| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-vecssmod | Structured version Visualization version GIF version | ||
| Description: Vector spaces are modules. (Contributed by BJ, 9-Jun-2019.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| bj-vecssmod | ⊢ LVec ⊆ LMod |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-lvec 21038 | . 2 ⊢ LVec = {𝑥 ∈ LMod ∣ (Scalar‘𝑥) ∈ DivRing} | |
| 2 | ssrab2 4030 | . 2 ⊢ {𝑥 ∈ LMod ∣ (Scalar‘𝑥) ∈ DivRing} ⊆ LMod | |
| 3 | 1, 2 | eqsstri 3981 | 1 ⊢ LVec ⊆ LMod |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2111 {crab 3395 ⊆ wss 3902 ‘cfv 6481 Scalarcsca 17164 DivRingcdr 20645 LModclmod 20794 LVecclvec 21037 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rab 3396 df-ss 3919 df-lvec 21038 |
| This theorem is referenced by: bj-vecssmodel 37322 |
| Copyright terms: Public domain | W3C validator |