MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  islvec Structured version   Visualization version   GIF version

Theorem islvec 21026
Description: The predicate "is a left vector space". (Contributed by NM, 11-Nov-2013.)
Hypothesis
Ref Expression
islvec.1 𝐹 = (Scalar‘𝑊)
Assertion
Ref Expression
islvec (𝑊 ∈ LVec ↔ (𝑊 ∈ LMod ∧ 𝐹 ∈ DivRing))

Proof of Theorem islvec
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 fveq2 6826 . . . 4 (𝑓 = 𝑊 → (Scalar‘𝑓) = (Scalar‘𝑊))
2 islvec.1 . . . 4 𝐹 = (Scalar‘𝑊)
31, 2eqtr4di 2782 . . 3 (𝑓 = 𝑊 → (Scalar‘𝑓) = 𝐹)
43eleq1d 2813 . 2 (𝑓 = 𝑊 → ((Scalar‘𝑓) ∈ DivRing ↔ 𝐹 ∈ DivRing))
5 df-lvec 21025 . 2 LVec = {𝑓 ∈ LMod ∣ (Scalar‘𝑓) ∈ DivRing}
64, 5elrab2 3653 1 (𝑊 ∈ LVec ↔ (𝑊 ∈ LMod ∧ 𝐹 ∈ DivRing))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1540  wcel 2109  cfv 6486  Scalarcsca 17182  DivRingcdr 20632  LModclmod 20781  LVecclvec 21024
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-rab 3397  df-v 3440  df-dif 3908  df-un 3910  df-ss 3922  df-nul 4287  df-if 4479  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-iota 6442  df-fv 6494  df-lvec 21025
This theorem is referenced by:  lvecdrng  21027  lveclmod  21028  lsslvec  21031  lmhmlvec  21032  lvecprop2d  21091  lvecpropd  21092  rlmlvec  21126  frlmlvec  21686  frlmphl  21706  mpllvec  21945  tvclvec  24102  isnvc2  24603  iscvs  25043  cnstrcvs  25057  zclmncvs  25064  quslvec  33307  ply1lvec  33504  sralvec  33557  matdim  33587  lmhmlvec2  33591  assalactf1o  33607  ccfldsrarelvec  33642  fldextrspunlem1  33646  fldextrspunfld  33647  bj-isvec  37260  lindsdom  37593  lindsenlbs  37594  lduallvec  39132  dvalveclem  41004  dvhlveclem  41087  lmod1zrnlvec  48467  aacllem  49774
  Copyright terms: Public domain W3C validator