MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  islvec Structured version   Visualization version   GIF version

Theorem islvec 21031
Description: The predicate "is a left vector space". (Contributed by NM, 11-Nov-2013.)
Hypothesis
Ref Expression
islvec.1 𝐹 = (Scalar‘𝑊)
Assertion
Ref Expression
islvec (𝑊 ∈ LVec ↔ (𝑊 ∈ LMod ∧ 𝐹 ∈ DivRing))

Proof of Theorem islvec
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 fveq2 6817 . . . 4 (𝑓 = 𝑊 → (Scalar‘𝑓) = (Scalar‘𝑊))
2 islvec.1 . . . 4 𝐹 = (Scalar‘𝑊)
31, 2eqtr4di 2783 . . 3 (𝑓 = 𝑊 → (Scalar‘𝑓) = 𝐹)
43eleq1d 2814 . 2 (𝑓 = 𝑊 → ((Scalar‘𝑓) ∈ DivRing ↔ 𝐹 ∈ DivRing))
5 df-lvec 21030 . 2 LVec = {𝑓 ∈ LMod ∣ (Scalar‘𝑓) ∈ DivRing}
64, 5elrab2 3648 1 (𝑊 ∈ LVec ↔ (𝑊 ∈ LMod ∧ 𝐹 ∈ DivRing))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1541  wcel 2110  cfv 6477  Scalarcsca 17156  DivRingcdr 20637  LModclmod 20786  LVecclvec 21029
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2067  df-clab 2709  df-cleq 2722  df-clel 2804  df-rab 3394  df-v 3436  df-dif 3903  df-un 3905  df-ss 3917  df-nul 4282  df-if 4474  df-sn 4575  df-pr 4577  df-op 4581  df-uni 4858  df-br 5090  df-iota 6433  df-fv 6485  df-lvec 21030
This theorem is referenced by:  lvecdrng  21032  lveclmod  21033  lsslvec  21036  lmhmlvec  21037  lvecprop2d  21096  lvecpropd  21097  rlmlvec  21131  frlmlvec  21691  frlmphl  21711  mpllvec  21950  tvclvec  24107  isnvc2  24607  iscvs  25047  cnstrcvs  25061  zclmncvs  25068  quslvec  33315  ply1lvec  33512  sralvec  33587  matdim  33618  lmhmlvec2  33622  assalactf1o  33638  ccfldsrarelvec  33674  fldextrspunlem1  33678  fldextrspunfld  33679  bj-isvec  37300  lindsdom  37633  lindsenlbs  37634  lduallvec  39172  dvalveclem  41043  dvhlveclem  41126  lmod1zrnlvec  48505  aacllem  49812
  Copyright terms: Public domain W3C validator