![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > islvec | Structured version Visualization version GIF version |
Description: The predicate "is a left vector space". (Contributed by NM, 11-Nov-2013.) |
Ref | Expression |
---|---|
islvec.1 | β’ πΉ = (Scalarβπ) |
Ref | Expression |
---|---|
islvec | β’ (π β LVec β (π β LMod β§ πΉ β DivRing)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6892 | . . . 4 β’ (π = π β (Scalarβπ) = (Scalarβπ)) | |
2 | islvec.1 | . . . 4 β’ πΉ = (Scalarβπ) | |
3 | 1, 2 | eqtr4di 2791 | . . 3 β’ (π = π β (Scalarβπ) = πΉ) |
4 | 3 | eleq1d 2819 | . 2 β’ (π = π β ((Scalarβπ) β DivRing β πΉ β DivRing)) |
5 | df-lvec 20714 | . 2 β’ LVec = {π β LMod β£ (Scalarβπ) β DivRing} | |
6 | 4, 5 | elrab2 3687 | 1 β’ (π β LVec β (π β LMod β§ πΉ β DivRing)) |
Colors of variables: wff setvar class |
Syntax hints: β wb 205 β§ wa 397 = wceq 1542 β wcel 2107 βcfv 6544 Scalarcsca 17200 DivRingcdr 20357 LModclmod 20471 LVecclvec 20713 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-rab 3434 df-v 3477 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-br 5150 df-iota 6496 df-fv 6552 df-lvec 20714 |
This theorem is referenced by: lvecdrng 20716 lveclmod 20717 lsslvec 20719 lmhmlvec 20720 lvecprop2d 20779 lvecpropd 20780 rlmlvec 20828 frlmlvec 21316 frlmphl 21336 mpllvec 21579 tvclvec 23703 isnvc2 24216 iscvs 24643 cnstrcvs 24657 zclmncvs 24665 quslvec 32471 ply1lvec 32638 sralvec 32675 matdim 32700 lmhmlvec2 32704 ccfldsrarelvec 32745 bj-isvec 36168 lindsdom 36482 lindsenlbs 36483 lduallvec 38024 dvalveclem 39896 dvhlveclem 39979 lmod1zrnlvec 47175 aacllem 47848 |
Copyright terms: Public domain | W3C validator |