Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-vecssmod Structured version   Visualization version   GIF version

Theorem bj-vecssmod 37249
Description: Vector spaces are modules. (Contributed by BJ, 9-Jun-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
bj-vecssmod LVec ⊆ LMod

Proof of Theorem bj-vecssmod
StepHypRef Expression
1 df-lvec 21127 . 2 LVec = {𝑥 ∈ LMod ∣ (Scalar‘𝑥) ∈ DivRing}
2 ssrab2 4103 . 2 {𝑥 ∈ LMod ∣ (Scalar‘𝑥) ∈ DivRing} ⊆ LMod
31, 2eqsstri 4043 1 LVec ⊆ LMod
Colors of variables: wff setvar class
Syntax hints:  wcel 2108  {crab 3443  wss 3976  cfv 6575  Scalarcsca 17316  DivRingcdr 20753  LModclmod 20882  LVecclvec 21126
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-rab 3444  df-ss 3993  df-lvec 21127
This theorem is referenced by:  bj-vecssmodel  37250
  Copyright terms: Public domain W3C validator