| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-vecssmod | Structured version Visualization version GIF version | ||
| Description: Vector spaces are modules. (Contributed by BJ, 9-Jun-2019.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| bj-vecssmod | ⊢ LVec ⊆ LMod |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-lvec 21070 | . 2 ⊢ LVec = {𝑥 ∈ LMod ∣ (Scalar‘𝑥) ∈ DivRing} | |
| 2 | ssrab2 4060 | . 2 ⊢ {𝑥 ∈ LMod ∣ (Scalar‘𝑥) ∈ DivRing} ⊆ LMod | |
| 3 | 1, 2 | eqsstri 4010 | 1 ⊢ LVec ⊆ LMod |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2107 {crab 3419 ⊆ wss 3931 ‘cfv 6541 Scalarcsca 17276 DivRingcdr 20697 LModclmod 20826 LVecclvec 21069 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-rab 3420 df-ss 3948 df-lvec 21070 |
| This theorem is referenced by: bj-vecssmodel 37242 |
| Copyright terms: Public domain | W3C validator |