![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > islvec | Structured version Visualization version GIF version |
Description: The predicate "is a left vector space". (Contributed by NM, 11-Nov-2013.) |
Ref | Expression |
---|---|
islvec.1 | ⊢ 𝐹 = (Scalar‘𝑊) |
Ref | Expression |
---|---|
islvec | ⊢ (𝑊 ∈ LVec ↔ (𝑊 ∈ LMod ∧ 𝐹 ∈ DivRing)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6920 | . . . 4 ⊢ (𝑓 = 𝑊 → (Scalar‘𝑓) = (Scalar‘𝑊)) | |
2 | islvec.1 | . . . 4 ⊢ 𝐹 = (Scalar‘𝑊) | |
3 | 1, 2 | eqtr4di 2798 | . . 3 ⊢ (𝑓 = 𝑊 → (Scalar‘𝑓) = 𝐹) |
4 | 3 | eleq1d 2829 | . 2 ⊢ (𝑓 = 𝑊 → ((Scalar‘𝑓) ∈ DivRing ↔ 𝐹 ∈ DivRing)) |
5 | df-lvec 21125 | . 2 ⊢ LVec = {𝑓 ∈ LMod ∣ (Scalar‘𝑓) ∈ DivRing} | |
6 | 4, 5 | elrab2 3711 | 1 ⊢ (𝑊 ∈ LVec ↔ (𝑊 ∈ LMod ∧ 𝐹 ∈ DivRing)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ‘cfv 6573 Scalarcsca 17314 DivRingcdr 20751 LModclmod 20880 LVecclvec 21124 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-iota 6525 df-fv 6581 df-lvec 21125 |
This theorem is referenced by: lvecdrng 21127 lveclmod 21128 lsslvec 21131 lmhmlvec 21132 lvecprop2d 21191 lvecpropd 21192 rlmlvec 21234 frlmlvec 21804 frlmphl 21824 mpllvec 22063 tvclvec 24228 isnvc2 24741 iscvs 25179 cnstrcvs 25193 zclmncvs 25201 quslvec 33353 ply1lvec 33550 sralvec 33600 matdim 33628 lmhmlvec2 33632 assalactf1o 33648 ccfldsrarelvec 33681 bj-isvec 37253 lindsdom 37574 lindsenlbs 37575 lduallvec 39110 dvalveclem 40982 dvhlveclem 41065 lmod1zrnlvec 48223 aacllem 48895 |
Copyright terms: Public domain | W3C validator |