MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  islvec Structured version   Visualization version   GIF version

Theorem islvec 21126
Description: The predicate "is a left vector space". (Contributed by NM, 11-Nov-2013.)
Hypothesis
Ref Expression
islvec.1 𝐹 = (Scalar‘𝑊)
Assertion
Ref Expression
islvec (𝑊 ∈ LVec ↔ (𝑊 ∈ LMod ∧ 𝐹 ∈ DivRing))

Proof of Theorem islvec
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 fveq2 6920 . . . 4 (𝑓 = 𝑊 → (Scalar‘𝑓) = (Scalar‘𝑊))
2 islvec.1 . . . 4 𝐹 = (Scalar‘𝑊)
31, 2eqtr4di 2798 . . 3 (𝑓 = 𝑊 → (Scalar‘𝑓) = 𝐹)
43eleq1d 2829 . 2 (𝑓 = 𝑊 → ((Scalar‘𝑓) ∈ DivRing ↔ 𝐹 ∈ DivRing))
5 df-lvec 21125 . 2 LVec = {𝑓 ∈ LMod ∣ (Scalar‘𝑓) ∈ DivRing}
64, 5elrab2 3711 1 (𝑊 ∈ LVec ↔ (𝑊 ∈ LMod ∧ 𝐹 ∈ DivRing))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1537  wcel 2108  cfv 6573  Scalarcsca 17314  DivRingcdr 20751  LModclmod 20880  LVecclvec 21124
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-iota 6525  df-fv 6581  df-lvec 21125
This theorem is referenced by:  lvecdrng  21127  lveclmod  21128  lsslvec  21131  lmhmlvec  21132  lvecprop2d  21191  lvecpropd  21192  rlmlvec  21234  frlmlvec  21804  frlmphl  21824  mpllvec  22063  tvclvec  24228  isnvc2  24741  iscvs  25179  cnstrcvs  25193  zclmncvs  25201  quslvec  33353  ply1lvec  33550  sralvec  33600  matdim  33628  lmhmlvec2  33632  assalactf1o  33648  ccfldsrarelvec  33681  bj-isvec  37253  lindsdom  37574  lindsenlbs  37575  lduallvec  39110  dvalveclem  40982  dvhlveclem  41065  lmod1zrnlvec  48223  aacllem  48895
  Copyright terms: Public domain W3C validator