Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-vecssmod Structured version   Visualization version   GIF version

Theorem bj-vecssmod 37269
Description: Vector spaces are modules. (Contributed by BJ, 9-Jun-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
bj-vecssmod LVec ⊆ LMod

Proof of Theorem bj-vecssmod
StepHypRef Expression
1 df-lvec 21010 . 2 LVec = {𝑥 ∈ LMod ∣ (Scalar‘𝑥) ∈ DivRing}
2 ssrab2 4043 . 2 {𝑥 ∈ LMod ∣ (Scalar‘𝑥) ∈ DivRing} ⊆ LMod
31, 2eqsstri 3993 1 LVec ⊆ LMod
Colors of variables: wff setvar class
Syntax hints:  wcel 2109  {crab 3405  wss 3914  cfv 6511  Scalarcsca 17223  DivRingcdr 20638  LModclmod 20766  LVecclvec 21009
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-rab 3406  df-ss 3931  df-lvec 21010
This theorem is referenced by:  bj-vecssmodel  37270
  Copyright terms: Public domain W3C validator