Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > islvec | Structured version Visualization version GIF version |
Description: The predicate "is a left vector space". (Contributed by NM, 11-Nov-2013.) |
Ref | Expression |
---|---|
islvec.1 | ⊢ 𝐹 = (Scalar‘𝑊) |
Ref | Expression |
---|---|
islvec | ⊢ (𝑊 ∈ LVec ↔ (𝑊 ∈ LMod ∧ 𝐹 ∈ DivRing)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6658 | . . . 4 ⊢ (𝑓 = 𝑊 → (Scalar‘𝑓) = (Scalar‘𝑊)) | |
2 | islvec.1 | . . . 4 ⊢ 𝐹 = (Scalar‘𝑊) | |
3 | 1, 2 | eqtr4di 2811 | . . 3 ⊢ (𝑓 = 𝑊 → (Scalar‘𝑓) = 𝐹) |
4 | 3 | eleq1d 2836 | . 2 ⊢ (𝑓 = 𝑊 → ((Scalar‘𝑓) ∈ DivRing ↔ 𝐹 ∈ DivRing)) |
5 | df-lvec 19943 | . 2 ⊢ LVec = {𝑓 ∈ LMod ∣ (Scalar‘𝑓) ∈ DivRing} | |
6 | 4, 5 | elrab2 3605 | 1 ⊢ (𝑊 ∈ LVec ↔ (𝑊 ∈ LMod ∧ 𝐹 ∈ DivRing)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 209 ∧ wa 399 = wceq 1538 ∈ wcel 2111 ‘cfv 6335 Scalarcsca 16626 DivRingcdr 19570 LModclmod 19702 LVecclvec 19942 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3an 1086 df-tru 1541 df-ex 1782 df-nf 1786 df-sb 2070 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-rab 3079 df-v 3411 df-un 3863 df-in 3865 df-ss 3875 df-sn 4523 df-pr 4525 df-op 4529 df-uni 4799 df-br 5033 df-iota 6294 df-fv 6343 df-lvec 19943 |
This theorem is referenced by: lvecdrng 19945 lveclmod 19946 lsslvec 19947 lvecprop2d 20006 lvecpropd 20007 rlmlvec 20046 frlmlvec 20526 frlmphl 20546 mpllvec 20784 tvclvec 22899 isnvc2 23401 iscvs 23828 cnstrcvs 23842 zclmncvs 23849 sralvec 31196 matdim 31219 lmhmlvec2 31223 ccfldsrarelvec 31262 bj-isvec 34982 lindsdom 35331 lindsenlbs 35332 lduallvec 36730 dvalveclem 38601 dvhlveclem 38684 lmhmlvec 39768 lmod1zrnlvec 45268 aacllem 45720 |
Copyright terms: Public domain | W3C validator |