Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > df-c | Structured version Visualization version GIF version |
Description: Define the set of complex numbers. The 23 axioms for complex numbers start at axresscn 10904. (Contributed by NM, 22-Feb-1996.) (New usage is discouraged.) |
Ref | Expression |
---|---|
df-c | ⊢ ℂ = (R × R) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cc 10869 | . 2 class ℂ | |
2 | cnr 10621 | . . 3 class R | |
3 | 2, 2 | cxp 5587 | . 2 class (R × R) |
4 | 1, 3 | wceq 1539 | 1 wff ℂ = (R × R) |
Colors of variables: wff setvar class |
This definition is referenced by: opelcn 10885 0ncn 10889 addcnsr 10891 mulcnsr 10892 dfcnqs 10898 axaddf 10901 axmulf 10902 axcnex 10903 axresscn 10904 axcnre 10920 wuncn 10926 bj-inftyexpitaudisj 35376 |
Copyright terms: Public domain | W3C validator |