| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > islvec | Structured version Visualization version GIF version | ||
| Description: The predicate "is a left vector space". (Contributed by NM, 11-Nov-2013.) |
| Ref | Expression |
|---|---|
| islvec.1 | ⊢ 𝐹 = (Scalar‘𝑊) |
| Ref | Expression |
|---|---|
| islvec | ⊢ (𝑊 ∈ LVec ↔ (𝑊 ∈ LMod ∧ 𝐹 ∈ DivRing)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 6861 | . . . 4 ⊢ (𝑓 = 𝑊 → (Scalar‘𝑓) = (Scalar‘𝑊)) | |
| 2 | islvec.1 | . . . 4 ⊢ 𝐹 = (Scalar‘𝑊) | |
| 3 | 1, 2 | eqtr4di 2783 | . . 3 ⊢ (𝑓 = 𝑊 → (Scalar‘𝑓) = 𝐹) |
| 4 | 3 | eleq1d 2814 | . 2 ⊢ (𝑓 = 𝑊 → ((Scalar‘𝑓) ∈ DivRing ↔ 𝐹 ∈ DivRing)) |
| 5 | df-lvec 21017 | . 2 ⊢ LVec = {𝑓 ∈ LMod ∣ (Scalar‘𝑓) ∈ DivRing} | |
| 6 | 4, 5 | elrab2 3665 | 1 ⊢ (𝑊 ∈ LVec ↔ (𝑊 ∈ LMod ∧ 𝐹 ∈ DivRing)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ‘cfv 6514 Scalarcsca 17230 DivRingcdr 20645 LModclmod 20773 LVecclvec 21016 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-iota 6467 df-fv 6522 df-lvec 21017 |
| This theorem is referenced by: lvecdrng 21019 lveclmod 21020 lsslvec 21023 lmhmlvec 21024 lvecprop2d 21083 lvecpropd 21084 rlmlvec 21118 frlmlvec 21677 frlmphl 21697 mpllvec 21936 tvclvec 24093 isnvc2 24594 iscvs 25034 cnstrcvs 25048 zclmncvs 25055 quslvec 33338 ply1lvec 33535 sralvec 33588 matdim 33618 lmhmlvec2 33622 assalactf1o 33638 ccfldsrarelvec 33673 fldextrspunlem1 33677 fldextrspunfld 33678 bj-isvec 37282 lindsdom 37615 lindsenlbs 37616 lduallvec 39154 dvalveclem 41026 dvhlveclem 41109 lmod1zrnlvec 48487 aacllem 49794 |
| Copyright terms: Public domain | W3C validator |