MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordpinq Structured version   Visualization version   GIF version

Theorem ordpinq 10100
Description: Ordering of positive fractions in terms of positive integers. (Contributed by NM, 13-Feb-1996.) (Revised by Mario Carneiro, 28-Apr-2013.) (New usage is discouraged.)
Assertion
Ref Expression
ordpinq ((𝐴Q𝐵Q) → (𝐴 <Q 𝐵 ↔ ((1st𝐴) ·N (2nd𝐵)) <N ((1st𝐵) ·N (2nd𝐴))))

Proof of Theorem ordpinq
StepHypRef Expression
1 brinxp 5428 . . 3 ((𝐴Q𝐵Q) → (𝐴 <pQ 𝐵𝐴( <pQ ∩ (Q × Q))𝐵))
2 df-ltnq 10075 . . . 4 <Q = ( <pQ ∩ (Q × Q))
32breqi 4892 . . 3 (𝐴 <Q 𝐵𝐴( <pQ ∩ (Q × Q))𝐵)
41, 3syl6bbr 281 . 2 ((𝐴Q𝐵Q) → (𝐴 <pQ 𝐵𝐴 <Q 𝐵))
5 relxp 5373 . . . . 5 Rel (N × N)
6 elpqn 10082 . . . . 5 (𝐴Q𝐴 ∈ (N × N))
7 1st2nd 7493 . . . . 5 ((Rel (N × N) ∧ 𝐴 ∈ (N × N)) → 𝐴 = ⟨(1st𝐴), (2nd𝐴)⟩)
85, 6, 7sylancr 581 . . . 4 (𝐴Q𝐴 = ⟨(1st𝐴), (2nd𝐴)⟩)
9 elpqn 10082 . . . . 5 (𝐵Q𝐵 ∈ (N × N))
10 1st2nd 7493 . . . . 5 ((Rel (N × N) ∧ 𝐵 ∈ (N × N)) → 𝐵 = ⟨(1st𝐵), (2nd𝐵)⟩)
115, 9, 10sylancr 581 . . . 4 (𝐵Q𝐵 = ⟨(1st𝐵), (2nd𝐵)⟩)
128, 11breqan12d 4902 . . 3 ((𝐴Q𝐵Q) → (𝐴 <pQ 𝐵 ↔ ⟨(1st𝐴), (2nd𝐴)⟩ <pQ ⟨(1st𝐵), (2nd𝐵)⟩))
13 ordpipq 10099 . . 3 (⟨(1st𝐴), (2nd𝐴)⟩ <pQ ⟨(1st𝐵), (2nd𝐵)⟩ ↔ ((1st𝐴) ·N (2nd𝐵)) <N ((1st𝐵) ·N (2nd𝐴)))
1412, 13syl6bb 279 . 2 ((𝐴Q𝐵Q) → (𝐴 <pQ 𝐵 ↔ ((1st𝐴) ·N (2nd𝐵)) <N ((1st𝐵) ·N (2nd𝐴))))
154, 14bitr3d 273 1 ((𝐴Q𝐵Q) → (𝐴 <Q 𝐵 ↔ ((1st𝐴) ·N (2nd𝐵)) <N ((1st𝐵) ·N (2nd𝐴))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 386   = wceq 1601  wcel 2107  cin 3791  cop 4404   class class class wbr 4886   × cxp 5353  Rel wrel 5360  cfv 6135  (class class class)co 6922  1st c1st 7443  2nd c2nd 7444  Ncnpi 10001   ·N cmi 10003   <N clti 10004   <pQ cltpq 10007  Qcnq 10009   <Q cltq 10015
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-sep 5017  ax-nul 5025  ax-pow 5077  ax-pr 5138  ax-un 7226
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-ral 3095  df-rex 3096  df-rab 3099  df-v 3400  df-sbc 3653  df-csb 3752  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-pss 3808  df-nul 4142  df-if 4308  df-sn 4399  df-pr 4401  df-tp 4403  df-op 4405  df-uni 4672  df-iun 4755  df-br 4887  df-opab 4949  df-mpt 4966  df-tr 4988  df-id 5261  df-eprel 5266  df-po 5274  df-so 5275  df-fr 5314  df-we 5316  df-xp 5361  df-rel 5362  df-cnv 5363  df-co 5364  df-dm 5365  df-rn 5366  df-res 5367  df-ima 5368  df-ord 5979  df-on 5980  df-lim 5981  df-suc 5982  df-iota 6099  df-fun 6137  df-fn 6138  df-f 6139  df-fv 6143  df-ov 6925  df-oprab 6926  df-mpt2 6927  df-om 7344  df-1st 7445  df-2nd 7446  df-omul 7848  df-ni 10029  df-mi 10031  df-lti 10032  df-ltpq 10067  df-nq 10069  df-ltnq 10075
This theorem is referenced by:  ltsonq  10126  lterpq  10127  ltanq  10128  ltmnq  10129  ltexnq  10132  archnq  10137
  Copyright terms: Public domain W3C validator