![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > df-c | Structured version Visualization version GIF version |
Description: Define the set of complex numbers. The 23 axioms for complex numbers start at axresscn 11185. (Contributed by NM, 22-Feb-1996.) (New usage is discouraged.) |
Ref | Expression |
---|---|
df-c | ⊢ ℂ = (R × R) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cc 11150 | . 2 class ℂ | |
2 | cnr 10902 | . . 3 class R | |
3 | 2, 2 | cxp 5686 | . 2 class (R × R) |
4 | 1, 3 | wceq 1536 | 1 wff ℂ = (R × R) |
Colors of variables: wff setvar class |
This definition is referenced by: opelcn 11166 0ncn 11170 addcnsr 11172 mulcnsr 11173 dfcnqs 11179 axaddf 11182 axmulf 11183 axcnex 11184 axresscn 11185 axcnre 11201 wuncn 11207 bj-inftyexpitaudisj 37187 |
Copyright terms: Public domain | W3C validator |