MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-lvec Structured version   Visualization version   GIF version

Definition df-lvec 20410
Description: Define the class of all left vector spaces. A left vector space over a division ring is an Abelian group (vectors) together with a division ring (scalars) and a left scalar product connecting them. Some authors call this a "left module over a division ring", reserving "vector space" for those where the division ring is commutative, i.e., is a field. (Contributed by NM, 11-Nov-2013.)
Assertion
Ref Expression
df-lvec LVec = {𝑓 ∈ LMod ∣ (Scalar‘𝑓) ∈ DivRing}

Detailed syntax breakdown of Definition df-lvec
StepHypRef Expression
1 clvec 20409 . 2 class LVec
2 vf . . . . . 6 setvar 𝑓
32cv 1538 . . . . 5 class 𝑓
4 csca 17010 . . . . 5 class Scalar
53, 4cfv 6458 . . . 4 class (Scalar‘𝑓)
6 cdr 20036 . . . 4 class DivRing
75, 6wcel 2104 . . 3 wff (Scalar‘𝑓) ∈ DivRing
8 clmod 20168 . . 3 class LMod
97, 2, 8crab 3284 . 2 class {𝑓 ∈ LMod ∣ (Scalar‘𝑓) ∈ DivRing}
101, 9wceq 1539 1 wff LVec = {𝑓 ∈ LMod ∣ (Scalar‘𝑓) ∈ DivRing}
Colors of variables: wff setvar class
This definition is referenced by:  islvec  20411  bj-vecssmod  35496
  Copyright terms: Public domain W3C validator