| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > islvec | Structured version Visualization version GIF version | ||
| Description: The predicate "is a left vector space". (Contributed by NM, 11-Nov-2013.) |
| Ref | Expression |
|---|---|
| islvec.1 | ⊢ 𝐹 = (Scalar‘𝑊) |
| Ref | Expression |
|---|---|
| islvec | ⊢ (𝑊 ∈ LVec ↔ (𝑊 ∈ LMod ∧ 𝐹 ∈ DivRing)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 6858 | . . . 4 ⊢ (𝑓 = 𝑊 → (Scalar‘𝑓) = (Scalar‘𝑊)) | |
| 2 | islvec.1 | . . . 4 ⊢ 𝐹 = (Scalar‘𝑊) | |
| 3 | 1, 2 | eqtr4di 2782 | . . 3 ⊢ (𝑓 = 𝑊 → (Scalar‘𝑓) = 𝐹) |
| 4 | 3 | eleq1d 2813 | . 2 ⊢ (𝑓 = 𝑊 → ((Scalar‘𝑓) ∈ DivRing ↔ 𝐹 ∈ DivRing)) |
| 5 | df-lvec 21010 | . 2 ⊢ LVec = {𝑓 ∈ LMod ∣ (Scalar‘𝑓) ∈ DivRing} | |
| 6 | 4, 5 | elrab2 3662 | 1 ⊢ (𝑊 ∈ LVec ↔ (𝑊 ∈ LMod ∧ 𝐹 ∈ DivRing)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ‘cfv 6511 Scalarcsca 17223 DivRingcdr 20638 LModclmod 20766 LVecclvec 21009 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-iota 6464 df-fv 6519 df-lvec 21010 |
| This theorem is referenced by: lvecdrng 21012 lveclmod 21013 lsslvec 21016 lmhmlvec 21017 lvecprop2d 21076 lvecpropd 21077 rlmlvec 21111 frlmlvec 21670 frlmphl 21690 mpllvec 21929 tvclvec 24086 isnvc2 24587 iscvs 25027 cnstrcvs 25041 zclmncvs 25048 quslvec 33331 ply1lvec 33528 sralvec 33581 matdim 33611 lmhmlvec2 33615 assalactf1o 33631 ccfldsrarelvec 33666 fldextrspunlem1 33670 fldextrspunfld 33671 bj-isvec 37275 lindsdom 37608 lindsenlbs 37609 lduallvec 39147 dvalveclem 41019 dvhlveclem 41102 lmod1zrnlvec 48483 aacllem 49790 |
| Copyright terms: Public domain | W3C validator |