MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  islvec Structured version   Visualization version   GIF version

Theorem islvec 21062
Description: The predicate "is a left vector space". (Contributed by NM, 11-Nov-2013.)
Hypothesis
Ref Expression
islvec.1 𝐹 = (Scalar‘𝑊)
Assertion
Ref Expression
islvec (𝑊 ∈ LVec ↔ (𝑊 ∈ LMod ∧ 𝐹 ∈ DivRing))

Proof of Theorem islvec
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 fveq2 6876 . . . 4 (𝑓 = 𝑊 → (Scalar‘𝑓) = (Scalar‘𝑊))
2 islvec.1 . . . 4 𝐹 = (Scalar‘𝑊)
31, 2eqtr4di 2788 . . 3 (𝑓 = 𝑊 → (Scalar‘𝑓) = 𝐹)
43eleq1d 2819 . 2 (𝑓 = 𝑊 → ((Scalar‘𝑓) ∈ DivRing ↔ 𝐹 ∈ DivRing))
5 df-lvec 21061 . 2 LVec = {𝑓 ∈ LMod ∣ (Scalar‘𝑓) ∈ DivRing}
64, 5elrab2 3674 1 (𝑊 ∈ LVec ↔ (𝑊 ∈ LMod ∧ 𝐹 ∈ DivRing))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1540  wcel 2108  cfv 6531  Scalarcsca 17274  DivRingcdr 20689  LModclmod 20817  LVecclvec 21060
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2707
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-clab 2714  df-cleq 2727  df-clel 2809  df-rab 3416  df-v 3461  df-dif 3929  df-un 3931  df-ss 3943  df-nul 4309  df-if 4501  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-iota 6484  df-fv 6539  df-lvec 21061
This theorem is referenced by:  lvecdrng  21063  lveclmod  21064  lsslvec  21067  lmhmlvec  21068  lvecprop2d  21127  lvecpropd  21128  rlmlvec  21162  frlmlvec  21721  frlmphl  21741  mpllvec  21980  tvclvec  24137  isnvc2  24638  iscvs  25078  cnstrcvs  25092  zclmncvs  25100  quslvec  33375  ply1lvec  33572  sralvec  33625  matdim  33655  lmhmlvec2  33659  assalactf1o  33675  ccfldsrarelvec  33712  fldextrspunlem1  33716  fldextrspunfld  33717  bj-isvec  37305  lindsdom  37638  lindsenlbs  37639  lduallvec  39172  dvalveclem  41044  dvhlveclem  41127  lmod1zrnlvec  48470  aacllem  49665
  Copyright terms: Public domain W3C validator