Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-vecssmod | Structured version Visualization version GIF version |
Description: Vector spaces are modules. (Contributed by BJ, 9-Jun-2019.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
bj-vecssmod | ⊢ LVec ⊆ LMod |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-lvec 20365 | . 2 ⊢ LVec = {𝑥 ∈ LMod ∣ (Scalar‘𝑥) ∈ DivRing} | |
2 | ssrab2 4013 | . 2 ⊢ {𝑥 ∈ LMod ∣ (Scalar‘𝑥) ∈ DivRing} ⊆ LMod | |
3 | 1, 2 | eqsstri 3955 | 1 ⊢ LVec ⊆ LMod |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2106 {crab 3068 ⊆ wss 3887 ‘cfv 6433 Scalarcsca 16965 DivRingcdr 19991 LModclmod 20123 LVecclvec 20364 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-rab 3073 df-v 3434 df-in 3894 df-ss 3904 df-lvec 20365 |
This theorem is referenced by: bj-vecssmodel 35453 |
Copyright terms: Public domain | W3C validator |