| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ordpinq | Structured version Visualization version GIF version | ||
| Description: Ordering of positive fractions in terms of positive integers. (Contributed by NM, 13-Feb-1996.) (Revised by Mario Carneiro, 28-Apr-2013.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| ordpinq | ⊢ ((𝐴 ∈ Q ∧ 𝐵 ∈ Q) → (𝐴 <Q 𝐵 ↔ ((1st ‘𝐴) ·N (2nd ‘𝐵)) <N ((1st ‘𝐵) ·N (2nd ‘𝐴)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brinxp 5693 | . . 3 ⊢ ((𝐴 ∈ Q ∧ 𝐵 ∈ Q) → (𝐴 <pQ 𝐵 ↔ 𝐴( <pQ ∩ (Q × Q))𝐵)) | |
| 2 | df-ltnq 10809 | . . . 4 ⊢ <Q = ( <pQ ∩ (Q × Q)) | |
| 3 | 2 | breqi 5095 | . . 3 ⊢ (𝐴 <Q 𝐵 ↔ 𝐴( <pQ ∩ (Q × Q))𝐵) |
| 4 | 1, 3 | bitr4di 289 | . 2 ⊢ ((𝐴 ∈ Q ∧ 𝐵 ∈ Q) → (𝐴 <pQ 𝐵 ↔ 𝐴 <Q 𝐵)) |
| 5 | relxp 5632 | . . . . 5 ⊢ Rel (N × N) | |
| 6 | elpqn 10816 | . . . . 5 ⊢ (𝐴 ∈ Q → 𝐴 ∈ (N × N)) | |
| 7 | 1st2nd 7971 | . . . . 5 ⊢ ((Rel (N × N) ∧ 𝐴 ∈ (N × N)) → 𝐴 = 〈(1st ‘𝐴), (2nd ‘𝐴)〉) | |
| 8 | 5, 6, 7 | sylancr 587 | . . . 4 ⊢ (𝐴 ∈ Q → 𝐴 = 〈(1st ‘𝐴), (2nd ‘𝐴)〉) |
| 9 | elpqn 10816 | . . . . 5 ⊢ (𝐵 ∈ Q → 𝐵 ∈ (N × N)) | |
| 10 | 1st2nd 7971 | . . . . 5 ⊢ ((Rel (N × N) ∧ 𝐵 ∈ (N × N)) → 𝐵 = 〈(1st ‘𝐵), (2nd ‘𝐵)〉) | |
| 11 | 5, 9, 10 | sylancr 587 | . . . 4 ⊢ (𝐵 ∈ Q → 𝐵 = 〈(1st ‘𝐵), (2nd ‘𝐵)〉) |
| 12 | 8, 11 | breqan12d 5105 | . . 3 ⊢ ((𝐴 ∈ Q ∧ 𝐵 ∈ Q) → (𝐴 <pQ 𝐵 ↔ 〈(1st ‘𝐴), (2nd ‘𝐴)〉 <pQ 〈(1st ‘𝐵), (2nd ‘𝐵)〉)) |
| 13 | ordpipq 10833 | . . 3 ⊢ (〈(1st ‘𝐴), (2nd ‘𝐴)〉 <pQ 〈(1st ‘𝐵), (2nd ‘𝐵)〉 ↔ ((1st ‘𝐴) ·N (2nd ‘𝐵)) <N ((1st ‘𝐵) ·N (2nd ‘𝐴))) | |
| 14 | 12, 13 | bitrdi 287 | . 2 ⊢ ((𝐴 ∈ Q ∧ 𝐵 ∈ Q) → (𝐴 <pQ 𝐵 ↔ ((1st ‘𝐴) ·N (2nd ‘𝐵)) <N ((1st ‘𝐵) ·N (2nd ‘𝐴)))) |
| 15 | 4, 14 | bitr3d 281 | 1 ⊢ ((𝐴 ∈ Q ∧ 𝐵 ∈ Q) → (𝐴 <Q 𝐵 ↔ ((1st ‘𝐴) ·N (2nd ‘𝐵)) <N ((1st ‘𝐵) ·N (2nd ‘𝐴)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∩ cin 3896 〈cop 4579 class class class wbr 5089 × cxp 5612 Rel wrel 5619 ‘cfv 6481 (class class class)co 7346 1st c1st 7919 2nd c2nd 7920 Ncnpi 10735 ·N cmi 10737 <N clti 10738 <pQ cltpq 10741 Qcnq 10743 <Q cltq 10749 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-omul 8390 df-ni 10763 df-mi 10765 df-lti 10766 df-ltpq 10801 df-nq 10803 df-ltnq 10809 |
| This theorem is referenced by: ltsonq 10860 lterpq 10861 ltanq 10862 ltmnq 10863 ltexnq 10866 archnq 10871 |
| Copyright terms: Public domain | W3C validator |