Detailed syntax breakdown of Definition df-mea
Step | Hyp | Ref
| Expression |
1 | | cmea 43987 |
. 2
class
Meas |
2 | | vx |
. . . . . . . . 9
setvar 𝑥 |
3 | 2 | cv 1538 |
. . . . . . . 8
class 𝑥 |
4 | 3 | cdm 5589 |
. . . . . . 7
class dom 𝑥 |
5 | | cc0 10871 |
. . . . . . . 8
class
0 |
6 | | cpnf 11006 |
. . . . . . . 8
class
+∞ |
7 | | cicc 13082 |
. . . . . . . 8
class
[,] |
8 | 5, 6, 7 | co 7275 |
. . . . . . 7
class
(0[,]+∞) |
9 | 4, 8, 3 | wf 6429 |
. . . . . 6
wff 𝑥:dom 𝑥⟶(0[,]+∞) |
10 | | csalg 43849 |
. . . . . . 7
class
SAlg |
11 | 4, 10 | wcel 2106 |
. . . . . 6
wff dom 𝑥 ∈ SAlg |
12 | 9, 11 | wa 396 |
. . . . 5
wff (𝑥:dom 𝑥⟶(0[,]+∞) ∧ dom 𝑥 ∈ SAlg) |
13 | | c0 4256 |
. . . . . . 7
class
∅ |
14 | 13, 3 | cfv 6433 |
. . . . . 6
class (𝑥‘∅) |
15 | 14, 5 | wceq 1539 |
. . . . 5
wff (𝑥‘∅) =
0 |
16 | 12, 15 | wa 396 |
. . . 4
wff ((𝑥:dom 𝑥⟶(0[,]+∞) ∧ dom 𝑥 ∈ SAlg) ∧ (𝑥‘∅) =
0) |
17 | | vy |
. . . . . . . . 9
setvar 𝑦 |
18 | 17 | cv 1538 |
. . . . . . . 8
class 𝑦 |
19 | | com 7712 |
. . . . . . . 8
class
ω |
20 | | cdom 8731 |
. . . . . . . 8
class
≼ |
21 | 18, 19, 20 | wbr 5074 |
. . . . . . 7
wff 𝑦 ≼
ω |
22 | | vw |
. . . . . . . 8
setvar 𝑤 |
23 | 22 | cv 1538 |
. . . . . . . 8
class 𝑤 |
24 | 22, 18, 23 | wdisj 5039 |
. . . . . . 7
wff Disj
𝑤 ∈ 𝑦 𝑤 |
25 | 21, 24 | wa 396 |
. . . . . 6
wff (𝑦 ≼ ω ∧
Disj 𝑤 ∈ 𝑦 𝑤) |
26 | 18 | cuni 4839 |
. . . . . . . 8
class ∪ 𝑦 |
27 | 26, 3 | cfv 6433 |
. . . . . . 7
class (𝑥‘∪ 𝑦) |
28 | 3, 18 | cres 5591 |
. . . . . . . 8
class (𝑥 ↾ 𝑦) |
29 | | csumge0 43900 |
. . . . . . . 8
class
Σ^ |
30 | 28, 29 | cfv 6433 |
. . . . . . 7
class
(Σ^‘(𝑥 ↾ 𝑦)) |
31 | 27, 30 | wceq 1539 |
. . . . . 6
wff (𝑥‘∪ 𝑦) =
(Σ^‘(𝑥 ↾ 𝑦)) |
32 | 25, 31 | wi 4 |
. . . . 5
wff ((𝑦 ≼ ω ∧
Disj 𝑤 ∈ 𝑦 𝑤) → (𝑥‘∪ 𝑦) =
(Σ^‘(𝑥 ↾ 𝑦))) |
33 | 4 | cpw 4533 |
. . . . 5
class 𝒫
dom 𝑥 |
34 | 32, 17, 33 | wral 3064 |
. . . 4
wff
∀𝑦 ∈
𝒫 dom 𝑥((𝑦 ≼ ω ∧
Disj 𝑤 ∈ 𝑦 𝑤) → (𝑥‘∪ 𝑦) =
(Σ^‘(𝑥 ↾ 𝑦))) |
35 | 16, 34 | wa 396 |
. . 3
wff (((𝑥:dom 𝑥⟶(0[,]+∞) ∧ dom 𝑥 ∈ SAlg) ∧ (𝑥‘∅) = 0) ∧
∀𝑦 ∈ 𝒫
dom 𝑥((𝑦 ≼ ω ∧ Disj 𝑤 ∈ 𝑦 𝑤) → (𝑥‘∪ 𝑦) =
(Σ^‘(𝑥 ↾ 𝑦)))) |
36 | 35, 2 | cab 2715 |
. 2
class {𝑥 ∣ (((𝑥:dom 𝑥⟶(0[,]+∞) ∧ dom 𝑥 ∈ SAlg) ∧ (𝑥‘∅) = 0) ∧
∀𝑦 ∈ 𝒫
dom 𝑥((𝑦 ≼ ω ∧ Disj 𝑤 ∈ 𝑦 𝑤) → (𝑥‘∪ 𝑦) =
(Σ^‘(𝑥 ↾ 𝑦))))} |
37 | 1, 36 | wceq 1539 |
1
wff Meas =
{𝑥 ∣ (((𝑥:dom 𝑥⟶(0[,]+∞) ∧ dom 𝑥 ∈ SAlg) ∧ (𝑥‘∅) = 0) ∧
∀𝑦 ∈ 𝒫
dom 𝑥((𝑦 ≼ ω ∧ Disj 𝑤 ∈ 𝑦 𝑤) → (𝑥‘∪ 𝑦) =
(Σ^‘(𝑥 ↾ 𝑦))))} |