Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > islvec | Structured version Visualization version GIF version |
Description: The predicate "is a left vector space". (Contributed by NM, 11-Nov-2013.) |
Ref | Expression |
---|---|
islvec.1 | ⊢ 𝐹 = (Scalar‘𝑊) |
Ref | Expression |
---|---|
islvec | ⊢ (𝑊 ∈ LVec ↔ (𝑊 ∈ LMod ∧ 𝐹 ∈ DivRing)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6774 | . . . 4 ⊢ (𝑓 = 𝑊 → (Scalar‘𝑓) = (Scalar‘𝑊)) | |
2 | islvec.1 | . . . 4 ⊢ 𝐹 = (Scalar‘𝑊) | |
3 | 1, 2 | eqtr4di 2796 | . . 3 ⊢ (𝑓 = 𝑊 → (Scalar‘𝑓) = 𝐹) |
4 | 3 | eleq1d 2823 | . 2 ⊢ (𝑓 = 𝑊 → ((Scalar‘𝑓) ∈ DivRing ↔ 𝐹 ∈ DivRing)) |
5 | df-lvec 20365 | . 2 ⊢ LVec = {𝑓 ∈ LMod ∣ (Scalar‘𝑓) ∈ DivRing} | |
6 | 4, 5 | elrab2 3627 | 1 ⊢ (𝑊 ∈ LVec ↔ (𝑊 ∈ LMod ∧ 𝐹 ∈ DivRing)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ‘cfv 6433 Scalarcsca 16965 DivRingcdr 19991 LModclmod 20123 LVecclvec 20364 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-iota 6391 df-fv 6441 df-lvec 20365 |
This theorem is referenced by: lvecdrng 20367 lveclmod 20368 lsslvec 20369 lvecprop2d 20428 lvecpropd 20429 rlmlvec 20476 frlmlvec 20968 frlmphl 20988 mpllvec 21225 tvclvec 23350 isnvc2 23863 iscvs 24290 cnstrcvs 24304 zclmncvs 24312 sralvec 31675 matdim 31698 lmhmlvec2 31702 ccfldsrarelvec 31741 bj-isvec 35458 lindsdom 35771 lindsenlbs 35772 lduallvec 37168 dvalveclem 39039 dvhlveclem 39122 lmhmlvec 40261 lmod1zrnlvec 45835 aacllem 46505 |
Copyright terms: Public domain | W3C validator |