Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-vecssmod Structured version   Visualization version   GIF version

Theorem bj-vecssmod 36816
Description: Vector spaces are modules. (Contributed by BJ, 9-Jun-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
bj-vecssmod LVec βŠ† LMod

Proof of Theorem bj-vecssmod
StepHypRef Expression
1 df-lvec 20990 . 2 LVec = {π‘₯ ∈ LMod ∣ (Scalarβ€˜π‘₯) ∈ DivRing}
2 ssrab2 4069 . 2 {π‘₯ ∈ LMod ∣ (Scalarβ€˜π‘₯) ∈ DivRing} βŠ† LMod
31, 2eqsstri 4007 1 LVec βŠ† LMod
Colors of variables: wff setvar class
Syntax hints:   ∈ wcel 2098  {crab 3419   βŠ† wss 3940  β€˜cfv 6542  Scalarcsca 17233  DivRingcdr 20626  LModclmod 20745  LVecclvec 20989
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2696
This theorem depends on definitions:  df-bi 206  df-an 395  df-ex 1774  df-sb 2060  df-clab 2703  df-cleq 2717  df-clel 2802  df-rab 3420  df-ss 3957  df-lvec 20990
This theorem is referenced by:  bj-vecssmodel  36817
  Copyright terms: Public domain W3C validator