| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > lvolset | Structured version Visualization version GIF version | ||
| Description: The set of 3-dim lattice volumes in a Hilbert lattice. (Contributed by NM, 1-Jul-2012.) |
| Ref | Expression |
|---|---|
| lvolset.b | ⊢ 𝐵 = (Base‘𝐾) |
| lvolset.c | ⊢ 𝐶 = ( ⋖ ‘𝐾) |
| lvolset.p | ⊢ 𝑃 = (LPlanes‘𝐾) |
| lvolset.v | ⊢ 𝑉 = (LVols‘𝐾) |
| Ref | Expression |
|---|---|
| lvolset | ⊢ (𝐾 ∈ 𝐴 → 𝑉 = {𝑥 ∈ 𝐵 ∣ ∃𝑦 ∈ 𝑃 𝑦𝐶𝑥}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 3457 | . 2 ⊢ (𝐾 ∈ 𝐴 → 𝐾 ∈ V) | |
| 2 | lvolset.v | . . 3 ⊢ 𝑉 = (LVols‘𝐾) | |
| 3 | fveq2 6822 | . . . . . 6 ⊢ (𝑘 = 𝐾 → (Base‘𝑘) = (Base‘𝐾)) | |
| 4 | lvolset.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐾) | |
| 5 | 3, 4 | eqtr4di 2784 | . . . . 5 ⊢ (𝑘 = 𝐾 → (Base‘𝑘) = 𝐵) |
| 6 | fveq2 6822 | . . . . . . 7 ⊢ (𝑘 = 𝐾 → (LPlanes‘𝑘) = (LPlanes‘𝐾)) | |
| 7 | lvolset.p | . . . . . . 7 ⊢ 𝑃 = (LPlanes‘𝐾) | |
| 8 | 6, 7 | eqtr4di 2784 | . . . . . 6 ⊢ (𝑘 = 𝐾 → (LPlanes‘𝑘) = 𝑃) |
| 9 | fveq2 6822 | . . . . . . . 8 ⊢ (𝑘 = 𝐾 → ( ⋖ ‘𝑘) = ( ⋖ ‘𝐾)) | |
| 10 | lvolset.c | . . . . . . . 8 ⊢ 𝐶 = ( ⋖ ‘𝐾) | |
| 11 | 9, 10 | eqtr4di 2784 | . . . . . . 7 ⊢ (𝑘 = 𝐾 → ( ⋖ ‘𝑘) = 𝐶) |
| 12 | 11 | breqd 5102 | . . . . . 6 ⊢ (𝑘 = 𝐾 → (𝑦( ⋖ ‘𝑘)𝑥 ↔ 𝑦𝐶𝑥)) |
| 13 | 8, 12 | rexeqbidv 3313 | . . . . 5 ⊢ (𝑘 = 𝐾 → (∃𝑦 ∈ (LPlanes‘𝑘)𝑦( ⋖ ‘𝑘)𝑥 ↔ ∃𝑦 ∈ 𝑃 𝑦𝐶𝑥)) |
| 14 | 5, 13 | rabeqbidv 3413 | . . . 4 ⊢ (𝑘 = 𝐾 → {𝑥 ∈ (Base‘𝑘) ∣ ∃𝑦 ∈ (LPlanes‘𝑘)𝑦( ⋖ ‘𝑘)𝑥} = {𝑥 ∈ 𝐵 ∣ ∃𝑦 ∈ 𝑃 𝑦𝐶𝑥}) |
| 15 | df-lvols 39538 | . . . 4 ⊢ LVols = (𝑘 ∈ V ↦ {𝑥 ∈ (Base‘𝑘) ∣ ∃𝑦 ∈ (LPlanes‘𝑘)𝑦( ⋖ ‘𝑘)𝑥}) | |
| 16 | 4 | fvexi 6836 | . . . . 5 ⊢ 𝐵 ∈ V |
| 17 | 16 | rabex 5277 | . . . 4 ⊢ {𝑥 ∈ 𝐵 ∣ ∃𝑦 ∈ 𝑃 𝑦𝐶𝑥} ∈ V |
| 18 | 14, 15, 17 | fvmpt 6929 | . . 3 ⊢ (𝐾 ∈ V → (LVols‘𝐾) = {𝑥 ∈ 𝐵 ∣ ∃𝑦 ∈ 𝑃 𝑦𝐶𝑥}) |
| 19 | 2, 18 | eqtrid 2778 | . 2 ⊢ (𝐾 ∈ V → 𝑉 = {𝑥 ∈ 𝐵 ∣ ∃𝑦 ∈ 𝑃 𝑦𝐶𝑥}) |
| 20 | 1, 19 | syl 17 | 1 ⊢ (𝐾 ∈ 𝐴 → 𝑉 = {𝑥 ∈ 𝐵 ∣ ∃𝑦 ∈ 𝑃 𝑦𝐶𝑥}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 ∃wrex 3056 {crab 3395 Vcvv 3436 class class class wbr 5091 ‘cfv 6481 Basecbs 17117 ⋖ ccvr 39300 LPlanesclpl 39530 LVolsclvol 39531 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-iota 6437 df-fun 6483 df-fv 6489 df-lvols 39538 |
| This theorem is referenced by: islvol 39611 |
| Copyright terms: Public domain | W3C validator |