![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > df-c | Structured version Visualization version GIF version |
Description: Define the set of complex numbers. The 23 axioms for complex numbers start at axresscn 11217. (Contributed by NM, 22-Feb-1996.) (New usage is discouraged.) |
Ref | Expression |
---|---|
df-c | ⊢ ℂ = (R × R) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cc 11182 | . 2 class ℂ | |
2 | cnr 10934 | . . 3 class R | |
3 | 2, 2 | cxp 5698 | . 2 class (R × R) |
4 | 1, 3 | wceq 1537 | 1 wff ℂ = (R × R) |
Colors of variables: wff setvar class |
This definition is referenced by: opelcn 11198 0ncn 11202 addcnsr 11204 mulcnsr 11205 dfcnqs 11211 axaddf 11214 axmulf 11215 axcnex 11216 axresscn 11217 axcnre 11233 wuncn 11239 bj-inftyexpitaudisj 37171 |
Copyright terms: Public domain | W3C validator |