![]() |
Metamath
Proof Explorer Theorem List (p. 459 of 474) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-29923) |
![]() (29924-31446) |
![]() (31447-47372) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | sprvalpwle2 45801* | The set of all unordered pairs over a given set 𝑉, expressed by a restricted class abstraction. (Contributed by AV, 24-Nov-2021.) |
⊢ (𝑉 ∈ 𝑊 → (Pairs‘𝑉) = {𝑝 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑝) ≤ 2}) | ||
Theorem | sprsymrelfvlem 45802* | Lemma for sprsymrelf 45807 and sprsymrelfv 45806. (Contributed by AV, 19-Nov-2021.) |
⊢ (𝑃 ⊆ (Pairs‘𝑉) → {〈𝑥, 𝑦〉 ∣ ∃𝑐 ∈ 𝑃 𝑐 = {𝑥, 𝑦}} ∈ 𝒫 (𝑉 × 𝑉)) | ||
Theorem | sprsymrelf1lem 45803* | Lemma for sprsymrelf1 45808. (Contributed by AV, 22-Nov-2021.) |
⊢ ((𝑎 ⊆ (Pairs‘𝑉) ∧ 𝑏 ⊆ (Pairs‘𝑉)) → ({〈𝑥, 𝑦〉 ∣ ∃𝑐 ∈ 𝑎 𝑐 = {𝑥, 𝑦}} = {〈𝑥, 𝑦〉 ∣ ∃𝑐 ∈ 𝑏 𝑐 = {𝑥, 𝑦}} → 𝑎 ⊆ 𝑏)) | ||
Theorem | sprsymrelfolem1 45804* | Lemma 1 for sprsymrelfo 45809. (Contributed by AV, 22-Nov-2021.) |
⊢ 𝑄 = {𝑞 ∈ (Pairs‘𝑉) ∣ ∀𝑎 ∈ 𝑉 ∀𝑏 ∈ 𝑉 (𝑞 = {𝑎, 𝑏} → 𝑎𝑅𝑏)} ⇒ ⊢ 𝑄 ∈ 𝒫 (Pairs‘𝑉) | ||
Theorem | sprsymrelfolem2 45805* | Lemma 2 for sprsymrelfo 45809. (Contributed by AV, 23-Nov-2021.) |
⊢ 𝑄 = {𝑞 ∈ (Pairs‘𝑉) ∣ ∀𝑎 ∈ 𝑉 ∀𝑏 ∈ 𝑉 (𝑞 = {𝑎, 𝑏} → 𝑎𝑅𝑏)} ⇒ ⊢ ((𝑉 ∈ 𝑊 ∧ 𝑅 ⊆ (𝑉 × 𝑉) ∧ ∀𝑥 ∈ 𝑉 ∀𝑦 ∈ 𝑉 (𝑥𝑅𝑦 ↔ 𝑦𝑅𝑥)) → (𝑥𝑅𝑦 ↔ ∃𝑐 ∈ 𝑄 𝑐 = {𝑥, 𝑦})) | ||
Theorem | sprsymrelfv 45806* | The value of the function 𝐹 which maps a subset of the set of pairs over a fixed set 𝑉 to the relation relating two elements of the set 𝑉 iff they are in a pair of the subset. (Contributed by AV, 19-Nov-2021.) |
⊢ 𝑃 = 𝒫 (Pairs‘𝑉) & ⊢ 𝑅 = {𝑟 ∈ 𝒫 (𝑉 × 𝑉) ∣ ∀𝑥 ∈ 𝑉 ∀𝑦 ∈ 𝑉 (𝑥𝑟𝑦 ↔ 𝑦𝑟𝑥)} & ⊢ 𝐹 = (𝑝 ∈ 𝑃 ↦ {〈𝑥, 𝑦〉 ∣ ∃𝑐 ∈ 𝑝 𝑐 = {𝑥, 𝑦}}) ⇒ ⊢ (𝑋 ∈ 𝑃 → (𝐹‘𝑋) = {〈𝑥, 𝑦〉 ∣ ∃𝑐 ∈ 𝑋 𝑐 = {𝑥, 𝑦}}) | ||
Theorem | sprsymrelf 45807* | The mapping 𝐹 is a function from the subsets of the set of pairs over a fixed set 𝑉 into the symmetric relations 𝑅 on the fixed set 𝑉. (Contributed by AV, 19-Nov-2021.) |
⊢ 𝑃 = 𝒫 (Pairs‘𝑉) & ⊢ 𝑅 = {𝑟 ∈ 𝒫 (𝑉 × 𝑉) ∣ ∀𝑥 ∈ 𝑉 ∀𝑦 ∈ 𝑉 (𝑥𝑟𝑦 ↔ 𝑦𝑟𝑥)} & ⊢ 𝐹 = (𝑝 ∈ 𝑃 ↦ {〈𝑥, 𝑦〉 ∣ ∃𝑐 ∈ 𝑝 𝑐 = {𝑥, 𝑦}}) ⇒ ⊢ 𝐹:𝑃⟶𝑅 | ||
Theorem | sprsymrelf1 45808* | The mapping 𝐹 is a one-to-one function from the subsets of the set of pairs over a fixed set 𝑉 into the symmetric relations 𝑅 on the fixed set 𝑉. (Contributed by AV, 19-Nov-2021.) |
⊢ 𝑃 = 𝒫 (Pairs‘𝑉) & ⊢ 𝑅 = {𝑟 ∈ 𝒫 (𝑉 × 𝑉) ∣ ∀𝑥 ∈ 𝑉 ∀𝑦 ∈ 𝑉 (𝑥𝑟𝑦 ↔ 𝑦𝑟𝑥)} & ⊢ 𝐹 = (𝑝 ∈ 𝑃 ↦ {〈𝑥, 𝑦〉 ∣ ∃𝑐 ∈ 𝑝 𝑐 = {𝑥, 𝑦}}) ⇒ ⊢ 𝐹:𝑃–1-1→𝑅 | ||
Theorem | sprsymrelfo 45809* | The mapping 𝐹 is a function from the subsets of the set of pairs over a fixed set 𝑉 onto the symmetric relations 𝑅 on the fixed set 𝑉. (Contributed by AV, 23-Nov-2021.) |
⊢ 𝑃 = 𝒫 (Pairs‘𝑉) & ⊢ 𝑅 = {𝑟 ∈ 𝒫 (𝑉 × 𝑉) ∣ ∀𝑥 ∈ 𝑉 ∀𝑦 ∈ 𝑉 (𝑥𝑟𝑦 ↔ 𝑦𝑟𝑥)} & ⊢ 𝐹 = (𝑝 ∈ 𝑃 ↦ {〈𝑥, 𝑦〉 ∣ ∃𝑐 ∈ 𝑝 𝑐 = {𝑥, 𝑦}}) ⇒ ⊢ (𝑉 ∈ 𝑊 → 𝐹:𝑃–onto→𝑅) | ||
Theorem | sprsymrelf1o 45810* | The mapping 𝐹 is a bijection between the subsets of the set of pairs over a fixed set 𝑉 into the symmetric relations 𝑅 on the fixed set 𝑉. (Contributed by AV, 23-Nov-2021.) |
⊢ 𝑃 = 𝒫 (Pairs‘𝑉) & ⊢ 𝑅 = {𝑟 ∈ 𝒫 (𝑉 × 𝑉) ∣ ∀𝑥 ∈ 𝑉 ∀𝑦 ∈ 𝑉 (𝑥𝑟𝑦 ↔ 𝑦𝑟𝑥)} & ⊢ 𝐹 = (𝑝 ∈ 𝑃 ↦ {〈𝑥, 𝑦〉 ∣ ∃𝑐 ∈ 𝑝 𝑐 = {𝑥, 𝑦}}) ⇒ ⊢ (𝑉 ∈ 𝑊 → 𝐹:𝑃–1-1-onto→𝑅) | ||
Theorem | sprbisymrel 45811* | There is a bijection between the subsets of the set of pairs over a fixed set 𝑉 and the symmetric relations 𝑅 on the fixed set 𝑉. (Contributed by AV, 23-Nov-2021.) |
⊢ 𝑃 = 𝒫 (Pairs‘𝑉) & ⊢ 𝑅 = {𝑟 ∈ 𝒫 (𝑉 × 𝑉) ∣ ∀𝑥 ∈ 𝑉 ∀𝑦 ∈ 𝑉 (𝑥𝑟𝑦 ↔ 𝑦𝑟𝑥)} ⇒ ⊢ (𝑉 ∈ 𝑊 → ∃𝑓 𝑓:𝑃–1-1-onto→𝑅) | ||
Theorem | sprsymrelen 45812* | The class 𝑃 of subsets of the set of pairs over a fixed set 𝑉 and the class 𝑅 of symmetric relations on the fixed set 𝑉 are equinumerous. (Contributed by AV, 27-Nov-2021.) |
⊢ 𝑃 = 𝒫 (Pairs‘𝑉) & ⊢ 𝑅 = {𝑟 ∈ 𝒫 (𝑉 × 𝑉) ∣ ∀𝑥 ∈ 𝑉 ∀𝑦 ∈ 𝑉 (𝑥𝑟𝑦 ↔ 𝑦𝑟𝑥)} ⇒ ⊢ (𝑉 ∈ 𝑊 → 𝑃 ≈ 𝑅) | ||
Proper (unordered) pairs are unordered pairs with exactly 2 elements. The set of proper pairs with elements of a class 𝑉 is defined by {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2}. For example, {1, 2} is a proper pair, because 1 ≠ 2 ( see 1ne2 12370). Examples for not proper unordered pairs are {1, 1} = {1} (see preqsn 4824), {1, V} = {1} (see prprc2 4732) or {V, V} = ∅ (see prprc 4733). | ||
Theorem | prpair 45813* | Characterization of a proper pair: A class is a proper pair iff it consists of exactly two different sets. (Contributed by AV, 11-Mar-2023.) |
⊢ 𝑃 = {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2} ⇒ ⊢ (𝑋 ∈ 𝑃 ↔ ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 (𝑋 = {𝑎, 𝑏} ∧ 𝑎 ≠ 𝑏)) | ||
Theorem | prproropf1olem0 45814 | Lemma 0 for prproropf1o 45819. Remark: 𝑂, the set of ordered ordered pairs, i.e., ordered pairs in which the first component is less than the second component, can alternatively be written as 𝑂 = {𝑥 ∈ (𝑉 × 𝑉) ∣ (1st ‘𝑥)𝑅(2nd ‘𝑥)} or even as 𝑂 = {𝑥 ∈ (𝑉 × 𝑉) ∣ 〈(1st ‘𝑥), (2nd ‘𝑥)〉 ∈ 𝑅}, by which the relationship between ordered and unordered pair is immediately visible. (Contributed by AV, 18-Mar-2023.) |
⊢ 𝑂 = (𝑅 ∩ (𝑉 × 𝑉)) ⇒ ⊢ (𝑊 ∈ 𝑂 ↔ (𝑊 = 〈(1st ‘𝑊), (2nd ‘𝑊)〉 ∧ ((1st ‘𝑊) ∈ 𝑉 ∧ (2nd ‘𝑊) ∈ 𝑉) ∧ (1st ‘𝑊)𝑅(2nd ‘𝑊))) | ||
Theorem | prproropf1olem1 45815* | Lemma 1 for prproropf1o 45819. (Contributed by AV, 12-Mar-2023.) |
⊢ 𝑂 = (𝑅 ∩ (𝑉 × 𝑉)) & ⊢ 𝑃 = {𝑝 ∈ 𝒫 𝑉 ∣ (♯‘𝑝) = 2} ⇒ ⊢ ((𝑅 Or 𝑉 ∧ 𝑊 ∈ 𝑂) → {(1st ‘𝑊), (2nd ‘𝑊)} ∈ 𝑃) | ||
Theorem | prproropf1olem2 45816* | Lemma 2 for prproropf1o 45819. (Contributed by AV, 13-Mar-2023.) |
⊢ 𝑂 = (𝑅 ∩ (𝑉 × 𝑉)) & ⊢ 𝑃 = {𝑝 ∈ 𝒫 𝑉 ∣ (♯‘𝑝) = 2} ⇒ ⊢ ((𝑅 Or 𝑉 ∧ 𝑋 ∈ 𝑃) → 〈inf(𝑋, 𝑉, 𝑅), sup(𝑋, 𝑉, 𝑅)〉 ∈ 𝑂) | ||
Theorem | prproropf1olem3 45817* | Lemma 3 for prproropf1o 45819. (Contributed by AV, 13-Mar-2023.) |
⊢ 𝑂 = (𝑅 ∩ (𝑉 × 𝑉)) & ⊢ 𝑃 = {𝑝 ∈ 𝒫 𝑉 ∣ (♯‘𝑝) = 2} & ⊢ 𝐹 = (𝑝 ∈ 𝑃 ↦ 〈inf(𝑝, 𝑉, 𝑅), sup(𝑝, 𝑉, 𝑅)〉) ⇒ ⊢ ((𝑅 Or 𝑉 ∧ 𝑊 ∈ 𝑂) → (𝐹‘{(1st ‘𝑊), (2nd ‘𝑊)}) = 〈(1st ‘𝑊), (2nd ‘𝑊)〉) | ||
Theorem | prproropf1olem4 45818* | Lemma 4 for prproropf1o 45819. (Contributed by AV, 14-Mar-2023.) |
⊢ 𝑂 = (𝑅 ∩ (𝑉 × 𝑉)) & ⊢ 𝑃 = {𝑝 ∈ 𝒫 𝑉 ∣ (♯‘𝑝) = 2} & ⊢ 𝐹 = (𝑝 ∈ 𝑃 ↦ 〈inf(𝑝, 𝑉, 𝑅), sup(𝑝, 𝑉, 𝑅)〉) ⇒ ⊢ ((𝑅 Or 𝑉 ∧ 𝑊 ∈ 𝑃 ∧ 𝑍 ∈ 𝑃) → ((𝐹‘𝑍) = (𝐹‘𝑊) → 𝑍 = 𝑊)) | ||
Theorem | prproropf1o 45819* | There is a bijection between the set of proper pairs and the set of ordered ordered pairs, i.e., ordered pairs in which the first component is less than the second component. (Contributed by AV, 15-Mar-2023.) |
⊢ 𝑂 = (𝑅 ∩ (𝑉 × 𝑉)) & ⊢ 𝑃 = {𝑝 ∈ 𝒫 𝑉 ∣ (♯‘𝑝) = 2} & ⊢ 𝐹 = (𝑝 ∈ 𝑃 ↦ 〈inf(𝑝, 𝑉, 𝑅), sup(𝑝, 𝑉, 𝑅)〉) ⇒ ⊢ (𝑅 Or 𝑉 → 𝐹:𝑃–1-1-onto→𝑂) | ||
Theorem | prproropen 45820* | The set of proper pairs and the set of ordered ordered pairs, i.e., ordered pairs in which the first component is less than the second component, are equinumerous. (Contributed by AV, 15-Mar-2023.) |
⊢ 𝑂 = (𝑅 ∩ (𝑉 × 𝑉)) & ⊢ 𝑃 = {𝑝 ∈ 𝒫 𝑉 ∣ (♯‘𝑝) = 2} ⇒ ⊢ ((𝑉 ∈ 𝑊 ∧ 𝑅 Or 𝑉) → 𝑂 ≈ 𝑃) | ||
Theorem | prproropreud 45821* | There is exactly one ordered ordered pair fulfilling a wff iff there is exactly one proper pair fulfilling an equivalent wff. (Contributed by AV, 20-Mar-2023.) |
⊢ 𝑂 = (𝑅 ∩ (𝑉 × 𝑉)) & ⊢ 𝑃 = {𝑝 ∈ 𝒫 𝑉 ∣ (♯‘𝑝) = 2} & ⊢ (𝜑 → 𝑅 Or 𝑉) & ⊢ (𝑥 = 〈inf(𝑦, 𝑉, 𝑅), sup(𝑦, 𝑉, 𝑅)〉 → (𝜓 ↔ 𝜒)) & ⊢ (𝑥 = 𝑧 → (𝜓 ↔ 𝜃)) ⇒ ⊢ (𝜑 → (∃!𝑥 ∈ 𝑂 𝜓 ↔ ∃!𝑦 ∈ 𝑃 𝜒)) | ||
Theorem | pairreueq 45822* | Two equivalent representations of the existence of a unique proper pair. (Contributed by AV, 1-Mar-2023.) |
⊢ 𝑃 = {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2} ⇒ ⊢ (∃!𝑝 ∈ 𝑃 𝜑 ↔ ∃!𝑝 ∈ 𝒫 𝑉((♯‘𝑝) = 2 ∧ 𝜑)) | ||
Theorem | paireqne 45823* | Two sets are not equal iff there is exactly one proper pair whose elements are either one of these sets. (Contributed by AV, 27-Jan-2023.) |
⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ 𝑉) & ⊢ 𝑃 = {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2} ⇒ ⊢ (𝜑 → (∃!𝑝 ∈ 𝑃 ∀𝑥 ∈ 𝑝 (𝑥 = 𝐴 ∨ 𝑥 = 𝐵) ↔ 𝐴 ≠ 𝐵)) | ||
Syntax | cprpr 45824 | Extend class notation with set of proper unordered pairs. |
class Pairsproper | ||
Definition | df-prpr 45825* | Define the function which maps a set 𝑣 to the set of proper unordered pairs consisting of exactly two (different) elements of the set 𝑣. (Contributed by AV, 29-Apr-2023.) |
⊢ Pairsproper = (𝑣 ∈ V ↦ {𝑝 ∣ ∃𝑎 ∈ 𝑣 ∃𝑏 ∈ 𝑣 (𝑎 ≠ 𝑏 ∧ 𝑝 = {𝑎, 𝑏})}) | ||
Theorem | prprval 45826* | The set of all proper unordered pairs over a given set 𝑉. (Contributed by AV, 29-Apr-2023.) |
⊢ (𝑉 ∈ 𝑊 → (Pairsproper‘𝑉) = {𝑝 ∣ ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 (𝑎 ≠ 𝑏 ∧ 𝑝 = {𝑎, 𝑏})}) | ||
Theorem | prprvalpw 45827* | The set of all proper unordered pairs over a given set 𝑉, expressed by a restricted class abstraction. (Contributed by AV, 29-Apr-2023.) |
⊢ (𝑉 ∈ 𝑊 → (Pairsproper‘𝑉) = {𝑝 ∈ 𝒫 𝑉 ∣ ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 (𝑎 ≠ 𝑏 ∧ 𝑝 = {𝑎, 𝑏})}) | ||
Theorem | prprelb 45828 | An element of the set of all proper unordered pairs over a given set 𝑉 is a subset of 𝑉 of size two. (Contributed by AV, 29-Apr-2023.) |
⊢ (𝑉 ∈ 𝑊 → (𝑃 ∈ (Pairsproper‘𝑉) ↔ (𝑃 ∈ 𝒫 𝑉 ∧ (♯‘𝑃) = 2))) | ||
Theorem | prprelprb 45829* | A set is an element of the set of all proper unordered pairs over a given set 𝑋 iff it is a pair of different elements of the set 𝑋. (Contributed by AV, 7-May-2023.) |
⊢ (𝑃 ∈ (Pairsproper‘𝑋) ↔ (𝑋 ∈ V ∧ ∃𝑎 ∈ 𝑋 ∃𝑏 ∈ 𝑋 (𝑃 = {𝑎, 𝑏} ∧ 𝑎 ≠ 𝑏))) | ||
Theorem | prprspr2 45830* | The set of all proper unordered pairs over a given set 𝑉 is the set of all unordered pairs over that set of size two. (Contributed by AV, 29-Apr-2023.) |
⊢ (Pairsproper‘𝑉) = {𝑝 ∈ (Pairs‘𝑉) ∣ (♯‘𝑝) = 2} | ||
Theorem | prprsprreu 45831* | There is a unique proper unordered pair over a given set 𝑉 fulfilling a wff iff there is a unique unordered pair over 𝑉 of size two fulfilling this wff. (Contributed by AV, 30-Apr-2023.) |
⊢ (𝑉 ∈ 𝑊 → (∃!𝑝 ∈ (Pairsproper‘𝑉)𝜑 ↔ ∃!𝑝 ∈ (Pairs‘𝑉)((♯‘𝑝) = 2 ∧ 𝜑))) | ||
Theorem | prprreueq 45832* | There is a unique proper unordered pair over a given set 𝑉 fulfilling a wff iff there is a unique subset of 𝑉 of size two fulfilling this wff. (Contributed by AV, 29-Apr-2023.) |
⊢ (𝑉 ∈ 𝑊 → (∃!𝑝 ∈ (Pairsproper‘𝑉)𝜑 ↔ ∃!𝑝 ∈ 𝒫 𝑉((♯‘𝑝) = 2 ∧ 𝜑))) | ||
Theorem | sbcpr 45833* | The proper substitution of an unordered pair for a setvar variable corresponds to a proper substitution of each of its elements. (Contributed by AV, 7-Apr-2023.) |
⊢ (𝑝 = {𝑥, 𝑦} → (𝜑 ↔ 𝜓)) ⇒ ⊢ ([{𝑎, 𝑏} / 𝑝]𝜑 ↔ [𝑏 / 𝑦][𝑎 / 𝑥]𝜓) | ||
Theorem | reupr 45834* | There is a unique unordered pair fulfilling a wff iff there are uniquely two sets fulfilling a corresponding wff. (Contributed by AV, 7-Apr-2023.) |
⊢ (𝑝 = {𝑎, 𝑏} → (𝜓 ↔ 𝜒)) & ⊢ (𝑝 = {𝑥, 𝑦} → (𝜓 ↔ 𝜃)) ⇒ ⊢ (𝑋 ∈ 𝑉 → (∃!𝑝 ∈ (Pairs‘𝑋)𝜓 ↔ ∃𝑎 ∈ 𝑋 ∃𝑏 ∈ 𝑋 (𝜒 ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝜃 → {𝑥, 𝑦} = {𝑎, 𝑏})))) | ||
Theorem | reuprpr 45835* | There is a unique proper unordered pair fulfilling a wff iff there are uniquely two different sets fulfilling a corresponding wff. (Contributed by AV, 30-Apr-2023.) |
⊢ (𝑝 = {𝑎, 𝑏} → (𝜓 ↔ 𝜒)) & ⊢ (𝑝 = {𝑥, 𝑦} → (𝜓 ↔ 𝜃)) ⇒ ⊢ (𝑋 ∈ 𝑉 → (∃!𝑝 ∈ (Pairsproper‘𝑋)𝜓 ↔ ∃𝑎 ∈ 𝑋 ∃𝑏 ∈ 𝑋 (𝑎 ≠ 𝑏 ∧ 𝜒 ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 ((𝑥 ≠ 𝑦 ∧ 𝜃) → {𝑥, 𝑦} = {𝑎, 𝑏})))) | ||
Theorem | poprelb 45836 | Equality for unordered pairs with partially ordered elements. (Contributed by AV, 9-Jul-2023.) |
⊢ (((Rel 𝑅 ∧ 𝑅 Po 𝑋) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝐴𝑅𝐵 ∧ 𝐶𝑅𝐷)) → ({𝐴, 𝐵} = {𝐶, 𝐷} ↔ (𝐴 = 𝐶 ∧ 𝐵 = 𝐷))) | ||
Theorem | 2exopprim 45837 | The existence of an ordered pair fulfilling a wff implies the existence of an unordered pair fulfilling the wff. (Contributed by AV, 29-Jul-2023.) |
⊢ (∃𝑎∃𝑏(〈𝐴, 𝐵〉 = 〈𝑎, 𝑏〉 ∧ 𝜑) → ∃𝑎∃𝑏({𝐴, 𝐵} = {𝑎, 𝑏} ∧ 𝜑)) | ||
Theorem | reuopreuprim 45838* | There is a unique unordered pair with ordered elements fulfilling a wff if there is a unique ordered pair fulfilling the wff. (Contributed by AV, 28-Jul-2023.) |
⊢ (𝑋 ∈ 𝑉 → (∃!𝑝 ∈ (𝑋 × 𝑋)∃𝑎∃𝑏(𝑝 = 〈𝑎, 𝑏〉 ∧ 𝜑) → ∃!𝑝 ∈ (Pairs‘𝑋)∃𝑎∃𝑏(𝑝 = {𝑎, 𝑏} ∧ 𝜑))) | ||
At first, the (sequence of) Fermat numbers FermatNo (the 𝑛-th Fermat number is denoted as (FermatNo‘𝑛)) is defined, see df-fmtno 45840, and basic theorems are provided. Afterwards, it is shown that the first five Fermat numbers are prime, the (first) five Fermat primes, see fmtnofz04prm 45889, but that the fifth Fermat number (counting starts at 0!) is not prime, see fmtno5nprm 45895. The fourth Fermat number (i.e., the fifth Fermat prime) (FermatNo‘4) = ;;;;65537 is currently the biggest number proven to be prime in set.mm, see 65537prm 45888 (previously, it was ;;;4001, see 4001prm 17028). Another important result of this section is Goldbach's theorem goldbachth 45859, showing that two different Fermut numbers are coprime. By this, it can be proven that there is an infinite number of primes, see prminf2 45900. Finally, it is shown that every prime of the form ((2↑𝑘) + 1) must be a Fermat number (i.e., a Fermat prime), see 2pwp1prmfmtno 45902. | ||
Syntax | cfmtno 45839 | Extend class notation with the Fermat numbers. |
class FermatNo | ||
Definition | df-fmtno 45840 | Define the function that enumerates the Fermat numbers, see definition in [ApostolNT] p. 7. (Contributed by AV, 13-Jun-2021.) |
⊢ FermatNo = (𝑛 ∈ ℕ0 ↦ ((2↑(2↑𝑛)) + 1)) | ||
Theorem | fmtno 45841 | The 𝑁 th Fermat number. (Contributed by AV, 13-Jun-2021.) |
⊢ (𝑁 ∈ ℕ0 → (FermatNo‘𝑁) = ((2↑(2↑𝑁)) + 1)) | ||
Theorem | fmtnoge3 45842 | Each Fermat number is greater than or equal to 3. (Contributed by AV, 4-Aug-2021.) |
⊢ (𝑁 ∈ ℕ0 → (FermatNo‘𝑁) ∈ (ℤ≥‘3)) | ||
Theorem | fmtnonn 45843 | Each Fermat number is a positive integer. (Contributed by AV, 26-Jul-2021.) (Proof shortened by AV, 4-Aug-2021.) |
⊢ (𝑁 ∈ ℕ0 → (FermatNo‘𝑁) ∈ ℕ) | ||
Theorem | fmtnom1nn 45844 | A Fermat number minus one is a power of a power of two. (Contributed by AV, 29-Jul-2021.) |
⊢ (𝑁 ∈ ℕ0 → ((FermatNo‘𝑁) − 1) = (2↑(2↑𝑁))) | ||
Theorem | fmtnoodd 45845 | Each Fermat number is odd. (Contributed by AV, 26-Jul-2021.) |
⊢ (𝑁 ∈ ℕ0 → ¬ 2 ∥ (FermatNo‘𝑁)) | ||
Theorem | fmtnorn 45846* | A Fermat number is a function value of the enumeration of the Fermat numbers. (Contributed by AV, 3-Aug-2021.) |
⊢ (𝐹 ∈ ran FermatNo ↔ ∃𝑛 ∈ ℕ0 (FermatNo‘𝑛) = 𝐹) | ||
Theorem | fmtnof1 45847 | The enumeration of the Fermat numbers is a one-one function into the positive integers. (Contributed by AV, 3-Aug-2021.) |
⊢ FermatNo:ℕ0–1-1→ℕ | ||
Theorem | fmtnoinf 45848 | The set of Fermat numbers is infinite. (Contributed by AV, 3-Aug-2021.) |
⊢ ran FermatNo ∉ Fin | ||
Theorem | fmtnorec1 45849 | The first recurrence relation for Fermat numbers, see Wikipedia "Fermat number", https://en.wikipedia.org/wiki/Fermat_number#Basic_properties, 22-Jul-2021. (Contributed by AV, 22-Jul-2021.) |
⊢ (𝑁 ∈ ℕ0 → (FermatNo‘(𝑁 + 1)) = ((((FermatNo‘𝑁) − 1)↑2) + 1)) | ||
Theorem | sqrtpwpw2p 45850 | The floor of the square root of 2 to the power of 2 to the power of a positive integer plus a bounded nonnegative integer. (Contributed by AV, 28-Jul-2021.) |
⊢ ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ0 ∧ 𝑀 < ((2↑((2↑(𝑁 − 1)) + 1)) + 1)) → (⌊‘(√‘((2↑(2↑𝑁)) + 𝑀))) = (2↑(2↑(𝑁 − 1)))) | ||
Theorem | fmtnosqrt 45851 | The floor of the square root of a Fermat number. (Contributed by AV, 28-Jul-2021.) |
⊢ (𝑁 ∈ ℕ → (⌊‘(√‘(FermatNo‘𝑁))) = (2↑(2↑(𝑁 − 1)))) | ||
Theorem | fmtno0 45852 | The 0 th Fermat number, see remark in [ApostolNT] p. 7. (Contributed by AV, 13-Jun-2021.) |
⊢ (FermatNo‘0) = 3 | ||
Theorem | fmtno1 45853 | The 1 st Fermat number, see remark in [ApostolNT] p. 7. (Contributed by AV, 13-Jun-2021.) |
⊢ (FermatNo‘1) = 5 | ||
Theorem | fmtnorec2lem 45854* | Lemma for fmtnorec2 45855 (induction step). (Contributed by AV, 29-Jul-2021.) |
⊢ (𝑦 ∈ ℕ0 → ((FermatNo‘(𝑦 + 1)) = (∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) + 2) → (FermatNo‘((𝑦 + 1) + 1)) = (∏𝑛 ∈ (0...(𝑦 + 1))(FermatNo‘𝑛) + 2))) | ||
Theorem | fmtnorec2 45855* | The second recurrence relation for Fermat numbers, see ProofWiki "Product of Sequence of Fermat Numbers plus 2", 29-Jul-2021, https://proofwiki.org/wiki/Product_of_Sequence_of_Fermat_Numbers_plus_2 or Wikipedia "Fermat number", 29-Jul-2021, https://en.wikipedia.org/wiki/Fermat_number#Basic_properties. (Contributed by AV, 29-Jul-2021.) |
⊢ (𝑁 ∈ ℕ0 → (FermatNo‘(𝑁 + 1)) = (∏𝑛 ∈ (0...𝑁)(FermatNo‘𝑛) + 2)) | ||
Theorem | fmtnodvds 45856 | Any Fermat number divides a greater Fermat number minus 2. Corollary of fmtnorec2 45855, see ProofWiki "Product of Sequence of Fermat Numbers plus 2/Corollary", 31-Jul-2021. (Contributed by AV, 1-Aug-2021.) |
⊢ ((𝑁 ∈ ℕ0 ∧ 𝑀 ∈ ℕ) → (FermatNo‘𝑁) ∥ ((FermatNo‘(𝑁 + 𝑀)) − 2)) | ||
Theorem | goldbachthlem1 45857 | Lemma 1 for goldbachth 45859. (Contributed by AV, 1-Aug-2021.) |
⊢ ((𝑁 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0 ∧ 𝑀 < 𝑁) → (FermatNo‘𝑀) ∥ ((FermatNo‘𝑁) − 2)) | ||
Theorem | goldbachthlem2 45858 | Lemma 2 for goldbachth 45859. (Contributed by AV, 1-Aug-2021.) |
⊢ ((𝑁 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0 ∧ 𝑀 < 𝑁) → ((FermatNo‘𝑁) gcd (FermatNo‘𝑀)) = 1) | ||
Theorem | goldbachth 45859 | Goldbach's theorem: Two different Fermat numbers are coprime. See ProofWiki "Goldbach's theorem", 31-Jul-2021, https://proofwiki.org/wiki/Goldbach%27s_Theorem or Wikipedia "Fermat number", 31-Jul-2021, https://en.wikipedia.org/wiki/Fermat_number#Basic_properties. (Contributed by AV, 1-Aug-2021.) |
⊢ ((𝑁 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0 ∧ 𝑁 ≠ 𝑀) → ((FermatNo‘𝑁) gcd (FermatNo‘𝑀)) = 1) | ||
Theorem | fmtnorec3 45860* | The third recurrence relation for Fermat numbers, see Wikipedia "Fermat number", 31-Jul-2021, https://en.wikipedia.org/wiki/Fermat_number#Basic_properties. (Contributed by AV, 2-Aug-2021.) |
⊢ (𝑁 ∈ (ℤ≥‘2) → (FermatNo‘𝑁) = ((FermatNo‘(𝑁 − 1)) + ((2↑(2↑(𝑁 − 1))) · ∏𝑛 ∈ (0...(𝑁 − 2))(FermatNo‘𝑛)))) | ||
Theorem | fmtnorec4 45861 | The fourth recurrence relation for Fermat numbers, see Wikipedia "Fermat number", 31-Jul-2021, https://en.wikipedia.org/wiki/Fermat_number#Basic_properties. (Contributed by AV, 31-Jul-2021.) |
⊢ (𝑁 ∈ (ℤ≥‘2) → (FermatNo‘𝑁) = (((FermatNo‘(𝑁 − 1))↑2) − (2 · (((FermatNo‘(𝑁 − 2)) − 1)↑2)))) | ||
Theorem | fmtno2 45862 | The 2 nd Fermat number, see remark in [ApostolNT] p. 7. (Contributed by AV, 13-Jun-2021.) |
⊢ (FermatNo‘2) = ;17 | ||
Theorem | fmtno3 45863 | The 3 rd Fermat number, see remark in [ApostolNT] p. 7. (Contributed by AV, 13-Jun-2021.) |
⊢ (FermatNo‘3) = ;;257 | ||
Theorem | fmtno4 45864 | The 4 th Fermat number, see remark in [ApostolNT] p. 7. (Contributed by AV, 13-Jun-2021.) |
⊢ (FermatNo‘4) = ;;;;65537 | ||
Theorem | fmtno5lem1 45865 | Lemma 1 for fmtno5 45869. (Contributed by AV, 22-Jul-2021.) |
⊢ (;;;;65536 · 6) = ;;;;;393216 | ||
Theorem | fmtno5lem2 45866 | Lemma 2 for fmtno5 45869. (Contributed by AV, 22-Jul-2021.) |
⊢ (;;;;65536 · 5) = ;;;;;327680 | ||
Theorem | fmtno5lem3 45867 | Lemma 3 for fmtno5 45869. (Contributed by AV, 22-Jul-2021.) |
⊢ (;;;;65536 · 3) = ;;;;;196608 | ||
Theorem | fmtno5lem4 45868 | Lemma 4 for fmtno5 45869. (Contributed by AV, 30-Jul-2021.) |
⊢ (;;;;65536↑2) = ;;;;;;;;;4294967296 | ||
Theorem | fmtno5 45869 | The 5 th Fermat number. (Contributed by AV, 30-Jul-2021.) |
⊢ (FermatNo‘5) = ;;;;;;;;;4294967297 | ||
Theorem | fmtno0prm 45870 | The 0 th Fermat number is a prime (first Fermat prime). (Contributed by AV, 13-Jun-2021.) |
⊢ (FermatNo‘0) ∈ ℙ | ||
Theorem | fmtno1prm 45871 | The 1 st Fermat number is a prime (second Fermat prime). (Contributed by AV, 13-Jun-2021.) |
⊢ (FermatNo‘1) ∈ ℙ | ||
Theorem | fmtno2prm 45872 | The 2 nd Fermat number is a prime (third Fermat prime). (Contributed by AV, 13-Jun-2021.) |
⊢ (FermatNo‘2) ∈ ℙ | ||
Theorem | 257prm 45873 | 257 is a prime number (the fourth Fermat prime). (Contributed by AV, 15-Jun-2021.) |
⊢ ;;257 ∈ ℙ | ||
Theorem | fmtno3prm 45874 | The 3 rd Fermat number is a prime (fourth Fermat prime). (Contributed by AV, 15-Jun-2021.) |
⊢ (FermatNo‘3) ∈ ℙ | ||
Theorem | odz2prm2pw 45875 | Any power of two is coprime to any prime not being two. (Contributed by AV, 25-Jul-2021.) |
⊢ (((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ (((2↑(2↑𝑁)) mod 𝑃) ≠ 1 ∧ ((2↑(2↑(𝑁 + 1))) mod 𝑃) = 1)) → ((odℤ‘𝑃)‘2) = (2↑(𝑁 + 1))) | ||
Theorem | fmtnoprmfac1lem 45876 | Lemma for fmtnoprmfac1 45877: The order of 2 modulo a prime that divides the n-th Fermat number is 2^(n+1). (Contributed by AV, 25-Jul-2021.) (Proof shortened by AV, 18-Mar-2022.) |
⊢ ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑃 ∥ (FermatNo‘𝑁)) → ((odℤ‘𝑃)‘2) = (2↑(𝑁 + 1))) | ||
Theorem | fmtnoprmfac1 45877* | Divisor of Fermat number (special form of Euler's result, see fmtnofac1 45882): Let Fn be a Fermat number. Let p be a prime divisor of Fn. Then p is in the form: k*2^(n+1)+1 where k is a positive integer. (Contributed by AV, 25-Jul-2021.) |
⊢ ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ∧ 𝑃 ∥ (FermatNo‘𝑁)) → ∃𝑘 ∈ ℕ 𝑃 = ((𝑘 · (2↑(𝑁 + 1))) + 1)) | ||
Theorem | fmtnoprmfac2lem1 45878 | Lemma for fmtnoprmfac2 45879. (Contributed by AV, 26-Jul-2021.) |
⊢ ((𝑁 ∈ (ℤ≥‘2) ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑃 ∥ (FermatNo‘𝑁)) → ((2↑((𝑃 − 1) / 2)) mod 𝑃) = 1) | ||
Theorem | fmtnoprmfac2 45879* | Divisor of Fermat number (special form of Lucas' result, see fmtnofac2 45881): Let Fn be a Fermat number. Let p be a prime divisor of Fn. Then p is in the form: k*2^(n+2)+1 where k is a positive integer. (Contributed by AV, 26-Jul-2021.) |
⊢ ((𝑁 ∈ (ℤ≥‘2) ∧ 𝑃 ∈ ℙ ∧ 𝑃 ∥ (FermatNo‘𝑁)) → ∃𝑘 ∈ ℕ 𝑃 = ((𝑘 · (2↑(𝑁 + 2))) + 1)) | ||
Theorem | fmtnofac2lem 45880* | Lemma for fmtnofac2 45881 (Induction step). (Contributed by AV, 30-Jul-2021.) |
⊢ ((𝑦 ∈ (ℤ≥‘2) ∧ 𝑧 ∈ (ℤ≥‘2)) → ((((𝑁 ∈ (ℤ≥‘2) ∧ 𝑦 ∥ (FermatNo‘𝑁)) → ∃𝑘 ∈ ℕ0 𝑦 = ((𝑘 · (2↑(𝑁 + 2))) + 1)) ∧ ((𝑁 ∈ (ℤ≥‘2) ∧ 𝑧 ∥ (FermatNo‘𝑁)) → ∃𝑘 ∈ ℕ0 𝑧 = ((𝑘 · (2↑(𝑁 + 2))) + 1))) → ((𝑁 ∈ (ℤ≥‘2) ∧ (𝑦 · 𝑧) ∥ (FermatNo‘𝑁)) → ∃𝑘 ∈ ℕ0 (𝑦 · 𝑧) = ((𝑘 · (2↑(𝑁 + 2))) + 1)))) | ||
Theorem | fmtnofac2 45881* | Divisor of Fermat number (Euler's Result refined by François Édouard Anatole Lucas), see fmtnofac1 45882: Let Fn be a Fermat number. Let m be divisor of Fn. Then m is in the form: k*2^(n+2)+1 where k is a nonnegative integer. (Contributed by AV, 30-Jul-2021.) |
⊢ ((𝑁 ∈ (ℤ≥‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑀 ∥ (FermatNo‘𝑁)) → ∃𝑘 ∈ ℕ0 𝑀 = ((𝑘 · (2↑(𝑁 + 2))) + 1)) | ||
Theorem | fmtnofac1 45882* |
Divisor of Fermat number (Euler's Result), see ProofWiki "Divisor of
Fermat Number/Euler's Result", 24-Jul-2021,
https://proofwiki.org/wiki/Divisor_of_Fermat_Number/Euler's_Result):
"Let Fn be a Fermat number. Let
m be divisor of Fn. Then m is in the
form: k*2^(n+1)+1 where k is a positive integer." Here, however, k
must
be a nonnegative integer, because k must be 0 to represent 1 (which is a
divisor of Fn ).
Historical Note: In 1747, Leonhard Paul Euler proved that a divisor of a Fermat number Fn is always in the form kx2^(n+1)+1. This was later refined to k*2^(n+2)+1 by François Édouard Anatole Lucas, see fmtnofac2 45881. (Contributed by AV, 30-Jul-2021.) |
⊢ ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 𝑀 ∥ (FermatNo‘𝑁)) → ∃𝑘 ∈ ℕ0 𝑀 = ((𝑘 · (2↑(𝑁 + 1))) + 1)) | ||
Theorem | fmtno4sqrt 45883 | The floor of the square root of the fourth Fermat number is 256. (Contributed by AV, 28-Jul-2021.) |
⊢ (⌊‘(√‘(FermatNo‘4))) = ;;256 | ||
Theorem | fmtno4prmfac 45884 | If P was a (prime) factor of the fourth Fermat number less than the square root of the fourth Fermat number, it would be either 65 or 129 or 193. (Contributed by AV, 28-Jul-2021.) |
⊢ ((𝑃 ∈ ℙ ∧ 𝑃 ∥ (FermatNo‘4) ∧ 𝑃 ≤ (⌊‘(√‘(FermatNo‘4)))) → (𝑃 = ;65 ∨ 𝑃 = ;;129 ∨ 𝑃 = ;;193)) | ||
Theorem | fmtno4prmfac193 45885 | If P was a (prime) factor of the fourth Fermat number, it would be 193. (Contributed by AV, 28-Jul-2021.) |
⊢ ((𝑃 ∈ ℙ ∧ 𝑃 ∥ (FermatNo‘4) ∧ 𝑃 ≤ (⌊‘(√‘(FermatNo‘4)))) → 𝑃 = ;;193) | ||
Theorem | fmtno4nprmfac193 45886 | 193 is not a (prime) factor of the fourth Fermat number. (Contributed by AV, 24-Jul-2021.) |
⊢ ¬ ;;193 ∥ (FermatNo‘4) | ||
Theorem | fmtno4prm 45887 | The 4-th Fermat number (65537) is a prime (the fifth Fermat prime). (Contributed by AV, 28-Jul-2021.) |
⊢ (FermatNo‘4) ∈ ℙ | ||
Theorem | 65537prm 45888 | 65537 is a prime number (the fifth Fermat prime). (Contributed by AV, 28-Jul-2021.) |
⊢ ;;;;65537 ∈ ℙ | ||
Theorem | fmtnofz04prm 45889 | The first five Fermat numbers are prime, see remark in [ApostolNT] p. 7. (Contributed by AV, 28-Jul-2021.) |
⊢ (𝑁 ∈ (0...4) → (FermatNo‘𝑁) ∈ ℙ) | ||
Theorem | fmtnole4prm 45890 | The first five Fermat numbers are prime. (Contributed by AV, 28-Jul-2021.) |
⊢ ((𝑁 ∈ ℕ0 ∧ 𝑁 ≤ 4) → (FermatNo‘𝑁) ∈ ℙ) | ||
Theorem | fmtno5faclem1 45891 | Lemma 1 for fmtno5fac 45894. (Contributed by AV, 22-Jul-2021.) |
⊢ (;;;;;;6700417 · 4) = ;;;;;;;26801668 | ||
Theorem | fmtno5faclem2 45892 | Lemma 2 for fmtno5fac 45894. (Contributed by AV, 22-Jul-2021.) |
⊢ (;;;;;;6700417 · 6) = ;;;;;;;40202502 | ||
Theorem | fmtno5faclem3 45893 | Lemma 3 for fmtno5fac 45894. (Contributed by AV, 22-Jul-2021.) |
⊢ (;;;;;;;;402025020 + ;;;;;;;26801668) = ;;;;;;;;428826688 | ||
Theorem | fmtno5fac 45894 | The factorisation of the 5 th Fermat number, see remark in [ApostolNT] p. 7. (Contributed by AV, 22-Jul-2021.) |
⊢ (FermatNo‘5) = (;;;;;;6700417 · ;;641) | ||
Theorem | fmtno5nprm 45895 | The 5 th Fermat number is a not a prime. (Contributed by AV, 22-Jul-2021.) |
⊢ (FermatNo‘5) ∉ ℙ | ||
Theorem | prmdvdsfmtnof1lem1 45896* | Lemma 1 for prmdvdsfmtnof1 45899. (Contributed by AV, 3-Aug-2021.) |
⊢ 𝐼 = inf({𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐹}, ℝ, < ) & ⊢ 𝐽 = inf({𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐺}, ℝ, < ) ⇒ ⊢ ((𝐹 ∈ (ℤ≥‘2) ∧ 𝐺 ∈ (ℤ≥‘2)) → (𝐼 = 𝐽 → (𝐼 ∈ ℙ ∧ 𝐼 ∥ 𝐹 ∧ 𝐼 ∥ 𝐺))) | ||
Theorem | prmdvdsfmtnof1lem2 45897 | Lemma 2 for prmdvdsfmtnof1 45899. (Contributed by AV, 3-Aug-2021.) |
⊢ ((𝐹 ∈ ran FermatNo ∧ 𝐺 ∈ ran FermatNo) → ((𝐼 ∈ ℙ ∧ 𝐼 ∥ 𝐹 ∧ 𝐼 ∥ 𝐺) → 𝐹 = 𝐺)) | ||
Theorem | prmdvdsfmtnof 45898* | The mapping of a Fermat number to its smallest prime factor is a function. (Contributed by AV, 4-Aug-2021.) (Proof shortened by II, 16-Feb-2023.) |
⊢ 𝐹 = (𝑓 ∈ ran FermatNo ↦ inf({𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑓}, ℝ, < )) ⇒ ⊢ 𝐹:ran FermatNo⟶ℙ | ||
Theorem | prmdvdsfmtnof1 45899* | The mapping of a Fermat number to its smallest prime factor is a one-to-one function. (Contributed by AV, 4-Aug-2021.) |
⊢ 𝐹 = (𝑓 ∈ ran FermatNo ↦ inf({𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑓}, ℝ, < )) ⇒ ⊢ 𝐹:ran FermatNo–1-1→ℙ | ||
Theorem | prminf2 45900 | The set of prime numbers is infinite. The proof of this variant of prminf 16798 is based on Goldbach's theorem goldbachth 45859 (via prmdvdsfmtnof1 45899 and prmdvdsfmtnof1lem2 45897), see Wikipedia "Fermat number", 4-Aug-2021, https://en.wikipedia.org/wiki/Fermat_number#Basic_properties 45897. (Contributed by AV, 4-Aug-2021.) |
⊢ ℙ ∉ Fin |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |