| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > islvec | Structured version Visualization version GIF version | ||
| Description: The predicate "is a left vector space". (Contributed by NM, 11-Nov-2013.) |
| Ref | Expression |
|---|---|
| islvec.1 | ⊢ 𝐹 = (Scalar‘𝑊) |
| Ref | Expression |
|---|---|
| islvec | ⊢ (𝑊 ∈ LVec ↔ (𝑊 ∈ LMod ∧ 𝐹 ∈ DivRing)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 6817 | . . . 4 ⊢ (𝑓 = 𝑊 → (Scalar‘𝑓) = (Scalar‘𝑊)) | |
| 2 | islvec.1 | . . . 4 ⊢ 𝐹 = (Scalar‘𝑊) | |
| 3 | 1, 2 | eqtr4di 2783 | . . 3 ⊢ (𝑓 = 𝑊 → (Scalar‘𝑓) = 𝐹) |
| 4 | 3 | eleq1d 2814 | . 2 ⊢ (𝑓 = 𝑊 → ((Scalar‘𝑓) ∈ DivRing ↔ 𝐹 ∈ DivRing)) |
| 5 | df-lvec 21030 | . 2 ⊢ LVec = {𝑓 ∈ LMod ∣ (Scalar‘𝑓) ∈ DivRing} | |
| 6 | 4, 5 | elrab2 3648 | 1 ⊢ (𝑊 ∈ LVec ↔ (𝑊 ∈ LMod ∧ 𝐹 ∈ DivRing)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2110 ‘cfv 6477 Scalarcsca 17156 DivRingcdr 20637 LModclmod 20786 LVecclvec 21029 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2067 df-clab 2709 df-cleq 2722 df-clel 2804 df-rab 3394 df-v 3436 df-dif 3903 df-un 3905 df-ss 3917 df-nul 4282 df-if 4474 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4858 df-br 5090 df-iota 6433 df-fv 6485 df-lvec 21030 |
| This theorem is referenced by: lvecdrng 21032 lveclmod 21033 lsslvec 21036 lmhmlvec 21037 lvecprop2d 21096 lvecpropd 21097 rlmlvec 21131 frlmlvec 21691 frlmphl 21711 mpllvec 21950 tvclvec 24107 isnvc2 24607 iscvs 25047 cnstrcvs 25061 zclmncvs 25068 quslvec 33315 ply1lvec 33512 sralvec 33587 matdim 33618 lmhmlvec2 33622 assalactf1o 33638 ccfldsrarelvec 33674 fldextrspunlem1 33678 fldextrspunfld 33679 bj-isvec 37300 lindsdom 37633 lindsenlbs 37634 lduallvec 39172 dvalveclem 41043 dvhlveclem 41126 lmod1zrnlvec 48505 aacllem 49812 |
| Copyright terms: Public domain | W3C validator |