| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ordpinq | Structured version Visualization version GIF version | ||
| Description: Ordering of positive fractions in terms of positive integers. (Contributed by NM, 13-Feb-1996.) (Revised by Mario Carneiro, 28-Apr-2013.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| ordpinq | ⊢ ((𝐴 ∈ Q ∧ 𝐵 ∈ Q) → (𝐴 <Q 𝐵 ↔ ((1st ‘𝐴) ·N (2nd ‘𝐵)) <N ((1st ‘𝐵) ·N (2nd ‘𝐴)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brinxp 5717 | . . 3 ⊢ ((𝐴 ∈ Q ∧ 𝐵 ∈ Q) → (𝐴 <pQ 𝐵 ↔ 𝐴( <pQ ∩ (Q × Q))𝐵)) | |
| 2 | df-ltnq 10871 | . . . 4 ⊢ <Q = ( <pQ ∩ (Q × Q)) | |
| 3 | 2 | breqi 5113 | . . 3 ⊢ (𝐴 <Q 𝐵 ↔ 𝐴( <pQ ∩ (Q × Q))𝐵) |
| 4 | 1, 3 | bitr4di 289 | . 2 ⊢ ((𝐴 ∈ Q ∧ 𝐵 ∈ Q) → (𝐴 <pQ 𝐵 ↔ 𝐴 <Q 𝐵)) |
| 5 | relxp 5656 | . . . . 5 ⊢ Rel (N × N) | |
| 6 | elpqn 10878 | . . . . 5 ⊢ (𝐴 ∈ Q → 𝐴 ∈ (N × N)) | |
| 7 | 1st2nd 8018 | . . . . 5 ⊢ ((Rel (N × N) ∧ 𝐴 ∈ (N × N)) → 𝐴 = 〈(1st ‘𝐴), (2nd ‘𝐴)〉) | |
| 8 | 5, 6, 7 | sylancr 587 | . . . 4 ⊢ (𝐴 ∈ Q → 𝐴 = 〈(1st ‘𝐴), (2nd ‘𝐴)〉) |
| 9 | elpqn 10878 | . . . . 5 ⊢ (𝐵 ∈ Q → 𝐵 ∈ (N × N)) | |
| 10 | 1st2nd 8018 | . . . . 5 ⊢ ((Rel (N × N) ∧ 𝐵 ∈ (N × N)) → 𝐵 = 〈(1st ‘𝐵), (2nd ‘𝐵)〉) | |
| 11 | 5, 9, 10 | sylancr 587 | . . . 4 ⊢ (𝐵 ∈ Q → 𝐵 = 〈(1st ‘𝐵), (2nd ‘𝐵)〉) |
| 12 | 8, 11 | breqan12d 5123 | . . 3 ⊢ ((𝐴 ∈ Q ∧ 𝐵 ∈ Q) → (𝐴 <pQ 𝐵 ↔ 〈(1st ‘𝐴), (2nd ‘𝐴)〉 <pQ 〈(1st ‘𝐵), (2nd ‘𝐵)〉)) |
| 13 | ordpipq 10895 | . . 3 ⊢ (〈(1st ‘𝐴), (2nd ‘𝐴)〉 <pQ 〈(1st ‘𝐵), (2nd ‘𝐵)〉 ↔ ((1st ‘𝐴) ·N (2nd ‘𝐵)) <N ((1st ‘𝐵) ·N (2nd ‘𝐴))) | |
| 14 | 12, 13 | bitrdi 287 | . 2 ⊢ ((𝐴 ∈ Q ∧ 𝐵 ∈ Q) → (𝐴 <pQ 𝐵 ↔ ((1st ‘𝐴) ·N (2nd ‘𝐵)) <N ((1st ‘𝐵) ·N (2nd ‘𝐴)))) |
| 15 | 4, 14 | bitr3d 281 | 1 ⊢ ((𝐴 ∈ Q ∧ 𝐵 ∈ Q) → (𝐴 <Q 𝐵 ↔ ((1st ‘𝐴) ·N (2nd ‘𝐵)) <N ((1st ‘𝐵) ·N (2nd ‘𝐴)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∩ cin 3913 〈cop 4595 class class class wbr 5107 × cxp 5636 Rel wrel 5643 ‘cfv 6511 (class class class)co 7387 1st c1st 7966 2nd c2nd 7967 Ncnpi 10797 ·N cmi 10799 <N clti 10800 <pQ cltpq 10803 Qcnq 10805 <Q cltq 10811 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-omul 8439 df-ni 10825 df-mi 10827 df-lti 10828 df-ltpq 10863 df-nq 10865 df-ltnq 10871 |
| This theorem is referenced by: ltsonq 10922 lterpq 10923 ltanq 10924 ltmnq 10925 ltexnq 10928 archnq 10933 |
| Copyright terms: Public domain | W3C validator |