| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-lvec | Structured version Visualization version GIF version | ||
| Description: Define the class of all left vector spaces. A left vector space over a division ring is an Abelian group (vectors) together with a division ring (scalars) and a left scalar product connecting them. Some authors call this a "left module over a division ring", reserving "vector space" for those where the division ring is commutative, i.e., is a field. (Contributed by NM, 11-Nov-2013.) |
| Ref | Expression |
|---|---|
| df-lvec | ⊢ LVec = {𝑓 ∈ LMod ∣ (Scalar‘𝑓) ∈ DivRing} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | clvec 21101 | . 2 class LVec | |
| 2 | vf | . . . . . 6 setvar 𝑓 | |
| 3 | 2 | cv 1539 | . . . . 5 class 𝑓 |
| 4 | csca 17300 | . . . . 5 class Scalar | |
| 5 | 3, 4 | cfv 6561 | . . . 4 class (Scalar‘𝑓) |
| 6 | cdr 20729 | . . . 4 class DivRing | |
| 7 | 5, 6 | wcel 2108 | . . 3 wff (Scalar‘𝑓) ∈ DivRing |
| 8 | clmod 20858 | . . 3 class LMod | |
| 9 | 7, 2, 8 | crab 3436 | . 2 class {𝑓 ∈ LMod ∣ (Scalar‘𝑓) ∈ DivRing} |
| 10 | 1, 9 | wceq 1540 | 1 wff LVec = {𝑓 ∈ LMod ∣ (Scalar‘𝑓) ∈ DivRing} |
| Colors of variables: wff setvar class |
| This definition is referenced by: islvec 21103 bj-vecssmod 37282 |
| Copyright terms: Public domain | W3C validator |