Home | Metamath
Proof Explorer Theorem List (p. 110 of 464) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | Metamath Proof Explorer
(1-29181) |
Hilbert Space Explorer
(29182-30704) |
Users' Mathboxes
(30705-46395) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | 1cnd 10901 | One is a complex number, deduction form. (Contributed by David A. Wheeler, 6-Dec-2018.) |
⊢ (𝜑 → 1 ∈ ℂ) | ||
Theorem | 1ex 10902 | One is a set. (Contributed by David A. Wheeler, 7-Jul-2016.) |
⊢ 1 ∈ V | ||
Theorem | cnre 10903* | Alias for ax-cnre 10875, for naming consistency. (Contributed by NM, 3-Jan-2013.) |
⊢ (𝐴 ∈ ℂ → ∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝐴 = (𝑥 + (i · 𝑦))) | ||
Theorem | mulid1 10904 | The number 1 is an identity element for multiplication. Based on ideas by Eric Schmidt. (Contributed by Scott Fenton, 3-Jan-2013.) |
⊢ (𝐴 ∈ ℂ → (𝐴 · 1) = 𝐴) | ||
Theorem | mulid2 10905 | Identity law for multiplication. See mulid1 10904 for commuted version. (Contributed by NM, 8-Oct-1999.) |
⊢ (𝐴 ∈ ℂ → (1 · 𝐴) = 𝐴) | ||
Theorem | 1re 10906 | The number 1 is real. This used to be one of our postulates for complex numbers, but Eric Schmidt discovered that it could be derived from a weaker postulate, ax-1cn 10860, by exploiting properties of the imaginary unit i. (Contributed by Eric Schmidt, 11-Apr-2007.) (Revised by Scott Fenton, 3-Jan-2013.) |
⊢ 1 ∈ ℝ | ||
Theorem | 1red 10907 | The number 1 is real, deduction form. (Contributed by David A. Wheeler, 6-Dec-2018.) |
⊢ (𝜑 → 1 ∈ ℝ) | ||
Theorem | 0re 10908 | The number 0 is real. Remark: the first step could also be ax-icn 10861. See also 0reALT 11248. (Contributed by Eric Schmidt, 21-May-2007.) (Revised by Scott Fenton, 3-Jan-2013.) Reduce dependencies on axioms. (Revised by Steven Nguyen, 11-Oct-2022.) |
⊢ 0 ∈ ℝ | ||
Theorem | 0red 10909 | The number 0 is real, deduction form. (Contributed by David A. Wheeler, 6-Dec-2018.) |
⊢ (𝜑 → 0 ∈ ℝ) | ||
Theorem | mulid1i 10910 | Identity law for multiplication. (Contributed by NM, 14-Feb-1995.) |
⊢ 𝐴 ∈ ℂ ⇒ ⊢ (𝐴 · 1) = 𝐴 | ||
Theorem | mulid2i 10911 | Identity law for multiplication. (Contributed by NM, 14-Feb-1995.) |
⊢ 𝐴 ∈ ℂ ⇒ ⊢ (1 · 𝐴) = 𝐴 | ||
Theorem | addcli 10912 | Closure law for addition. (Contributed by NM, 23-Nov-1994.) |
⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ ⇒ ⊢ (𝐴 + 𝐵) ∈ ℂ | ||
Theorem | mulcli 10913 | Closure law for multiplication. (Contributed by NM, 23-Nov-1994.) |
⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ ⇒ ⊢ (𝐴 · 𝐵) ∈ ℂ | ||
Theorem | mulcomi 10914 | Commutative law for multiplication. (Contributed by NM, 23-Nov-1994.) |
⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ ⇒ ⊢ (𝐴 · 𝐵) = (𝐵 · 𝐴) | ||
Theorem | mulcomli 10915 | Commutative law for multiplication. (Contributed by NM, 23-Nov-1994.) |
⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ & ⊢ (𝐴 · 𝐵) = 𝐶 ⇒ ⊢ (𝐵 · 𝐴) = 𝐶 | ||
Theorem | addassi 10916 | Associative law for addition. (Contributed by NM, 23-Nov-1994.) |
⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ & ⊢ 𝐶 ∈ ℂ ⇒ ⊢ ((𝐴 + 𝐵) + 𝐶) = (𝐴 + (𝐵 + 𝐶)) | ||
Theorem | mulassi 10917 | Associative law for multiplication. (Contributed by NM, 23-Nov-1994.) |
⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ & ⊢ 𝐶 ∈ ℂ ⇒ ⊢ ((𝐴 · 𝐵) · 𝐶) = (𝐴 · (𝐵 · 𝐶)) | ||
Theorem | adddii 10918 | Distributive law (left-distributivity). (Contributed by NM, 23-Nov-1994.) |
⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ & ⊢ 𝐶 ∈ ℂ ⇒ ⊢ (𝐴 · (𝐵 + 𝐶)) = ((𝐴 · 𝐵) + (𝐴 · 𝐶)) | ||
Theorem | adddiri 10919 | Distributive law (right-distributivity). (Contributed by NM, 16-Feb-1995.) |
⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ & ⊢ 𝐶 ∈ ℂ ⇒ ⊢ ((𝐴 + 𝐵) · 𝐶) = ((𝐴 · 𝐶) + (𝐵 · 𝐶)) | ||
Theorem | recni 10920 | A real number is a complex number. (Contributed by NM, 1-Mar-1995.) |
⊢ 𝐴 ∈ ℝ ⇒ ⊢ 𝐴 ∈ ℂ | ||
Theorem | readdcli 10921 | Closure law for addition of reals. (Contributed by NM, 17-Jan-1997.) |
⊢ 𝐴 ∈ ℝ & ⊢ 𝐵 ∈ ℝ ⇒ ⊢ (𝐴 + 𝐵) ∈ ℝ | ||
Theorem | remulcli 10922 | Closure law for multiplication of reals. (Contributed by NM, 17-Jan-1997.) |
⊢ 𝐴 ∈ ℝ & ⊢ 𝐵 ∈ ℝ ⇒ ⊢ (𝐴 · 𝐵) ∈ ℝ | ||
Theorem | mulid1d 10923 | Identity law for multiplication. (Contributed by Mario Carneiro, 27-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) ⇒ ⊢ (𝜑 → (𝐴 · 1) = 𝐴) | ||
Theorem | mulid2d 10924 | Identity law for multiplication. (Contributed by Mario Carneiro, 27-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) ⇒ ⊢ (𝜑 → (1 · 𝐴) = 𝐴) | ||
Theorem | addcld 10925 | Closure law for addition. (Contributed by Mario Carneiro, 27-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) ⇒ ⊢ (𝜑 → (𝐴 + 𝐵) ∈ ℂ) | ||
Theorem | mulcld 10926 | Closure law for multiplication. (Contributed by Mario Carneiro, 27-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) ⇒ ⊢ (𝜑 → (𝐴 · 𝐵) ∈ ℂ) | ||
Theorem | mulcomd 10927 | Commutative law for multiplication. (Contributed by Mario Carneiro, 27-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) ⇒ ⊢ (𝜑 → (𝐴 · 𝐵) = (𝐵 · 𝐴)) | ||
Theorem | addassd 10928 | Associative law for addition. (Contributed by Mario Carneiro, 27-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) ⇒ ⊢ (𝜑 → ((𝐴 + 𝐵) + 𝐶) = (𝐴 + (𝐵 + 𝐶))) | ||
Theorem | mulassd 10929 | Associative law for multiplication. (Contributed by Mario Carneiro, 27-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) ⇒ ⊢ (𝜑 → ((𝐴 · 𝐵) · 𝐶) = (𝐴 · (𝐵 · 𝐶))) | ||
Theorem | adddid 10930 | Distributive law (left-distributivity). (Contributed by Mario Carneiro, 27-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) ⇒ ⊢ (𝜑 → (𝐴 · (𝐵 + 𝐶)) = ((𝐴 · 𝐵) + (𝐴 · 𝐶))) | ||
Theorem | adddird 10931 | Distributive law (right-distributivity). (Contributed by Mario Carneiro, 27-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) ⇒ ⊢ (𝜑 → ((𝐴 + 𝐵) · 𝐶) = ((𝐴 · 𝐶) + (𝐵 · 𝐶))) | ||
Theorem | adddirp1d 10932 | Distributive law, plus 1 version. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) ⇒ ⊢ (𝜑 → ((𝐴 + 1) · 𝐵) = ((𝐴 · 𝐵) + 𝐵)) | ||
Theorem | joinlmuladdmuld 10933 | Join AB+CB into (A+C) on LHS. (Contributed by David A. Wheeler, 26-Oct-2019.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ (𝜑 → ((𝐴 · 𝐵) + (𝐶 · 𝐵)) = 𝐷) ⇒ ⊢ (𝜑 → ((𝐴 + 𝐶) · 𝐵) = 𝐷) | ||
Theorem | recnd 10934 | Deduction from real number to complex number. (Contributed by NM, 26-Oct-1999.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) ⇒ ⊢ (𝜑 → 𝐴 ∈ ℂ) | ||
Theorem | readdcld 10935 | Closure law for addition of reals. (Contributed by Mario Carneiro, 27-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) ⇒ ⊢ (𝜑 → (𝐴 + 𝐵) ∈ ℝ) | ||
Theorem | remulcld 10936 | Closure law for multiplication of reals. (Contributed by Mario Carneiro, 27-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) ⇒ ⊢ (𝜑 → (𝐴 · 𝐵) ∈ ℝ) | ||
Syntax | cpnf 10937 | Plus infinity. |
class +∞ | ||
Syntax | cmnf 10938 | Minus infinity. |
class -∞ | ||
Syntax | cxr 10939 | The set of extended reals (includes plus and minus infinity). |
class ℝ* | ||
Syntax | clt 10940 | 'Less than' predicate (extended to include the extended reals). |
class < | ||
Syntax | cle 10941 | Extend wff notation to include the 'less than or equal to' relation. |
class ≤ | ||
Definition | df-pnf 10942 |
Define plus infinity. Note that the definition is arbitrary, requiring
only that +∞ be a set not in ℝ and different from -∞
(df-mnf 10943). We use 𝒫 ∪ ℂ to make it independent of the
construction of ℂ, and Cantor's Theorem will
show that it is
different from any member of ℂ and therefore
ℝ. See pnfnre 10947,
mnfnre 10949, and pnfnemnf 10961.
A simpler possibility is to define +∞ as ℂ and -∞ as {ℂ}, but that approach requires the Axiom of Regularity to show that +∞ and -∞ are different from each other and from all members of ℝ. (Contributed by NM, 13-Oct-2005.) (New usage is discouraged.) |
⊢ +∞ = 𝒫 ∪ ℂ | ||
Definition | df-mnf 10943 | Define minus infinity as the power set of plus infinity. Note that the definition is arbitrary, requiring only that -∞ be a set not in ℝ and different from +∞ (see mnfnre 10949 and pnfnemnf 10961). (Contributed by NM, 13-Oct-2005.) (New usage is discouraged.) |
⊢ -∞ = 𝒫 +∞ | ||
Definition | df-xr 10944 | Define the set of extended reals that includes plus and minus infinity. Definition 12-3.1 of [Gleason] p. 173. (Contributed by NM, 13-Oct-2005.) |
⊢ ℝ* = (ℝ ∪ {+∞, -∞}) | ||
Definition | df-ltxr 10945* | Define 'less than' on the set of extended reals. Definition 12-3.1 of [Gleason] p. 173. Note that in our postulates for complex numbers, <ℝ is primitive and not necessarily a relation on ℝ. (Contributed by NM, 13-Oct-2005.) |
⊢ < = ({〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 <ℝ 𝑦)} ∪ (((ℝ ∪ {-∞}) × {+∞}) ∪ ({-∞} × ℝ))) | ||
Definition | df-le 10946 | Define 'less than or equal to' on the extended real subset of complex numbers. Theorem leloe 10992 relates it to 'less than' for reals. (Contributed by NM, 13-Oct-2005.) |
⊢ ≤ = ((ℝ* × ℝ*) ∖ ◡ < ) | ||
Theorem | pnfnre 10947 | Plus infinity is not a real number. (Contributed by NM, 13-Oct-2005.) |
⊢ +∞ ∉ ℝ | ||
Theorem | pnfnre2 10948 | Plus infinity is not a real number. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
⊢ ¬ +∞ ∈ ℝ | ||
Theorem | mnfnre 10949 | Minus infinity is not a real number. (Contributed by NM, 13-Oct-2005.) |
⊢ -∞ ∉ ℝ | ||
Theorem | ressxr 10950 | The standard reals are a subset of the extended reals. (Contributed by NM, 14-Oct-2005.) |
⊢ ℝ ⊆ ℝ* | ||
Theorem | rexpssxrxp 10951 | The Cartesian product of standard reals are a subset of the Cartesian product of extended reals. (Contributed by David A. Wheeler, 8-Dec-2018.) |
⊢ (ℝ × ℝ) ⊆ (ℝ* × ℝ*) | ||
Theorem | rexr 10952 | A standard real is an extended real. (Contributed by NM, 14-Oct-2005.) |
⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℝ*) | ||
Theorem | 0xr 10953 | Zero is an extended real. (Contributed by Mario Carneiro, 15-Jun-2014.) |
⊢ 0 ∈ ℝ* | ||
Theorem | renepnf 10954 | No (finite) real equals plus infinity. (Contributed by NM, 14-Oct-2005.) (Proof shortened by Andrew Salmon, 19-Nov-2011.) |
⊢ (𝐴 ∈ ℝ → 𝐴 ≠ +∞) | ||
Theorem | renemnf 10955 | No real equals minus infinity. (Contributed by NM, 14-Oct-2005.) (Proof shortened by Andrew Salmon, 19-Nov-2011.) |
⊢ (𝐴 ∈ ℝ → 𝐴 ≠ -∞) | ||
Theorem | rexrd 10956 | A standard real is an extended real. (Contributed by Mario Carneiro, 28-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) ⇒ ⊢ (𝜑 → 𝐴 ∈ ℝ*) | ||
Theorem | renepnfd 10957 | No (finite) real equals plus infinity. (Contributed by Mario Carneiro, 28-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) ⇒ ⊢ (𝜑 → 𝐴 ≠ +∞) | ||
Theorem | renemnfd 10958 | No real equals minus infinity. (Contributed by Mario Carneiro, 28-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) ⇒ ⊢ (𝜑 → 𝐴 ≠ -∞) | ||
Theorem | pnfex 10959 | Plus infinity exists. (Contributed by David A. Wheeler, 8-Dec-2018.) (Revised by Steven Nguyen, 7-Dec-2022.) |
⊢ +∞ ∈ V | ||
Theorem | pnfxr 10960 | Plus infinity belongs to the set of extended reals. (Contributed by NM, 13-Oct-2005.) (Proof shortened by Anthony Hart, 29-Aug-2011.) |
⊢ +∞ ∈ ℝ* | ||
Theorem | pnfnemnf 10961 | Plus and minus infinity are different elements of ℝ*. (Contributed by NM, 14-Oct-2005.) |
⊢ +∞ ≠ -∞ | ||
Theorem | mnfnepnf 10962 | Minus and plus infinity are different. (Contributed by David A. Wheeler, 8-Dec-2018.) |
⊢ -∞ ≠ +∞ | ||
Theorem | mnfxr 10963 | Minus infinity belongs to the set of extended reals. (Contributed by NM, 13-Oct-2005.) (Proof shortened by Anthony Hart, 29-Aug-2011.) (Proof shortened by Andrew Salmon, 19-Nov-2011.) |
⊢ -∞ ∈ ℝ* | ||
Theorem | rexri 10964 | A standard real is an extended real (inference form.) (Contributed by David Moews, 28-Feb-2017.) |
⊢ 𝐴 ∈ ℝ ⇒ ⊢ 𝐴 ∈ ℝ* | ||
Theorem | 1xr 10965 | 1 is an extended real number. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
⊢ 1 ∈ ℝ* | ||
Theorem | renfdisj 10966 | The reals and the infinities are disjoint. (Contributed by NM, 25-Oct-2005.) (Proof shortened by Andrew Salmon, 19-Nov-2011.) |
⊢ (ℝ ∩ {+∞, -∞}) = ∅ | ||
Theorem | ltrelxr 10967 | "Less than" is a relation on extended reals. (Contributed by Mario Carneiro, 28-Apr-2015.) |
⊢ < ⊆ (ℝ* × ℝ*) | ||
Theorem | ltrel 10968 | "Less than" is a relation. (Contributed by NM, 14-Oct-2005.) |
⊢ Rel < | ||
Theorem | lerelxr 10969 | "Less than or equal to" is a relation on extended reals. (Contributed by Mario Carneiro, 28-Apr-2015.) |
⊢ ≤ ⊆ (ℝ* × ℝ*) | ||
Theorem | lerel 10970 | "Less than or equal to" is a relation. (Contributed by FL, 2-Aug-2009.) (Revised by Mario Carneiro, 28-Apr-2015.) |
⊢ Rel ≤ | ||
Theorem | xrlenlt 10971 | "Less than or equal to" expressed in terms of "less than", for extended reals. (Contributed by NM, 14-Oct-2005.) |
⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴 ≤ 𝐵 ↔ ¬ 𝐵 < 𝐴)) | ||
Theorem | xrlenltd 10972 | "Less than or equal to" expressed in terms of "less than", for extended reals. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
⊢ (𝜑 → 𝐴 ∈ ℝ*) & ⊢ (𝜑 → 𝐵 ∈ ℝ*) ⇒ ⊢ (𝜑 → (𝐴 ≤ 𝐵 ↔ ¬ 𝐵 < 𝐴)) | ||
Theorem | xrltnle 10973 | "Less than" expressed in terms of "less than or equal to", for extended reals. (Contributed by NM, 6-Feb-2007.) |
⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴 < 𝐵 ↔ ¬ 𝐵 ≤ 𝐴)) | ||
Theorem | xrnltled 10974 | "Not less than" implies "less than or equal to". (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ (𝜑 → 𝐴 ∈ ℝ*) & ⊢ (𝜑 → 𝐵 ∈ ℝ*) & ⊢ (𝜑 → ¬ 𝐵 < 𝐴) ⇒ ⊢ (𝜑 → 𝐴 ≤ 𝐵) | ||
Theorem | ssxr 10975 | The three (non-exclusive) possibilities implied by a subset of extended reals. (Contributed by NM, 25-Oct-2005.) (Proof shortened by Andrew Salmon, 19-Nov-2011.) |
⊢ (𝐴 ⊆ ℝ* → (𝐴 ⊆ ℝ ∨ +∞ ∈ 𝐴 ∨ -∞ ∈ 𝐴)) | ||
Theorem | ltxrlt 10976 | The standard less-than <ℝ and the extended real less-than < are identical when restricted to the non-extended reals ℝ. (Contributed by NM, 13-Oct-2005.) (Revised by Mario Carneiro, 28-Apr-2015.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 ↔ 𝐴 <ℝ 𝐵)) | ||
Theorem | axlttri 10977 | Ordering on reals satisfies strict trichotomy. Axiom 18 of 22 for real and complex numbers, derived from ZF set theory. (This restates ax-pre-lttri 10876 with ordering on the extended reals.) (Contributed by NM, 13-Oct-2005.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 ↔ ¬ (𝐴 = 𝐵 ∨ 𝐵 < 𝐴))) | ||
Theorem | axlttrn 10978 | Ordering on reals is transitive. Axiom 19 of 22 for real and complex numbers, derived from ZF set theory. This restates ax-pre-lttrn 10877 with ordering on the extended reals. New proofs should use lttr 10982 instead for naming consistency. (New usage is discouraged.) (Contributed by NM, 13-Oct-2005.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 < 𝐵 ∧ 𝐵 < 𝐶) → 𝐴 < 𝐶)) | ||
Theorem | axltadd 10979 | Ordering property of addition on reals. Axiom 20 of 22 for real and complex numbers, derived from ZF set theory. (This restates ax-pre-ltadd 10878 with ordering on the extended reals.) (Contributed by NM, 13-Oct-2005.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 < 𝐵 → (𝐶 + 𝐴) < (𝐶 + 𝐵))) | ||
Theorem | axmulgt0 10980 | The product of two positive reals is positive. Axiom 21 of 22 for real and complex numbers, derived from ZF set theory. (This restates ax-pre-mulgt0 10879 with ordering on the extended reals.) (Contributed by NM, 13-Oct-2005.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((0 < 𝐴 ∧ 0 < 𝐵) → 0 < (𝐴 · 𝐵))) | ||
Theorem | axsup 10981* | A nonempty, bounded-above set of reals has a supremum. Axiom 22 of 22 for real and complex numbers, derived from ZF set theory. (This restates ax-pre-sup 10880 with ordering on the extended reals.) (Contributed by NM, 13-Oct-2005.) |
⊢ ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑦 < 𝑥) → ∃𝑥 ∈ ℝ (∀𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧))) | ||
Theorem | lttr 10982 | Alias for axlttrn 10978, for naming consistency with lttri 11031. New proofs should generally use this instead of ax-pre-lttrn 10877. (Contributed by NM, 10-Mar-2008.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 < 𝐵 ∧ 𝐵 < 𝐶) → 𝐴 < 𝐶)) | ||
Theorem | mulgt0 10983 | The product of two positive numbers is positive. (Contributed by NM, 10-Mar-2008.) |
⊢ (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → 0 < (𝐴 · 𝐵)) | ||
Theorem | lenlt 10984 | 'Less than or equal to' expressed in terms of 'less than'. (Contributed by NM, 13-May-1999.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 ≤ 𝐵 ↔ ¬ 𝐵 < 𝐴)) | ||
Theorem | ltnle 10985 | 'Less than' expressed in terms of 'less than or equal to'. (Contributed by NM, 11-Jul-2005.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 ↔ ¬ 𝐵 ≤ 𝐴)) | ||
Theorem | ltso 10986 | 'Less than' is a strict ordering. (Contributed by NM, 19-Jan-1997.) |
⊢ < Or ℝ | ||
Theorem | gtso 10987 | 'Greater than' is a strict ordering. (Contributed by JJ, 11-Oct-2018.) |
⊢ ◡ < Or ℝ | ||
Theorem | lttri2 10988 | Consequence of trichotomy. (Contributed by NM, 9-Oct-1999.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 ≠ 𝐵 ↔ (𝐴 < 𝐵 ∨ 𝐵 < 𝐴))) | ||
Theorem | lttri3 10989 | Trichotomy law for 'less than'. (Contributed by NM, 5-May-1999.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 = 𝐵 ↔ (¬ 𝐴 < 𝐵 ∧ ¬ 𝐵 < 𝐴))) | ||
Theorem | lttri4 10990 | Trichotomy law for 'less than'. (Contributed by NM, 20-Sep-2007.) (Proof shortened by Andrew Salmon, 19-Nov-2011.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 ∨ 𝐴 = 𝐵 ∨ 𝐵 < 𝐴)) | ||
Theorem | letri3 10991 | Trichotomy law. (Contributed by NM, 14-May-1999.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 = 𝐵 ↔ (𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐴))) | ||
Theorem | leloe 10992 | 'Less than or equal to' expressed in terms of 'less than' or 'equals'. (Contributed by NM, 13-May-1999.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 ≤ 𝐵 ↔ (𝐴 < 𝐵 ∨ 𝐴 = 𝐵))) | ||
Theorem | eqlelt 10993 | Equality in terms of 'less than or equal to', 'less than'. (Contributed by NM, 7-Apr-2001.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 = 𝐵 ↔ (𝐴 ≤ 𝐵 ∧ ¬ 𝐴 < 𝐵))) | ||
Theorem | ltle 10994 | 'Less than' implies 'less than or equal to'. (Contributed by NM, 25-Aug-1999.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 → 𝐴 ≤ 𝐵)) | ||
Theorem | leltne 10995 | 'Less than or equal to' implies 'less than' is not 'equals'. (Contributed by NM, 27-Jul-1999.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵) → (𝐴 < 𝐵 ↔ 𝐵 ≠ 𝐴)) | ||
Theorem | lelttr 10996 | Transitive law. (Contributed by NM, 23-May-1999.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 ≤ 𝐵 ∧ 𝐵 < 𝐶) → 𝐴 < 𝐶)) | ||
Theorem | ltletr 10997 | Transitive law. (Contributed by NM, 25-Aug-1999.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 < 𝐵 ∧ 𝐵 ≤ 𝐶) → 𝐴 < 𝐶)) | ||
Theorem | ltleletr 10998 | Transitive law, weaker form of ltletr 10997. (Contributed by AV, 14-Oct-2018.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 < 𝐵 ∧ 𝐵 ≤ 𝐶) → 𝐴 ≤ 𝐶)) | ||
Theorem | letr 10999 | Transitive law. (Contributed by NM, 12-Nov-1999.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐶) → 𝐴 ≤ 𝐶)) | ||
Theorem | ltnr 11000 | 'Less than' is irreflexive. (Contributed by NM, 18-Aug-1999.) |
⊢ (𝐴 ∈ ℝ → ¬ 𝐴 < 𝐴) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |