Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-vecssmod Structured version   Visualization version   GIF version

Theorem bj-vecssmod 37276
Description: Vector spaces are modules. (Contributed by BJ, 9-Jun-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
bj-vecssmod LVec ⊆ LMod

Proof of Theorem bj-vecssmod
StepHypRef Expression
1 df-lvec 21129 . 2 LVec = {𝑥 ∈ LMod ∣ (Scalar‘𝑥) ∈ DivRing}
2 ssrab2 4093 . 2 {𝑥 ∈ LMod ∣ (Scalar‘𝑥) ∈ DivRing} ⊆ LMod
31, 2eqsstri 4033 1 LVec ⊆ LMod
Colors of variables: wff setvar class
Syntax hints:  wcel 2108  {crab 3436  wss 3966  cfv 6569  Scalarcsca 17310  DivRingcdr 20755  LModclmod 20884  LVecclvec 21128
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2708
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1779  df-sb 2065  df-clab 2715  df-cleq 2729  df-clel 2816  df-rab 3437  df-ss 3983  df-lvec 21129
This theorem is referenced by:  bj-vecssmodel  37277
  Copyright terms: Public domain W3C validator