Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > lvolset | Structured version Visualization version GIF version |
Description: The set of 3-dim lattice volumes in a Hilbert lattice. (Contributed by NM, 1-Jul-2012.) |
Ref | Expression |
---|---|
lvolset.b | ⊢ 𝐵 = (Base‘𝐾) |
lvolset.c | ⊢ 𝐶 = ( ⋖ ‘𝐾) |
lvolset.p | ⊢ 𝑃 = (LPlanes‘𝐾) |
lvolset.v | ⊢ 𝑉 = (LVols‘𝐾) |
Ref | Expression |
---|---|
lvolset | ⊢ (𝐾 ∈ 𝐴 → 𝑉 = {𝑥 ∈ 𝐵 ∣ ∃𝑦 ∈ 𝑃 𝑦𝐶𝑥}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 3428 | . 2 ⊢ (𝐾 ∈ 𝐴 → 𝐾 ∈ V) | |
2 | lvolset.v | . . 3 ⊢ 𝑉 = (LVols‘𝐾) | |
3 | fveq2 6658 | . . . . . 6 ⊢ (𝑘 = 𝐾 → (Base‘𝑘) = (Base‘𝐾)) | |
4 | lvolset.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐾) | |
5 | 3, 4 | eqtr4di 2811 | . . . . 5 ⊢ (𝑘 = 𝐾 → (Base‘𝑘) = 𝐵) |
6 | fveq2 6658 | . . . . . . 7 ⊢ (𝑘 = 𝐾 → (LPlanes‘𝑘) = (LPlanes‘𝐾)) | |
7 | lvolset.p | . . . . . . 7 ⊢ 𝑃 = (LPlanes‘𝐾) | |
8 | 6, 7 | eqtr4di 2811 | . . . . . 6 ⊢ (𝑘 = 𝐾 → (LPlanes‘𝑘) = 𝑃) |
9 | fveq2 6658 | . . . . . . . 8 ⊢ (𝑘 = 𝐾 → ( ⋖ ‘𝑘) = ( ⋖ ‘𝐾)) | |
10 | lvolset.c | . . . . . . . 8 ⊢ 𝐶 = ( ⋖ ‘𝐾) | |
11 | 9, 10 | eqtr4di 2811 | . . . . . . 7 ⊢ (𝑘 = 𝐾 → ( ⋖ ‘𝑘) = 𝐶) |
12 | 11 | breqd 5043 | . . . . . 6 ⊢ (𝑘 = 𝐾 → (𝑦( ⋖ ‘𝑘)𝑥 ↔ 𝑦𝐶𝑥)) |
13 | 8, 12 | rexeqbidv 3320 | . . . . 5 ⊢ (𝑘 = 𝐾 → (∃𝑦 ∈ (LPlanes‘𝑘)𝑦( ⋖ ‘𝑘)𝑥 ↔ ∃𝑦 ∈ 𝑃 𝑦𝐶𝑥)) |
14 | 5, 13 | rabeqbidv 3398 | . . . 4 ⊢ (𝑘 = 𝐾 → {𝑥 ∈ (Base‘𝑘) ∣ ∃𝑦 ∈ (LPlanes‘𝑘)𝑦( ⋖ ‘𝑘)𝑥} = {𝑥 ∈ 𝐵 ∣ ∃𝑦 ∈ 𝑃 𝑦𝐶𝑥}) |
15 | df-lvols 37098 | . . . 4 ⊢ LVols = (𝑘 ∈ V ↦ {𝑥 ∈ (Base‘𝑘) ∣ ∃𝑦 ∈ (LPlanes‘𝑘)𝑦( ⋖ ‘𝑘)𝑥}) | |
16 | 4 | fvexi 6672 | . . . . 5 ⊢ 𝐵 ∈ V |
17 | 16 | rabex 5202 | . . . 4 ⊢ {𝑥 ∈ 𝐵 ∣ ∃𝑦 ∈ 𝑃 𝑦𝐶𝑥} ∈ V |
18 | 14, 15, 17 | fvmpt 6759 | . . 3 ⊢ (𝐾 ∈ V → (LVols‘𝐾) = {𝑥 ∈ 𝐵 ∣ ∃𝑦 ∈ 𝑃 𝑦𝐶𝑥}) |
19 | 2, 18 | syl5eq 2805 | . 2 ⊢ (𝐾 ∈ V → 𝑉 = {𝑥 ∈ 𝐵 ∣ ∃𝑦 ∈ 𝑃 𝑦𝐶𝑥}) |
20 | 1, 19 | syl 17 | 1 ⊢ (𝐾 ∈ 𝐴 → 𝑉 = {𝑥 ∈ 𝐵 ∣ ∃𝑦 ∈ 𝑃 𝑦𝐶𝑥}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1538 ∈ wcel 2111 ∃wrex 3071 {crab 3074 Vcvv 3409 class class class wbr 5032 ‘cfv 6335 Basecbs 16541 ⋖ ccvr 36860 LPlanesclpl 37090 LVolsclvol 37091 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-sep 5169 ax-nul 5176 ax-pr 5298 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ral 3075 df-rex 3076 df-rab 3079 df-v 3411 df-sbc 3697 df-dif 3861 df-un 3863 df-in 3865 df-ss 3875 df-nul 4226 df-if 4421 df-sn 4523 df-pr 4525 df-op 4529 df-uni 4799 df-br 5033 df-opab 5095 df-mpt 5113 df-id 5430 df-xp 5530 df-rel 5531 df-cnv 5532 df-co 5533 df-dm 5534 df-iota 6294 df-fun 6337 df-fv 6343 df-lvols 37098 |
This theorem is referenced by: islvol 37171 |
Copyright terms: Public domain | W3C validator |