Home | Metamath
Proof Explorer Theorem List (p. 459 of 464) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | Metamath Proof Explorer
(1-29181) |
Hilbert Space Explorer
(29182-30704) |
Users' Mathboxes
(30705-46395) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | logbpw2m1 45801 | The floor of the binary logarithm of 2 to the power of a positive integer minus 1 is equal to the integer minus 1. (Contributed by AV, 31-May-2020.) |
⊢ (𝐼 ∈ ℕ → (⌊‘(2 logb ((2↑𝐼) − 1))) = (𝐼 − 1)) | ||
Theorem | fllog2 45802 | The floor of the binary logarithm of 2 to the power of an element of a half-open integer interval bounded by powers of 2 is equal to the integer. (Contributed by AV, 31-May-2020.) |
⊢ ((𝐼 ∈ ℕ0 ∧ 𝑁 ∈ ((2↑𝐼)..^(2↑(𝐼 + 1)))) → (⌊‘(2 logb 𝑁)) = 𝐼) | ||
Syntax | cblen 45803 | Extend class notation with the class of the binary length function. |
class #b | ||
Definition | df-blen 45804 | Define the binary length of an integer. Definition in section 1.3 of [AhoHopUll] p. 12. Although not restricted to integers, this definition is only meaningful for 𝑛 ∈ ℤ or even for 𝑛 ∈ ℂ. (Contributed by AV, 16-May-2020.) |
⊢ #b = (𝑛 ∈ V ↦ if(𝑛 = 0, 1, ((⌊‘(2 logb (abs‘𝑛))) + 1))) | ||
Theorem | blenval 45805 | The binary length of an integer. (Contributed by AV, 20-May-2020.) |
⊢ (𝑁 ∈ 𝑉 → (#b‘𝑁) = if(𝑁 = 0, 1, ((⌊‘(2 logb (abs‘𝑁))) + 1))) | ||
Theorem | blen0 45806 | The binary length of 0. (Contributed by AV, 20-May-2020.) |
⊢ (#b‘0) = 1 | ||
Theorem | blenn0 45807 | The binary length of a "number" not being 0. (Contributed by AV, 20-May-2020.) |
⊢ ((𝑁 ∈ 𝑉 ∧ 𝑁 ≠ 0) → (#b‘𝑁) = ((⌊‘(2 logb (abs‘𝑁))) + 1)) | ||
Theorem | blenre 45808 | The binary length of a positive real number. (Contributed by AV, 20-May-2020.) |
⊢ (𝑁 ∈ ℝ+ → (#b‘𝑁) = ((⌊‘(2 logb 𝑁)) + 1)) | ||
Theorem | blennn 45809 | The binary length of a positive integer. (Contributed by AV, 21-May-2020.) |
⊢ (𝑁 ∈ ℕ → (#b‘𝑁) = ((⌊‘(2 logb 𝑁)) + 1)) | ||
Theorem | blennnelnn 45810 | The binary length of a positive integer is a positive integer. (Contributed by AV, 25-May-2020.) |
⊢ (𝑁 ∈ ℕ → (#b‘𝑁) ∈ ℕ) | ||
Theorem | blennn0elnn 45811 | The binary length of a nonnegative integer is a positive integer. (Contributed by AV, 28-May-2020.) |
⊢ (𝑁 ∈ ℕ0 → (#b‘𝑁) ∈ ℕ) | ||
Theorem | blenpw2 45812 | The binary length of a power of 2 is the exponent plus 1. (Contributed by AV, 30-May-2020.) |
⊢ (𝐼 ∈ ℕ0 → (#b‘(2↑𝐼)) = (𝐼 + 1)) | ||
Theorem | blenpw2m1 45813 | The binary length of a power of 2 minus 1 is the exponent. (Contributed by AV, 31-May-2020.) |
⊢ (𝐼 ∈ ℕ → (#b‘((2↑𝐼) − 1)) = 𝐼) | ||
Theorem | nnpw2blen 45814 | A positive integer is between 2 to the power of its binary length minus 1 and 2 to the power of its binary length. (Contributed by AV, 31-May-2020.) |
⊢ (𝑁 ∈ ℕ → ((2↑((#b‘𝑁) − 1)) ≤ 𝑁 ∧ 𝑁 < (2↑(#b‘𝑁)))) | ||
Theorem | nnpw2blenfzo 45815 | A positive integer is between 2 to the power of the binary length of the integer minus 1, and 2 to the power of the binary length of the integer. (Contributed by AV, 2-Jun-2020.) |
⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ((2↑((#b‘𝑁) − 1))..^(2↑(#b‘𝑁)))) | ||
Theorem | nnpw2blenfzo2 45816 | A positive integer is either 2 to the power of the binary length of the integer minus 1, or between 2 to the power of the binary length of the integer minus 1, increased by 1, and 2 to the power of the binary length of the integer. (Contributed by AV, 2-Jun-2020.) |
⊢ (𝑁 ∈ ℕ → (𝑁 = (2↑((#b‘𝑁) − 1)) ∨ 𝑁 ∈ (((2↑((#b‘𝑁) − 1)) + 1)..^(2↑(#b‘𝑁))))) | ||
Theorem | nnpw2pmod 45817 | Every positive integer can be represented as the sum of a power of 2 and a "remainder" smaller than the power. (Contributed by AV, 31-May-2020.) |
⊢ (𝑁 ∈ ℕ → 𝑁 = ((2↑((#b‘𝑁) − 1)) + (𝑁 mod (2↑((#b‘𝑁) − 1))))) | ||
Theorem | blen1 45818 | The binary length of 1. (Contributed by AV, 21-May-2020.) |
⊢ (#b‘1) = 1 | ||
Theorem | blen2 45819 | The binary length of 2. (Contributed by AV, 21-May-2020.) |
⊢ (#b‘2) = 2 | ||
Theorem | nnpw2p 45820* | Every positive integer can be represented as the sum of a power of 2 and a "remainder" smaller than the power. (Contributed by AV, 31-May-2020.) |
⊢ (𝑁 ∈ ℕ → ∃𝑖 ∈ ℕ0 ∃𝑟 ∈ (0..^(2↑𝑖))𝑁 = ((2↑𝑖) + 𝑟)) | ||
Theorem | nnpw2pb 45821* | A number is a positive integer iff it can be represented as the sum of a power of 2 and a "remainder" smaller than the power. (Contributed by AV, 31-May-2020.) |
⊢ (𝑁 ∈ ℕ ↔ ∃𝑖 ∈ ℕ0 ∃𝑟 ∈ (0..^(2↑𝑖))𝑁 = ((2↑𝑖) + 𝑟)) | ||
Theorem | blen1b 45822 | The binary length of a nonnegative integer is 1 if the integer is 0 or 1. (Contributed by AV, 30-May-2020.) |
⊢ (𝑁 ∈ ℕ0 → ((#b‘𝑁) = 1 ↔ (𝑁 = 0 ∨ 𝑁 = 1))) | ||
Theorem | blennnt2 45823 | The binary length of a positive integer, doubled and increased by 1, is the binary length of the integer plus 1. (Contributed by AV, 30-May-2010.) |
⊢ (𝑁 ∈ ℕ → (#b‘(2 · 𝑁)) = ((#b‘𝑁) + 1)) | ||
Theorem | nnolog2flm1 45824 | The floor of the binary logarithm of an odd integer greater than 1 is the floor of the binary logarithm of the integer decreased by 1. (Contributed by AV, 2-Jun-2020.) |
⊢ ((𝑁 ∈ (ℤ≥‘2) ∧ ((𝑁 + 1) / 2) ∈ ℕ) → (⌊‘(2 logb 𝑁)) = (⌊‘(2 logb (𝑁 − 1)))) | ||
Theorem | blennn0em1 45825 | The binary length of the half of an even positive integer is the binary length of the integer minus 1. (Contributed by AV, 30-May-2010.) |
⊢ ((𝑁 ∈ ℕ ∧ (𝑁 / 2) ∈ ℕ0) → (#b‘(𝑁 / 2)) = ((#b‘𝑁) − 1)) | ||
Theorem | blennngt2o2 45826 | The binary length of an odd integer greater than 1 is the binary length of the half of the integer decreased by 1, increased by 1. (Contributed by AV, 3-Jun-2020.) |
⊢ ((𝑁 ∈ (ℤ≥‘2) ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → (#b‘𝑁) = ((#b‘((𝑁 − 1) / 2)) + 1)) | ||
Theorem | blengt1fldiv2p1 45827 | The binary length of an integer greater than 1 is the binary length of the integer divided by 2, increased by one. (Contributed by AV, 3-Jun-2020.) |
⊢ (𝑁 ∈ (ℤ≥‘2) → (#b‘𝑁) = ((#b‘(⌊‘(𝑁 / 2))) + 1)) | ||
Theorem | blennn0e2 45828 | The binary length of an even positive integer is the binary length of the half of the integer, increased by 1. (Contributed by AV, 29-May-2020.) |
⊢ ((𝑁 ∈ ℕ ∧ (𝑁 / 2) ∈ ℕ0) → (#b‘𝑁) = ((#b‘(𝑁 / 2)) + 1)) | ||
Generalization of df-bits 16057. In contrast to digit, bits are defined for integers only. The equivalence of both definitions for integers is shown in dig2bits 45848: if 𝐾 and 𝑁 are nonnegative integers, then ((𝐾(digit‘2)𝑁) = 1 ↔ 𝐾 ∈ (bits‘𝑁)). | ||
Syntax | cdig 45829 | Extend class notation with the class of the digit extraction operation. |
class digit | ||
Definition | df-dig 45830* | Definition of an operation to obtain the 𝑘 th digit of a nonnegative real number 𝑟 in the positional system with base 𝑏. 𝑘 = − 1 corresponds to the first digit of the fractional part (for 𝑏 = 10 the first digit after the decimal point), 𝑘 = 0 corresponds to the last digit of the integer part (for 𝑏 = 10 the first digit before the decimal point). See also digit1 13880. Examples (not formal): ( 234.567 ( digit ` 10 ) 0 ) = 4; ( 2.567 ( digit ` 10 ) -2 ) = 6; ( 2345.67 ( digit ` 10 ) 2 ) = 3. (Contributed by AV, 16-May-2020.) |
⊢ digit = (𝑏 ∈ ℕ ↦ (𝑘 ∈ ℤ, 𝑟 ∈ (0[,)+∞) ↦ ((⌊‘((𝑏↑-𝑘) · 𝑟)) mod 𝑏))) | ||
Theorem | digfval 45831* | Operation to obtain the 𝑘 th digit of a nonnegative real number 𝑟 in the positional system with base 𝐵. (Contributed by AV, 23-May-2020.) |
⊢ (𝐵 ∈ ℕ → (digit‘𝐵) = (𝑘 ∈ ℤ, 𝑟 ∈ (0[,)+∞) ↦ ((⌊‘((𝐵↑-𝑘) · 𝑟)) mod 𝐵))) | ||
Theorem | digval 45832 | The 𝐾 th digit of a nonnegative real number 𝑅 in the positional system with base 𝐵. (Contributed by AV, 23-May-2020.) |
⊢ ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℤ ∧ 𝑅 ∈ (0[,)+∞)) → (𝐾(digit‘𝐵)𝑅) = ((⌊‘((𝐵↑-𝐾) · 𝑅)) mod 𝐵)) | ||
Theorem | digvalnn0 45833 | The 𝐾 th digit of a nonnegative real number 𝑅 in the positional system with base 𝐵 is a nonnegative integer. (Contributed by AV, 28-May-2020.) |
⊢ ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℤ ∧ 𝑅 ∈ (0[,)+∞)) → (𝐾(digit‘𝐵)𝑅) ∈ ℕ0) | ||
Theorem | nn0digval 45834 | The 𝐾 th digit of a nonnegative real number 𝑅 in the positional system with base 𝐵. (Contributed by AV, 23-May-2020.) |
⊢ ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ0 ∧ 𝑅 ∈ (0[,)+∞)) → (𝐾(digit‘𝐵)𝑅) = ((⌊‘(𝑅 / (𝐵↑𝐾))) mod 𝐵)) | ||
Theorem | dignn0fr 45835 | The digits of the fractional part of a nonnegative integer are 0. (Contributed by AV, 23-May-2020.) |
⊢ ((𝐵 ∈ ℕ ∧ 𝐾 ∈ (ℤ ∖ ℕ0) ∧ 𝑁 ∈ ℕ0) → (𝐾(digit‘𝐵)𝑁) = 0) | ||
Theorem | dignn0ldlem 45836 | Lemma for dignnld 45837. (Contributed by AV, 25-May-2020.) |
⊢ ((𝐵 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ (ℤ≥‘((⌊‘(𝐵 logb 𝑁)) + 1))) → 𝑁 < (𝐵↑𝐾)) | ||
Theorem | dignnld 45837 | The leading digits of a positive integer are 0. (Contributed by AV, 25-May-2020.) |
⊢ ((𝐵 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ (ℤ≥‘((⌊‘(𝐵 logb 𝑁)) + 1))) → (𝐾(digit‘𝐵)𝑁) = 0) | ||
Theorem | dig2nn0ld 45838 | The leading digits of a positive integer in a binary system are 0. (Contributed by AV, 25-May-2020.) |
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (ℤ≥‘(#b‘𝑁))) → (𝐾(digit‘2)𝑁) = 0) | ||
Theorem | dig2nn1st 45839 | The first (relevant) digit of a positive integer in a binary system is 1. (Contributed by AV, 26-May-2020.) |
⊢ (𝑁 ∈ ℕ → (((#b‘𝑁) − 1)(digit‘2)𝑁) = 1) | ||
Theorem | dig0 45840 | All digits of 0 are 0. (Contributed by AV, 24-May-2020.) |
⊢ ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℤ) → (𝐾(digit‘𝐵)0) = 0) | ||
Theorem | digexp 45841 | The 𝐾 th digit of a power to the base is either 1 or 0. (Contributed by AV, 24-May-2020.) |
⊢ ((𝐵 ∈ (ℤ≥‘2) ∧ 𝐾 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) → (𝐾(digit‘𝐵)(𝐵↑𝑁)) = if(𝐾 = 𝑁, 1, 0)) | ||
Theorem | dig1 45842 | All but one digits of 1 are 0. (Contributed by AV, 24-May-2020.) |
⊢ ((𝐵 ∈ (ℤ≥‘2) ∧ 𝐾 ∈ ℤ) → (𝐾(digit‘𝐵)1) = if(𝐾 = 0, 1, 0)) | ||
Theorem | 0dig1 45843 | The 0 th digit of 1 is 1 in any positional system. (Contributed by AV, 28-May-2020.) |
⊢ (𝐵 ∈ (ℤ≥‘2) → (0(digit‘𝐵)1) = 1) | ||
Theorem | 0dig2pr01 45844 | The integers 0 and 1 correspond to their last bit. (Contributed by AV, 28-May-2010.) |
⊢ (𝑁 ∈ {0, 1} → (0(digit‘2)𝑁) = 𝑁) | ||
Theorem | dig2nn0 45845 | A digit of a nonnegative integer 𝑁 in a binary system is either 0 or 1. (Contributed by AV, 24-May-2020.) |
⊢ ((𝑁 ∈ ℕ0 ∧ 𝐾 ∈ ℤ) → (𝐾(digit‘2)𝑁) ∈ {0, 1}) | ||
Theorem | 0dig2nn0e 45846 | The last bit of an even integer is 0. (Contributed by AV, 3-Jun-2010.) |
⊢ ((𝑁 ∈ ℕ0 ∧ (𝑁 / 2) ∈ ℕ0) → (0(digit‘2)𝑁) = 0) | ||
Theorem | 0dig2nn0o 45847 | The last bit of an odd integer is 1. (Contributed by AV, 3-Jun-2010.) |
⊢ ((𝑁 ∈ ℕ0 ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → (0(digit‘2)𝑁) = 1) | ||
Theorem | dig2bits 45848 | The 𝐾 th digit of a nonnegative integer 𝑁 in a binary system is its 𝐾 th bit. (Contributed by AV, 24-May-2020.) |
⊢ ((𝑁 ∈ ℕ0 ∧ 𝐾 ∈ ℕ0) → ((𝐾(digit‘2)𝑁) = 1 ↔ 𝐾 ∈ (bits‘𝑁))) | ||
Theorem | dignn0flhalflem1 45849 | Lemma 1 for dignn0flhalf 45852. (Contributed by AV, 7-Jun-2012.) |
⊢ ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ) → (⌊‘((𝐴 / (2↑𝑁)) − 1)) < (⌊‘((𝐴 − 1) / (2↑𝑁)))) | ||
Theorem | dignn0flhalflem2 45850 | Lemma 2 for dignn0flhalf 45852. (Contributed by AV, 7-Jun-2012.) |
⊢ ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (⌊‘(𝐴 / (2↑(𝑁 + 1)))) = (⌊‘((⌊‘(𝐴 / 2)) / (2↑𝑁)))) | ||
Theorem | dignn0ehalf 45851 | The digits of the half of an even nonnegative integer are the digits of the integer shifted by 1. (Contributed by AV, 3-Jun-2010.) |
⊢ (((𝐴 / 2) ∈ ℕ0 ∧ 𝐴 ∈ ℕ0 ∧ 𝐼 ∈ ℕ0) → ((𝐼 + 1)(digit‘2)𝐴) = (𝐼(digit‘2)(𝐴 / 2))) | ||
Theorem | dignn0flhalf 45852 | The digits of the rounded half of a nonnegative integer are the digits of the integer shifted by 1. (Contributed by AV, 7-Jun-2010.) |
⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝐼 ∈ ℕ0) → ((𝐼 + 1)(digit‘2)𝐴) = (𝐼(digit‘2)(⌊‘(𝐴 / 2)))) | ||
Theorem | nn0sumshdiglemA 45853* | Lemma for nn0sumshdig 45857 (induction step, even multiplier). (Contributed by AV, 3-Jun-2020.) |
⊢ (((𝑎 ∈ ℕ ∧ (𝑎 / 2) ∈ ℕ) ∧ 𝑦 ∈ ℕ) → (∀𝑥 ∈ ℕ0 ((#b‘𝑥) = 𝑦 → 𝑥 = Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)𝑥) · (2↑𝑘))) → ((#b‘𝑎) = (𝑦 + 1) → 𝑎 = Σ𝑘 ∈ (0..^(𝑦 + 1))((𝑘(digit‘2)𝑎) · (2↑𝑘))))) | ||
Theorem | nn0sumshdiglemB 45854* | Lemma for nn0sumshdig 45857 (induction step, odd multiplier). (Contributed by AV, 7-Jun-2020.) |
⊢ (((𝑎 ∈ ℕ ∧ ((𝑎 − 1) / 2) ∈ ℕ0) ∧ 𝑦 ∈ ℕ) → (∀𝑥 ∈ ℕ0 ((#b‘𝑥) = 𝑦 → 𝑥 = Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)𝑥) · (2↑𝑘))) → ((#b‘𝑎) = (𝑦 + 1) → 𝑎 = Σ𝑘 ∈ (0..^(𝑦 + 1))((𝑘(digit‘2)𝑎) · (2↑𝑘))))) | ||
Theorem | nn0sumshdiglem1 45855* | Lemma 1 for nn0sumshdig 45857 (induction step). (Contributed by AV, 7-Jun-2020.) |
⊢ (𝑦 ∈ ℕ → (∀𝑎 ∈ ℕ0 ((#b‘𝑎) = 𝑦 → 𝑎 = Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)𝑎) · (2↑𝑘))) → ∀𝑎 ∈ ℕ0 ((#b‘𝑎) = (𝑦 + 1) → 𝑎 = Σ𝑘 ∈ (0..^(𝑦 + 1))((𝑘(digit‘2)𝑎) · (2↑𝑘))))) | ||
Theorem | nn0sumshdiglem2 45856* | Lemma 2 for nn0sumshdig 45857. (Contributed by AV, 7-Jun-2020.) |
⊢ (𝐿 ∈ ℕ → ∀𝑎 ∈ ℕ0 ((#b‘𝑎) = 𝐿 → 𝑎 = Σ𝑘 ∈ (0..^𝐿)((𝑘(digit‘2)𝑎) · (2↑𝑘)))) | ||
Theorem | nn0sumshdig 45857* | A nonnegative integer can be represented as sum of its shifted bits. (Contributed by AV, 7-Jun-2020.) |
⊢ (𝐴 ∈ ℕ0 → 𝐴 = Σ𝑘 ∈ (0..^(#b‘𝐴))((𝑘(digit‘2)𝐴) · (2↑𝑘))) | ||
Theorem | nn0mulfsum 45858* | Trivial algorithm to calculate the product of two nonnegative integers 𝑎 and 𝑏 by adding 𝑏 to itself 𝑎 times. (Contributed by AV, 17-May-2020.) |
⊢ ((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0) → (𝐴 · 𝐵) = Σ𝑘 ∈ (1...𝐴)𝐵) | ||
Theorem | nn0mullong 45859* | Standard algorithm (also known as "long multiplication" or "grade-school multiplication") to calculate the product of two nonnegative integers 𝑎 and 𝑏 by multiplying the multiplicand 𝑏 by each digit of the multiplier 𝑎 and then add up all the properly shifted results. Here, the binary representation of the multiplier 𝑎 is used, i.e., the above mentioned "digits" are 0 or 1. This is a similar result as provided by smumul 16128. (Contributed by AV, 7-Jun-2020.) |
⊢ ((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0) → (𝐴 · 𝐵) = Σ𝑘 ∈ (0..^(#b‘𝐴))(((𝑘(digit‘2)𝐴) · (2↑𝑘)) · 𝐵)) | ||
According to Wikipedia ("Arity", https://en.wikipedia.org/wiki/Arity, 19-May-2024): "In logic, mathematics, and computer science, arity is the number of arguments or operands taken by a function, operation or relation." N-ary functions are often also called multivariate functions, without indicating the actual number of argumens. See also Wikipedia ("Multivariate functions", 19-May-2024, https://en.wikipedia.org/wiki/Function_(mathematics)#Multivariate_functions ): "A multivariate function, multivariable function, or function of several variables is a function that depends on several arguments. ... Formally, a function of n variables is a function whose domain is a set of n-tuples. For example, multiplication of integers is a function of two variables, or bivariate function, whose domain is the set of all ordered pairs (2-tuples) of integers, and whose codomain is the set of integers. The same is true for every binary operation. Commonly, an n-tuple is denoted enclosed between parentheses, such as in ( 1 , 2 , ... , n ). When using functional notation, one usually omits the parentheses surrounding tuples, writing f ( x1 , ... , xn ) instead of f ( ( x1 , ... , xn ) ). Given n sets X1 , ... , Xn , the set of all n-tuples ( x1 , ... , xn ) such that x1 is element of X1 , ... , xn is element of Xn is called the Cartesian product of X1 , ... , Xn , and denoted X1 X ... X Xn . Therefore, a multivariate function is a function that has a Cartesian product or a proper subset of a Cartesian product as a domain: 𝑓:𝑈⟶𝑌 where where the domain 𝑈 has the form 𝑈 ⊆ ((...((𝑋‘1) × (𝑋‘2)) × ...) × (𝑋‘𝑛))." In the following, n-ary functions are defined as mappings (see df-map 8575) from a finite sequence of arguments, which themselves are defined as mappings from the half-open range of nonnegative integers to the domain of each argument. Furthermore, the definition is restricted to endofunctions, meaning that the domain(s) of the argument(s) is identical with its codomain. This means that the domains of all arguments are identical (in contrast to the definition in Wikipedia, see above: here, we have X1 = X2 = ... = Xn = X). For small n, n-ary functions correspond to "usual" functions with a different number of arguments: - n = 0 (nullary functions): These correspond actually to constants, see 0aryfvalelfv 45869 and mapsn 8634: (𝑋 ↑m {∅}) - n = 1 (unary functions): These correspond actually to usual endofunctions, see 1aryenef 45879 and efmndbas 18425: (𝑋 ↑m 𝑋) - n = 2 (binary functions): These correspond to usual operations on two elements of the same set, also called "binary operation" (according to Wikipedia ("Binary operation", 19-May-2024, https://en.wikipedia.org/wiki/Binary_operation 18425): "In mathematics, a binary operation or dyadic operation is a rule for combining two elements (called operands) to produce another element. More formally, a binary operation is an operation of arity two. More specifically, a binary operation on a set is a binary operation whose two domains and the codomain are the same set." Sometimes also called "closed internal binary operation"), see 2aryenef 45890 and compare with df-clintop 45282: (𝑋 ↑m (𝑋 × 𝑋)). Instead of using indexed arguments (represented by a mapping as described above), elements of Cartesian exponentiations (𝑈↑↑𝑁) (see df-finxp 35482) could have been used to represent multiple arguments. However, this concept is not fully developed yet (it is within a mathbox), and it is currently based on ordinal numbers, e.g., (𝑈↑↑2o), instead of integers, e.g., (𝑈↑↑2), which is not very practical. The definition df-ixp of infinite Cartesian product could also have been used to represent multiple arguments, but this would have been more cumbersome without any additional advantage. naryfvalixp 45863 shows that both definitions are equivalent. | ||
Syntax | cnaryf 45860 | Extend the definition of a class to include the n-ary functions. |
class -aryF | ||
Definition | df-naryf 45861* | Define the n-ary (endo)functions. (Contributed by AV, 11-May-2024.) (Revised by TA and SN, 7-Jun-2024.) |
⊢ -aryF = (𝑛 ∈ ℕ0, 𝑥 ∈ V ↦ (𝑥 ↑m (𝑥 ↑m (0..^𝑛)))) | ||
Theorem | naryfval 45862 | The set of the n-ary (endo)functions on a class 𝑋. (Contributed by AV, 13-May-2024.) |
⊢ 𝐼 = (0..^𝑁) ⇒ ⊢ (𝑁 ∈ ℕ0 → (𝑁-aryF 𝑋) = (𝑋 ↑m (𝑋 ↑m 𝐼))) | ||
Theorem | naryfvalixp 45863* | The set of the n-ary (endo)functions on a class 𝑋 expressed with the notation of infinite Cartesian products. (Contributed by AV, 19-May-2024.) |
⊢ 𝐼 = (0..^𝑁) ⇒ ⊢ (𝑁 ∈ ℕ0 → (𝑁-aryF 𝑋) = (𝑋 ↑m X𝑥 ∈ 𝐼 𝑋)) | ||
Theorem | naryfvalel 45864 | An n-ary (endo)function on a set 𝑋. (Contributed by AV, 14-May-2024.) |
⊢ 𝐼 = (0..^𝑁) ⇒ ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝑉) → (𝐹 ∈ (𝑁-aryF 𝑋) ↔ 𝐹:(𝑋 ↑m 𝐼)⟶𝑋)) | ||
Theorem | naryrcl 45865 | Reverse closure for n-ary (endo)functions. (Contributed by AV, 14-May-2024.) |
⊢ 𝐼 = (0..^𝑁) ⇒ ⊢ (𝐹 ∈ (𝑁-aryF 𝑋) → (𝑁 ∈ ℕ0 ∧ 𝑋 ∈ V)) | ||
Theorem | naryfvalelfv 45866 | The value of an n-ary (endo)function on a set 𝑋 is an element of 𝑋. (Contributed by AV, 14-May-2024.) |
⊢ 𝐼 = (0..^𝑁) ⇒ ⊢ ((𝐹 ∈ (𝑁-aryF 𝑋) ∧ 𝐴:𝐼⟶𝑋) → (𝐹‘𝐴) ∈ 𝑋) | ||
Theorem | naryfvalelwrdf 45867* | An n-ary (endo)function on a set 𝑋 expressed as a function over the set of words on 𝑋 of length 𝑛. (Contributed by AV, 4-Jun-2024.) |
⊢ ((𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝑉) → (𝐹 ∈ (𝑁-aryF 𝑋) ↔ 𝐹:{𝑤 ∈ Word 𝑋 ∣ (♯‘𝑤) = 𝑁}⟶𝑋)) | ||
Theorem | 0aryfvalel 45868* | A nullary (endo)function on a set 𝑋 is a singleton of an ordered pair with the empty set as first component. A nullary function represents a constant: (𝐹‘∅) = 𝐶 with 𝐶 ∈ 𝑋, see also 0aryfvalelfv 45869. Instead of (𝐹‘∅), nullary functions are usually written as 𝐹() in literature. (Contributed by AV, 15-May-2024.) |
⊢ (𝑋 ∈ 𝑉 → (𝐹 ∈ (0-aryF 𝑋) ↔ ∃𝑥 ∈ 𝑋 𝐹 = {〈∅, 𝑥〉})) | ||
Theorem | 0aryfvalelfv 45869* | The value of a nullary (endo)function on a set 𝑋. (Contributed by AV, 19-May-2024.) |
⊢ (𝐹 ∈ (0-aryF 𝑋) → ∃𝑥 ∈ 𝑋 (𝐹‘∅) = 𝑥) | ||
Theorem | 1aryfvalel 45870 | A unary (endo)function on a set 𝑋. (Contributed by AV, 15-May-2024.) |
⊢ (𝑋 ∈ 𝑉 → (𝐹 ∈ (1-aryF 𝑋) ↔ 𝐹:(𝑋 ↑m {0})⟶𝑋)) | ||
Theorem | fv1arycl 45871 | Closure of a unary (endo)function. (Contributed by AV, 18-May-2024.) |
⊢ ((𝐺 ∈ (1-aryF 𝑋) ∧ 𝐴 ∈ 𝑋) → (𝐺‘{〈0, 𝐴〉}) ∈ 𝑋) | ||
Theorem | 1arympt1 45872* | A unary (endo)function in maps-to notation. (Contributed by AV, 16-May-2024.) |
⊢ 𝐹 = (𝑥 ∈ (𝑋 ↑m {0}) ↦ (𝐴‘(𝑥‘0))) ⇒ ⊢ ((𝑋 ∈ 𝑉 ∧ 𝐴:𝑋⟶𝑋) → 𝐹 ∈ (1-aryF 𝑋)) | ||
Theorem | 1arympt1fv 45873* | The value of a unary (endo)function in maps-to notation. (Contributed by AV, 16-May-2024.) |
⊢ 𝐹 = (𝑥 ∈ (𝑋 ↑m {0}) ↦ (𝐴‘(𝑥‘0))) ⇒ ⊢ ((𝑋 ∈ 𝑉 ∧ 𝐵 ∈ 𝑋) → (𝐹‘{〈0, 𝐵〉}) = (𝐴‘𝐵)) | ||
Theorem | 1arymaptfv 45874* | The value of the mapping of unary (endo)functions. (Contributed by AV, 18-May-2024.) |
⊢ 𝐻 = (ℎ ∈ (1-aryF 𝑋) ↦ (𝑥 ∈ 𝑋 ↦ (ℎ‘{〈0, 𝑥〉}))) ⇒ ⊢ (𝐹 ∈ (1-aryF 𝑋) → (𝐻‘𝐹) = (𝑥 ∈ 𝑋 ↦ (𝐹‘{〈0, 𝑥〉}))) | ||
Theorem | 1arymaptf 45875* | The mapping of unary (endo)functions is a function into the set of endofunctions. (Contributed by AV, 18-May-2024.) |
⊢ 𝐻 = (ℎ ∈ (1-aryF 𝑋) ↦ (𝑥 ∈ 𝑋 ↦ (ℎ‘{〈0, 𝑥〉}))) ⇒ ⊢ (𝑋 ∈ 𝑉 → 𝐻:(1-aryF 𝑋)⟶(𝑋 ↑m 𝑋)) | ||
Theorem | 1arymaptf1 45876* | The mapping of unary (endo)functions is a one-to-one function into the set of endofunctions. (Contributed by AV, 19-May-2024.) |
⊢ 𝐻 = (ℎ ∈ (1-aryF 𝑋) ↦ (𝑥 ∈ 𝑋 ↦ (ℎ‘{〈0, 𝑥〉}))) ⇒ ⊢ (𝑋 ∈ 𝑉 → 𝐻:(1-aryF 𝑋)–1-1→(𝑋 ↑m 𝑋)) | ||
Theorem | 1arymaptfo 45877* | The mapping of unary (endo)functions is a function onto the set of endofunctions. (Contributed by AV, 18-May-2024.) |
⊢ 𝐻 = (ℎ ∈ (1-aryF 𝑋) ↦ (𝑥 ∈ 𝑋 ↦ (ℎ‘{〈0, 𝑥〉}))) ⇒ ⊢ (𝑋 ∈ 𝑉 → 𝐻:(1-aryF 𝑋)–onto→(𝑋 ↑m 𝑋)) | ||
Theorem | 1arymaptf1o 45878* | The mapping of unary (endo)functions is a one-to-one function onto the set of endofunctions. (Contributed by AV, 19-May-2024.) |
⊢ 𝐻 = (ℎ ∈ (1-aryF 𝑋) ↦ (𝑥 ∈ 𝑋 ↦ (ℎ‘{〈0, 𝑥〉}))) ⇒ ⊢ (𝑋 ∈ 𝑉 → 𝐻:(1-aryF 𝑋)–1-1-onto→(𝑋 ↑m 𝑋)) | ||
Theorem | 1aryenef 45879 | The set of unary (endo)functions and the set of endofunctions are equinumerous. (Contributed by AV, 19-May-2024.) |
⊢ (1-aryF 𝑋) ≈ (𝑋 ↑m 𝑋) | ||
Theorem | 1aryenefmnd 45880 | The set of unary (endo)functions and the base set of the monoid of endofunctions are equinumerous. (Contributed by AV, 19-May-2024.) |
⊢ (1-aryF 𝑋) ≈ (Base‘(EndoFMnd‘𝑋)) | ||
Theorem | 2aryfvalel 45881 | A binary (endo)function on a set 𝑋. (Contributed by AV, 20-May-2024.) |
⊢ (𝑋 ∈ 𝑉 → (𝐹 ∈ (2-aryF 𝑋) ↔ 𝐹:(𝑋 ↑m {0, 1})⟶𝑋)) | ||
Theorem | fv2arycl 45882 | Closure of a binary (endo)function. (Contributed by AV, 20-May-2024.) |
⊢ ((𝐺 ∈ (2-aryF 𝑋) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐺‘{〈0, 𝐴〉, 〈1, 𝐵〉}) ∈ 𝑋) | ||
Theorem | 2arympt 45883* | A binary (endo)function in maps-to notation. (Contributed by AV, 20-May-2024.) |
⊢ 𝐹 = (𝑥 ∈ (𝑋 ↑m {0, 1}) ↦ ((𝑥‘0)𝑂(𝑥‘1))) ⇒ ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑂:(𝑋 × 𝑋)⟶𝑋) → 𝐹 ∈ (2-aryF 𝑋)) | ||
Theorem | 2arymptfv 45884* | The value of a binary (endo)function in maps-to notation. (Contributed by AV, 20-May-2024.) |
⊢ 𝐹 = (𝑥 ∈ (𝑋 ↑m {0, 1}) ↦ ((𝑥‘0)𝑂(𝑥‘1))) ⇒ ⊢ ((𝑋 ∈ 𝑉 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐹‘{〈0, 𝐴〉, 〈1, 𝐵〉}) = (𝐴𝑂𝐵)) | ||
Theorem | 2arymaptfv 45885* | The value of the mapping of binary (endo)functions. (Contributed by AV, 21-May-2024.) |
⊢ 𝐻 = (ℎ ∈ (2-aryF 𝑋) ↦ (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (ℎ‘{〈0, 𝑥〉, 〈1, 𝑦〉}))) ⇒ ⊢ (𝐹 ∈ (2-aryF 𝑋) → (𝐻‘𝐹) = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (𝐹‘{〈0, 𝑥〉, 〈1, 𝑦〉}))) | ||
Theorem | 2arymaptf 45886* | The mapping of binary (endo)functions is a function into the set of binary operations. (Contributed by AV, 21-May-2024.) |
⊢ 𝐻 = (ℎ ∈ (2-aryF 𝑋) ↦ (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (ℎ‘{〈0, 𝑥〉, 〈1, 𝑦〉}))) ⇒ ⊢ (𝑋 ∈ 𝑉 → 𝐻:(2-aryF 𝑋)⟶(𝑋 ↑m (𝑋 × 𝑋))) | ||
Theorem | 2arymaptf1 45887* | The mapping of binary (endo)functions is a one-to-one function into the set of binary operations. (Contributed by AV, 22-May-2024.) |
⊢ 𝐻 = (ℎ ∈ (2-aryF 𝑋) ↦ (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (ℎ‘{〈0, 𝑥〉, 〈1, 𝑦〉}))) ⇒ ⊢ (𝑋 ∈ 𝑉 → 𝐻:(2-aryF 𝑋)–1-1→(𝑋 ↑m (𝑋 × 𝑋))) | ||
Theorem | 2arymaptfo 45888* | The mapping of binary (endo)functions is a function onto the set of binary operations. (Contributed by AV, 23-May-2024.) |
⊢ 𝐻 = (ℎ ∈ (2-aryF 𝑋) ↦ (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (ℎ‘{〈0, 𝑥〉, 〈1, 𝑦〉}))) ⇒ ⊢ (𝑋 ∈ 𝑉 → 𝐻:(2-aryF 𝑋)–onto→(𝑋 ↑m (𝑋 × 𝑋))) | ||
Theorem | 2arymaptf1o 45889* | The mapping of binary (endo)functions is a one-to-one function onto the set of binary operations. (Contributed by AV, 23-May-2024.) |
⊢ 𝐻 = (ℎ ∈ (2-aryF 𝑋) ↦ (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (ℎ‘{〈0, 𝑥〉, 〈1, 𝑦〉}))) ⇒ ⊢ (𝑋 ∈ 𝑉 → 𝐻:(2-aryF 𝑋)–1-1-onto→(𝑋 ↑m (𝑋 × 𝑋))) | ||
Theorem | 2aryenef 45890 | The set of binary (endo)functions and the set of binary operations are equinumerous. (Contributed by AV, 19-May-2024.) |
⊢ (2-aryF 𝑋) ≈ (𝑋 ↑m (𝑋 × 𝑋)) | ||
According to Wikipedia ("Ackermann function", 8-May-2024, https://en.wikipedia.org/wiki/Ackermann_function): "In computability theory, the Ackermann function, named after Wilhelm Ackermann, is one of the simplest and earliest-discovered examples of a total computable function that is not primitive recursive. ... One common version is the two-argument Ackermann-Péter function developed by Rózsa Péter and Raphael Robinson. Its value grows very rapidly; for example, A(4,2) results in 2^65536-3 [see ackval42 45930)], an integer of 19,729 decimal digits." In the following, the Ackermann function is defined as iterated 1-ary function (also mentioned in Wikipedia), see df-ack 45894, based on a definition IterComp of "the n-th iterate of (a class/function) f", see df-itco 45893. As an illustration, we have ((IterComp‘𝐹)‘3) = (𝐹 ∘ (𝐹 ∘ 𝐹))) (see itcoval3 45899). The following recursive definition of the Ackermann function follows immediately from Definition df-ack 45894: ((Ack‘(𝑀 + 1))‘𝑁) = (((IterComp‘(Ack‘𝑀))‘(𝑁 + 1))‘1)). That Definition df-ack 45894 is equivalent to Péter's definition is proven by the following three theorems: ackval0val 45920: ((Ack‘0)‘𝑀) = (𝑀 + 1); ackvalsuc0val 45921: ((Ack‘(𝑀 + 1))‘0) = ((Ack‘𝑀)‘1); ackvalsucsucval 45922: ((Ack‘(𝑀 + 1))‘(𝑁 + 1)) = ((Ack‘𝑀)‘((Ack‘(𝑀 + 1))‘𝑁)). The initial values of the Ackermann function are calculated in the following four theorems: ackval0012 45923: 𝐴(0, 0) = 1, 𝐴(0, 1) = 2, 𝐴(0, 2) = 3; ackval1012 45924: 𝐴(1, 0) = 2, 𝐴(1, 1) = 3, 𝐴(1, 3) = 4; ackval2012 45925: 𝐴(2, 0) = 3, 𝐴(2, 1) = 5, 𝐴(2, 3) = 7; ackval3012 45926: 𝐴(3, 0) = 5, 𝐴(3, 1) = ;13, 𝐴(3, 3) = ;29. | ||
Syntax | citco 45891 | Extend the definition of a class to include iterated functions. |
class IterComp | ||
Syntax | cack 45892 | Extend the definition of a class to include the Ackermann function operator. |
class Ack | ||
Definition | df-itco 45893* | Define a function (recursively) that returns the n-th iterate of a class (usually a function) with regard to composition. (Contributed by Thierry Arnoux, 28-Apr-2024.) (Revised by AV, 2-May-2024.) |
⊢ IterComp = (𝑓 ∈ V ↦ seq0((𝑔 ∈ V, 𝑗 ∈ V ↦ (𝑓 ∘ 𝑔)), (𝑖 ∈ ℕ0 ↦ if(𝑖 = 0, ( I ↾ dom 𝑓), 𝑓)))) | ||
Definition | df-ack 45894* | Define the Ackermann function (recursively). (Contributed by Thierry Arnoux, 28-Apr-2024.) (Revised by AV, 2-May-2024.) |
⊢ Ack = seq0((𝑓 ∈ V, 𝑗 ∈ V ↦ (𝑛 ∈ ℕ0 ↦ (((IterComp‘𝑓)‘(𝑛 + 1))‘1))), (𝑖 ∈ ℕ0 ↦ if(𝑖 = 0, (𝑛 ∈ ℕ0 ↦ (𝑛 + 1)), 𝑖))) | ||
Theorem | itcoval 45895* | The value of the function that returns the n-th iterate of a class (usually a function) with regard to composition. (Contributed by AV, 2-May-2024.) |
⊢ (𝐹 ∈ 𝑉 → (IterComp‘𝐹) = seq0((𝑔 ∈ V, 𝑗 ∈ V ↦ (𝐹 ∘ 𝑔)), (𝑖 ∈ ℕ0 ↦ if(𝑖 = 0, ( I ↾ dom 𝐹), 𝐹)))) | ||
Theorem | itcoval0 45896 | A function iterated zero times (defined as identity function). (Contributed by AV, 2-May-2024.) |
⊢ (𝐹 ∈ 𝑉 → ((IterComp‘𝐹)‘0) = ( I ↾ dom 𝐹)) | ||
Theorem | itcoval1 45897 | A function iterated once. (Contributed by AV, 2-May-2024.) |
⊢ ((Rel 𝐹 ∧ 𝐹 ∈ 𝑉) → ((IterComp‘𝐹)‘1) = 𝐹) | ||
Theorem | itcoval2 45898 | A function iterated twice. (Contributed by AV, 2-May-2024.) |
⊢ ((Rel 𝐹 ∧ 𝐹 ∈ 𝑉) → ((IterComp‘𝐹)‘2) = (𝐹 ∘ 𝐹)) | ||
Theorem | itcoval3 45899 | A function iterated three times. (Contributed by AV, 2-May-2024.) |
⊢ ((Rel 𝐹 ∧ 𝐹 ∈ 𝑉) → ((IterComp‘𝐹)‘3) = (𝐹 ∘ (𝐹 ∘ 𝐹))) | ||
Theorem | itcoval0mpt 45900* | A mapping iterated zero times (defined as identity function). (Contributed by AV, 4-May-2024.) |
⊢ 𝐹 = (𝑛 ∈ 𝐴 ↦ 𝐵) ⇒ ⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑛 ∈ 𝐴 𝐵 ∈ 𝑊) → ((IterComp‘𝐹)‘0) = (𝑛 ∈ 𝐴 ↦ 𝑛)) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |