Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-vecssmod Structured version   Visualization version   GIF version

Theorem bj-vecssmod 36683
Description: Vector spaces are modules. (Contributed by BJ, 9-Jun-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
bj-vecssmod LVec βŠ† LMod

Proof of Theorem bj-vecssmod
StepHypRef Expression
1 df-lvec 20970 . 2 LVec = {π‘₯ ∈ LMod ∣ (Scalarβ€˜π‘₯) ∈ DivRing}
2 ssrab2 4073 . 2 {π‘₯ ∈ LMod ∣ (Scalarβ€˜π‘₯) ∈ DivRing} βŠ† LMod
31, 2eqsstri 4012 1 LVec βŠ† LMod
Colors of variables: wff setvar class
Syntax hints:   ∈ wcel 2099  {crab 3427   βŠ† wss 3944  β€˜cfv 6542  Scalarcsca 17221  DivRingcdr 20606  LModclmod 20725  LVecclvec 20969
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-ext 2698
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1537  df-ex 1775  df-sb 2061  df-clab 2705  df-cleq 2719  df-clel 2805  df-rab 3428  df-v 3471  df-in 3951  df-ss 3961  df-lvec 20970
This theorem is referenced by:  bj-vecssmodel  36684
  Copyright terms: Public domain W3C validator