| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > islvec | Structured version Visualization version GIF version | ||
| Description: The predicate "is a left vector space". (Contributed by NM, 11-Nov-2013.) |
| Ref | Expression |
|---|---|
| islvec.1 | ⊢ 𝐹 = (Scalar‘𝑊) |
| Ref | Expression |
|---|---|
| islvec | ⊢ (𝑊 ∈ LVec ↔ (𝑊 ∈ LMod ∧ 𝐹 ∈ DivRing)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 6876 | . . . 4 ⊢ (𝑓 = 𝑊 → (Scalar‘𝑓) = (Scalar‘𝑊)) | |
| 2 | islvec.1 | . . . 4 ⊢ 𝐹 = (Scalar‘𝑊) | |
| 3 | 1, 2 | eqtr4di 2788 | . . 3 ⊢ (𝑓 = 𝑊 → (Scalar‘𝑓) = 𝐹) |
| 4 | 3 | eleq1d 2819 | . 2 ⊢ (𝑓 = 𝑊 → ((Scalar‘𝑓) ∈ DivRing ↔ 𝐹 ∈ DivRing)) |
| 5 | df-lvec 21061 | . 2 ⊢ LVec = {𝑓 ∈ LMod ∣ (Scalar‘𝑓) ∈ DivRing} | |
| 6 | 4, 5 | elrab2 3674 | 1 ⊢ (𝑊 ∈ LVec ↔ (𝑊 ∈ LMod ∧ 𝐹 ∈ DivRing)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ‘cfv 6531 Scalarcsca 17274 DivRingcdr 20689 LModclmod 20817 LVecclvec 21060 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-iota 6484 df-fv 6539 df-lvec 21061 |
| This theorem is referenced by: lvecdrng 21063 lveclmod 21064 lsslvec 21067 lmhmlvec 21068 lvecprop2d 21127 lvecpropd 21128 rlmlvec 21162 frlmlvec 21721 frlmphl 21741 mpllvec 21980 tvclvec 24137 isnvc2 24638 iscvs 25078 cnstrcvs 25092 zclmncvs 25100 quslvec 33375 ply1lvec 33572 sralvec 33625 matdim 33655 lmhmlvec2 33659 assalactf1o 33675 ccfldsrarelvec 33712 fldextrspunlem1 33716 fldextrspunfld 33717 bj-isvec 37305 lindsdom 37638 lindsenlbs 37639 lduallvec 39172 dvalveclem 41044 dvhlveclem 41127 lmod1zrnlvec 48470 aacllem 49665 |
| Copyright terms: Public domain | W3C validator |