Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-vecssmod | Structured version Visualization version GIF version |
Description: Vector spaces are modules. (Contributed by BJ, 9-Jun-2019.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
bj-vecssmod | ⊢ LVec ⊆ LMod |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-lvec 20280 | . 2 ⊢ LVec = {𝑥 ∈ LMod ∣ (Scalar‘𝑥) ∈ DivRing} | |
2 | ssrab2 4009 | . 2 ⊢ {𝑥 ∈ LMod ∣ (Scalar‘𝑥) ∈ DivRing} ⊆ LMod | |
3 | 1, 2 | eqsstri 3951 | 1 ⊢ LVec ⊆ LMod |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2108 {crab 3067 ⊆ wss 3883 ‘cfv 6418 Scalarcsca 16891 DivRingcdr 19906 LModclmod 20038 LVecclvec 20279 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-rab 3072 df-v 3424 df-in 3890 df-ss 3900 df-lvec 20280 |
This theorem is referenced by: bj-vecssmodel 35380 |
Copyright terms: Public domain | W3C validator |