MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordpinq Structured version   Visualization version   GIF version

Theorem ordpinq 10957
Description: Ordering of positive fractions in terms of positive integers. (Contributed by NM, 13-Feb-1996.) (Revised by Mario Carneiro, 28-Apr-2013.) (New usage is discouraged.)
Assertion
Ref Expression
ordpinq ((𝐴Q𝐵Q) → (𝐴 <Q 𝐵 ↔ ((1st𝐴) ·N (2nd𝐵)) <N ((1st𝐵) ·N (2nd𝐴))))

Proof of Theorem ordpinq
StepHypRef Expression
1 brinxp 5733 . . 3 ((𝐴Q𝐵Q) → (𝐴 <pQ 𝐵𝐴( <pQ ∩ (Q × Q))𝐵))
2 df-ltnq 10932 . . . 4 <Q = ( <pQ ∩ (Q × Q))
32breqi 5125 . . 3 (𝐴 <Q 𝐵𝐴( <pQ ∩ (Q × Q))𝐵)
41, 3bitr4di 289 . 2 ((𝐴Q𝐵Q) → (𝐴 <pQ 𝐵𝐴 <Q 𝐵))
5 relxp 5672 . . . . 5 Rel (N × N)
6 elpqn 10939 . . . . 5 (𝐴Q𝐴 ∈ (N × N))
7 1st2nd 8038 . . . . 5 ((Rel (N × N) ∧ 𝐴 ∈ (N × N)) → 𝐴 = ⟨(1st𝐴), (2nd𝐴)⟩)
85, 6, 7sylancr 587 . . . 4 (𝐴Q𝐴 = ⟨(1st𝐴), (2nd𝐴)⟩)
9 elpqn 10939 . . . . 5 (𝐵Q𝐵 ∈ (N × N))
10 1st2nd 8038 . . . . 5 ((Rel (N × N) ∧ 𝐵 ∈ (N × N)) → 𝐵 = ⟨(1st𝐵), (2nd𝐵)⟩)
115, 9, 10sylancr 587 . . . 4 (𝐵Q𝐵 = ⟨(1st𝐵), (2nd𝐵)⟩)
128, 11breqan12d 5135 . . 3 ((𝐴Q𝐵Q) → (𝐴 <pQ 𝐵 ↔ ⟨(1st𝐴), (2nd𝐴)⟩ <pQ ⟨(1st𝐵), (2nd𝐵)⟩))
13 ordpipq 10956 . . 3 (⟨(1st𝐴), (2nd𝐴)⟩ <pQ ⟨(1st𝐵), (2nd𝐵)⟩ ↔ ((1st𝐴) ·N (2nd𝐵)) <N ((1st𝐵) ·N (2nd𝐴)))
1412, 13bitrdi 287 . 2 ((𝐴Q𝐵Q) → (𝐴 <pQ 𝐵 ↔ ((1st𝐴) ·N (2nd𝐵)) <N ((1st𝐵) ·N (2nd𝐴))))
154, 14bitr3d 281 1 ((𝐴Q𝐵Q) → (𝐴 <Q 𝐵 ↔ ((1st𝐴) ·N (2nd𝐵)) <N ((1st𝐵) ·N (2nd𝐴))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  cin 3925  cop 4607   class class class wbr 5119   × cxp 5652  Rel wrel 5659  cfv 6531  (class class class)co 7405  1st c1st 7986  2nd c2nd 7987  Ncnpi 10858   ·N cmi 10860   <N clti 10861   <pQ cltpq 10864  Qcnq 10866   <Q cltq 10872
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-fv 6539  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-omul 8485  df-ni 10886  df-mi 10888  df-lti 10889  df-ltpq 10924  df-nq 10926  df-ltnq 10932
This theorem is referenced by:  ltsonq  10983  lterpq  10984  ltanq  10985  ltmnq  10986  ltexnq  10989  archnq  10994
  Copyright terms: Public domain W3C validator