MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordpinq Structured version   Visualization version   GIF version

Theorem ordpinq 10354
Description: Ordering of positive fractions in terms of positive integers. (Contributed by NM, 13-Feb-1996.) (Revised by Mario Carneiro, 28-Apr-2013.) (New usage is discouraged.)
Assertion
Ref Expression
ordpinq ((𝐴Q𝐵Q) → (𝐴 <Q 𝐵 ↔ ((1st𝐴) ·N (2nd𝐵)) <N ((1st𝐵) ·N (2nd𝐴))))

Proof of Theorem ordpinq
StepHypRef Expression
1 brinxp 5594 . . 3 ((𝐴Q𝐵Q) → (𝐴 <pQ 𝐵𝐴( <pQ ∩ (Q × Q))𝐵))
2 df-ltnq 10329 . . . 4 <Q = ( <pQ ∩ (Q × Q))
32breqi 5036 . . 3 (𝐴 <Q 𝐵𝐴( <pQ ∩ (Q × Q))𝐵)
41, 3syl6bbr 292 . 2 ((𝐴Q𝐵Q) → (𝐴 <pQ 𝐵𝐴 <Q 𝐵))
5 relxp 5537 . . . . 5 Rel (N × N)
6 elpqn 10336 . . . . 5 (𝐴Q𝐴 ∈ (N × N))
7 1st2nd 7720 . . . . 5 ((Rel (N × N) ∧ 𝐴 ∈ (N × N)) → 𝐴 = ⟨(1st𝐴), (2nd𝐴)⟩)
85, 6, 7sylancr 590 . . . 4 (𝐴Q𝐴 = ⟨(1st𝐴), (2nd𝐴)⟩)
9 elpqn 10336 . . . . 5 (𝐵Q𝐵 ∈ (N × N))
10 1st2nd 7720 . . . . 5 ((Rel (N × N) ∧ 𝐵 ∈ (N × N)) → 𝐵 = ⟨(1st𝐵), (2nd𝐵)⟩)
115, 9, 10sylancr 590 . . . 4 (𝐵Q𝐵 = ⟨(1st𝐵), (2nd𝐵)⟩)
128, 11breqan12d 5046 . . 3 ((𝐴Q𝐵Q) → (𝐴 <pQ 𝐵 ↔ ⟨(1st𝐴), (2nd𝐴)⟩ <pQ ⟨(1st𝐵), (2nd𝐵)⟩))
13 ordpipq 10353 . . 3 (⟨(1st𝐴), (2nd𝐴)⟩ <pQ ⟨(1st𝐵), (2nd𝐵)⟩ ↔ ((1st𝐴) ·N (2nd𝐵)) <N ((1st𝐵) ·N (2nd𝐴)))
1412, 13syl6bb 290 . 2 ((𝐴Q𝐵Q) → (𝐴 <pQ 𝐵 ↔ ((1st𝐴) ·N (2nd𝐵)) <N ((1st𝐵) ·N (2nd𝐴))))
154, 14bitr3d 284 1 ((𝐴Q𝐵Q) → (𝐴 <Q 𝐵 ↔ ((1st𝐴) ·N (2nd𝐵)) <N ((1st𝐵) ·N (2nd𝐴))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1538  wcel 2111  cin 3880  cop 4531   class class class wbr 5030   × cxp 5517  Rel wrel 5524  cfv 6324  (class class class)co 7135  1st c1st 7669  2nd c2nd 7670  Ncnpi 10255   ·N cmi 10257   <N clti 10258   <pQ cltpq 10261  Qcnq 10263   <Q cltq 10269
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-fv 6332  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-omul 8090  df-ni 10283  df-mi 10285  df-lti 10286  df-ltpq 10321  df-nq 10323  df-ltnq 10329
This theorem is referenced by:  ltsonq  10380  lterpq  10381  ltanq  10382  ltmnq  10383  ltexnq  10386  archnq  10391
  Copyright terms: Public domain W3C validator