![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-vecssmod | Structured version Visualization version GIF version |
Description: Vector spaces are modules. (Contributed by BJ, 9-Jun-2019.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
bj-vecssmod | β’ LVec β LMod |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-lvec 20970 | . 2 β’ LVec = {π₯ β LMod β£ (Scalarβπ₯) β DivRing} | |
2 | ssrab2 4073 | . 2 β’ {π₯ β LMod β£ (Scalarβπ₯) β DivRing} β LMod | |
3 | 1, 2 | eqsstri 4012 | 1 β’ LVec β LMod |
Colors of variables: wff setvar class |
Syntax hints: β wcel 2099 {crab 3427 β wss 3944 βcfv 6542 Scalarcsca 17221 DivRingcdr 20606 LModclmod 20725 LVecclvec 20969 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2698 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1537 df-ex 1775 df-sb 2061 df-clab 2705 df-cleq 2719 df-clel 2805 df-rab 3428 df-v 3471 df-in 3951 df-ss 3961 df-lvec 20970 |
This theorem is referenced by: bj-vecssmodel 36684 |
Copyright terms: Public domain | W3C validator |