Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lvolset Structured version   Visualization version   GIF version

Theorem lvolset 38438
Description: The set of 3-dim lattice volumes in a Hilbert lattice. (Contributed by NM, 1-Jul-2012.)
Hypotheses
Ref Expression
lvolset.b 𝐡 = (Baseβ€˜πΎ)
lvolset.c 𝐢 = ( β‹– β€˜πΎ)
lvolset.p 𝑃 = (LPlanesβ€˜πΎ)
lvolset.v 𝑉 = (LVolsβ€˜πΎ)
Assertion
Ref Expression
lvolset (𝐾 ∈ 𝐴 β†’ 𝑉 = {π‘₯ ∈ 𝐡 ∣ βˆƒπ‘¦ ∈ 𝑃 𝑦𝐢π‘₯})
Distinct variable groups:   𝑦,𝑃   π‘₯,𝐡   π‘₯,𝑦,𝐾
Allowed substitution hints:   𝐴(π‘₯,𝑦)   𝐡(𝑦)   𝐢(π‘₯,𝑦)   𝑃(π‘₯)   𝑉(π‘₯,𝑦)

Proof of Theorem lvolset
Dummy variable π‘˜ is distinct from all other variables.
StepHypRef Expression
1 elex 3492 . 2 (𝐾 ∈ 𝐴 β†’ 𝐾 ∈ V)
2 lvolset.v . . 3 𝑉 = (LVolsβ€˜πΎ)
3 fveq2 6891 . . . . . 6 (π‘˜ = 𝐾 β†’ (Baseβ€˜π‘˜) = (Baseβ€˜πΎ))
4 lvolset.b . . . . . 6 𝐡 = (Baseβ€˜πΎ)
53, 4eqtr4di 2790 . . . . 5 (π‘˜ = 𝐾 β†’ (Baseβ€˜π‘˜) = 𝐡)
6 fveq2 6891 . . . . . . 7 (π‘˜ = 𝐾 β†’ (LPlanesβ€˜π‘˜) = (LPlanesβ€˜πΎ))
7 lvolset.p . . . . . . 7 𝑃 = (LPlanesβ€˜πΎ)
86, 7eqtr4di 2790 . . . . . 6 (π‘˜ = 𝐾 β†’ (LPlanesβ€˜π‘˜) = 𝑃)
9 fveq2 6891 . . . . . . . 8 (π‘˜ = 𝐾 β†’ ( β‹– β€˜π‘˜) = ( β‹– β€˜πΎ))
10 lvolset.c . . . . . . . 8 𝐢 = ( β‹– β€˜πΎ)
119, 10eqtr4di 2790 . . . . . . 7 (π‘˜ = 𝐾 β†’ ( β‹– β€˜π‘˜) = 𝐢)
1211breqd 5159 . . . . . 6 (π‘˜ = 𝐾 β†’ (𝑦( β‹– β€˜π‘˜)π‘₯ ↔ 𝑦𝐢π‘₯))
138, 12rexeqbidv 3343 . . . . 5 (π‘˜ = 𝐾 β†’ (βˆƒπ‘¦ ∈ (LPlanesβ€˜π‘˜)𝑦( β‹– β€˜π‘˜)π‘₯ ↔ βˆƒπ‘¦ ∈ 𝑃 𝑦𝐢π‘₯))
145, 13rabeqbidv 3449 . . . 4 (π‘˜ = 𝐾 β†’ {π‘₯ ∈ (Baseβ€˜π‘˜) ∣ βˆƒπ‘¦ ∈ (LPlanesβ€˜π‘˜)𝑦( β‹– β€˜π‘˜)π‘₯} = {π‘₯ ∈ 𝐡 ∣ βˆƒπ‘¦ ∈ 𝑃 𝑦𝐢π‘₯})
15 df-lvols 38366 . . . 4 LVols = (π‘˜ ∈ V ↦ {π‘₯ ∈ (Baseβ€˜π‘˜) ∣ βˆƒπ‘¦ ∈ (LPlanesβ€˜π‘˜)𝑦( β‹– β€˜π‘˜)π‘₯})
164fvexi 6905 . . . . 5 𝐡 ∈ V
1716rabex 5332 . . . 4 {π‘₯ ∈ 𝐡 ∣ βˆƒπ‘¦ ∈ 𝑃 𝑦𝐢π‘₯} ∈ V
1814, 15, 17fvmpt 6998 . . 3 (𝐾 ∈ V β†’ (LVolsβ€˜πΎ) = {π‘₯ ∈ 𝐡 ∣ βˆƒπ‘¦ ∈ 𝑃 𝑦𝐢π‘₯})
192, 18eqtrid 2784 . 2 (𝐾 ∈ V β†’ 𝑉 = {π‘₯ ∈ 𝐡 ∣ βˆƒπ‘¦ ∈ 𝑃 𝑦𝐢π‘₯})
201, 19syl 17 1 (𝐾 ∈ 𝐴 β†’ 𝑉 = {π‘₯ ∈ 𝐡 ∣ βˆƒπ‘¦ ∈ 𝑃 𝑦𝐢π‘₯})
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   = wceq 1541   ∈ wcel 2106  βˆƒwrex 3070  {crab 3432  Vcvv 3474   class class class wbr 5148  β€˜cfv 6543  Basecbs 17143   β‹– ccvr 38127  LPlanesclpl 38358  LVolsclvol 38359
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-iota 6495  df-fun 6545  df-fv 6551  df-lvols 38366
This theorem is referenced by:  islvol  38439
  Copyright terms: Public domain W3C validator