𝐵)) <N ((1st ‘𝐵) ·N (2nd ‘𝐴)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2106 ∩ cin 3962 〈cop 4637 class class class wbr 5148 × cxp 5687 Rel wrel 5694 ‘cfv 6563 (class class class)co 7431 1st c1st 8011 2nd c2nd 8012 Ncnpi 10882 ·N cmi 10884 <N clti 10885 <pQ cltpq 10888 Qcnq 10890 <Q cltq 10896 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 ax-un 7754 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-fv 6571 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8013 df-2nd 8014 df-omul 8510 df-ni 10910 df-mi 10912 df-lti 10913 df-ltpq 10948 df-nq 10950 df-ltnq 10956 |
This theorem is referenced by: ltsonq 11007 lterpq 11008 ltanq 11009 ltmnq 11010 ltexnq 11013 archnq 11018 |
Copyright terms: Public domain | W3C validator |