| Metamath
Proof Explorer Theorem List (p. 459 of 497) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30845) |
(30846-32368) |
(32369-49617) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | xlimclim 45801 | Given a sequence of reals, it converges to a real number 𝐴 w.r.t. the standard topology on the reals, if and only if it converges to 𝐴 w.r.t. to the standard topology on the extended reals (see climreeq 45590). (Contributed by Glauco Siliprandi, 5-Feb-2022.) |
| ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝐹:𝑍⟶ℝ) & ⊢ (𝜑 → 𝐴 ∈ ℝ) ⇒ ⊢ (𝜑 → (𝐹~~>*𝐴 ↔ 𝐹 ⇝ 𝐴)) | ||
| Theorem | xlimconst 45802* | A constant sequence converges to its value, w.r.t. the standard topology on the extended reals. (Contributed by Glauco Siliprandi, 5-Feb-2022.) |
| ⊢ Ⅎ𝑘𝜑 & ⊢ Ⅎ𝑘𝐹 & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝐹 Fn 𝑍) & ⊢ (𝜑 → 𝐴 ∈ ℝ*) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = 𝐴) ⇒ ⊢ (𝜑 → 𝐹~~>*𝐴) | ||
| Theorem | climxlim 45803 | A converging sequence in the reals is a converging sequence in the extended reals. (Contributed by Glauco Siliprandi, 5-Feb-2022.) |
| ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝐹:𝑍⟶ℝ) & ⊢ (𝜑 → 𝐹 ⇝ 𝐴) ⇒ ⊢ (𝜑 → 𝐹~~>*𝐴) | ||
| Theorem | xlimbr 45804* | Express the binary relation "sequence 𝐹 converges to point 𝑃 " w.r.t. the standard topology on the extended reals. (Contributed by Glauco Siliprandi, 5-Feb-2022.) |
| ⊢ Ⅎ𝑘𝐹 & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝐹:𝑍⟶ℝ*) & ⊢ 𝐽 = (ordTop‘ ≤ ) ⇒ ⊢ (𝜑 → (𝐹~~>*𝑃 ↔ (𝑃 ∈ ℝ* ∧ ∀𝑢 ∈ 𝐽 (𝑃 ∈ 𝑢 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑢))))) | ||
| Theorem | fuzxrpmcn 45805 | A function mapping from an upper set of integers to the extended reals is a partial map on the complex numbers. (Contributed by Glauco Siliprandi, 5-Feb-2022.) |
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝐹:𝑍⟶ℝ*) ⇒ ⊢ (𝜑 → 𝐹 ∈ (ℝ* ↑pm ℂ)) | ||
| Theorem | cnrefiisplem 45806* | Lemma for cnrefiisp 45807 (some local definitions are used). (Contributed by Glauco Siliprandi, 5-Feb-2022.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → ¬ 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ Fin) & ⊢ 𝐶 = (ℝ ∪ 𝐵) & ⊢ 𝐷 = ({(abs‘(ℑ‘𝐴))} ∪ ∪ 𝑦 ∈ ((𝐵 ∩ ℂ) ∖ {𝐴}){(abs‘(𝑦 − 𝐴))}) & ⊢ 𝑋 = inf(𝐷, ℝ*, < ) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ ℝ+ ∀𝑦 ∈ 𝐶 ((𝑦 ∈ ℂ ∧ 𝑦 ≠ 𝐴) → 𝑥 ≤ (abs‘(𝑦 − 𝐴)))) | ||
| Theorem | cnrefiisp 45807* | A non-real, complex number is an isolated point w.r.t. the union of the reals with any finite set (the extended reals is an example of such a union). (Contributed by Glauco Siliprandi, 5-Feb-2022.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → ¬ 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ Fin) & ⊢ 𝐶 = (ℝ ∪ 𝐵) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ ℝ+ ∀𝑦 ∈ 𝐶 ((𝑦 ∈ ℂ ∧ 𝑦 ≠ 𝐴) → 𝑥 ≤ (abs‘(𝑦 − 𝐴)))) | ||
| Theorem | xlimxrre 45808* | If a sequence ranging over the extended reals converges w.r.t. the standard topology on the complex numbers, then there exists an upper set of the integers over which the function is real-valued (the weaker hypothesis 𝐹 ∈ dom ⇝ is probably not enough, since in principle we could have +∞ ∈ ℂ and -∞ ∈ ℂ). (Contributed by Glauco Siliprandi, 5-Feb-2022.) |
| ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝐹:𝑍⟶ℝ*) & ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐹~~>*𝐴) ⇒ ⊢ (𝜑 → ∃𝑗 ∈ 𝑍 (𝐹 ↾ (ℤ≥‘𝑗)):(ℤ≥‘𝑗)⟶ℝ) | ||
| Theorem | xlimmnfvlem1 45809* | Lemma for xlimmnfv 45811: the "only if" part of the biconditional. (Contributed by Glauco Siliprandi, 5-Feb-2022.) |
| ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝐹:𝑍⟶ℝ*) & ⊢ (𝜑 → 𝐹~~>*-∞) & ⊢ (𝜑 → 𝑋 ∈ ℝ) ⇒ ⊢ (𝜑 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ≤ 𝑋) | ||
| Theorem | xlimmnfvlem2 45810* | Lemma for xlimmnf 45818: the "if" part of the biconditional. (Contributed by Glauco Siliprandi, 5-Feb-2022.) |
| ⊢ Ⅎ𝑘𝜑 & ⊢ Ⅎ𝑗𝜑 & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝐹:𝑍⟶ℝ*) & ⊢ (𝜑 → ∀𝑥 ∈ ℝ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) < 𝑥) ⇒ ⊢ (𝜑 → 𝐹~~>*-∞) | ||
| Theorem | xlimmnfv 45811* | A function converges to minus infinity if it eventually becomes (and stays) smaller than any given real number. (Contributed by Glauco Siliprandi, 5-Feb-2022.) |
| ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝐹:𝑍⟶ℝ*) ⇒ ⊢ (𝜑 → (𝐹~~>*-∞ ↔ ∀𝑥 ∈ ℝ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ≤ 𝑥)) | ||
| Theorem | xlimconst2 45812* | A sequence that eventually becomes constant, converges to its constant value (w.r.t. the standard topology on the extended reals). (Contributed by Glauco Siliprandi, 5-Feb-2022.) |
| ⊢ Ⅎ𝑘𝜑 & ⊢ Ⅎ𝑘𝐹 & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝐹:𝑍⟶ℝ*) & ⊢ (𝜑 → 𝑁 ∈ 𝑍) & ⊢ (𝜑 → 𝐴 ∈ ℝ*) & ⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑁)) → (𝐹‘𝑘) = 𝐴) ⇒ ⊢ (𝜑 → 𝐹~~>*𝐴) | ||
| Theorem | xlimpnfvlem1 45813* | Lemma for xlimpnfv 45815: the "only if" part of the biconditional. (Contributed by Glauco Siliprandi, 5-Feb-2022.) |
| ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝐹:𝑍⟶ℝ*) & ⊢ (𝜑 → 𝐹~~>*+∞) & ⊢ (𝜑 → 𝑋 ∈ ℝ) ⇒ ⊢ (𝜑 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)𝑋 ≤ (𝐹‘𝑘)) | ||
| Theorem | xlimpnfvlem2 45814* | Lemma for xlimpnfv 45815: the "if" part of the biconditional. (Contributed by Glauco Siliprandi, 5-Feb-2022.) |
| ⊢ Ⅎ𝑘𝜑 & ⊢ Ⅎ𝑗𝜑 & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝐹:𝑍⟶ℝ*) & ⊢ (𝜑 → ∀𝑥 ∈ ℝ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)𝑥 < (𝐹‘𝑘)) ⇒ ⊢ (𝜑 → 𝐹~~>*+∞) | ||
| Theorem | xlimpnfv 45815* | A function converges to plus infinity if it eventually becomes (and stays) larger than any given real number. (Contributed by Glauco Siliprandi, 5-Feb-2022.) |
| ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝐹:𝑍⟶ℝ*) ⇒ ⊢ (𝜑 → (𝐹~~>*+∞ ↔ ∀𝑥 ∈ ℝ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)𝑥 ≤ (𝐹‘𝑘))) | ||
| Theorem | xlimclim2lem 45816* | Lemma for xlimclim2 45817. Here it is additionally assumed that the sequence will eventually become (and stay) real. (Contributed by Glauco Siliprandi, 5-Feb-2022.) |
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝐹:𝑍⟶ℝ*) & ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → ∃𝑗 ∈ 𝑍 (𝐹 ↾ (ℤ≥‘𝑗)):(ℤ≥‘𝑗)⟶ℝ) ⇒ ⊢ (𝜑 → (𝐹~~>*𝐴 ↔ 𝐹 ⇝ 𝐴)) | ||
| Theorem | xlimclim2 45817 | Given a sequence of extended reals, it converges to a real number 𝐴 w.r.t. the standard topology on the reals (see climreeq 45590), if and only if it converges to 𝐴 w.r.t. to the standard topology on the extended reals. In order for the first part of the statement to even make sense, the sequence will of course eventually become (and stay) real: showing this, is the key step of the proof. (Contributed by Glauco Siliprandi, 5-Feb-2022.) |
| ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝐹:𝑍⟶ℝ*) & ⊢ (𝜑 → 𝐴 ∈ ℝ) ⇒ ⊢ (𝜑 → (𝐹~~>*𝐴 ↔ 𝐹 ⇝ 𝐴)) | ||
| Theorem | xlimmnf 45818* | A function converges to minus infinity if it eventually becomes (and stays) smaller than any given real number. (Contributed by Glauco Siliprandi, 5-Feb-2022.) |
| ⊢ Ⅎ𝑘𝐹 & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝐹:𝑍⟶ℝ*) ⇒ ⊢ (𝜑 → (𝐹~~>*-∞ ↔ ∀𝑥 ∈ ℝ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ≤ 𝑥)) | ||
| Theorem | xlimpnf 45819* | A function converges to plus infinity if it eventually becomes (and stays) larger than any given real number. (Contributed by Glauco Siliprandi, 5-Feb-2022.) |
| ⊢ Ⅎ𝑘𝐹 & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝐹:𝑍⟶ℝ*) ⇒ ⊢ (𝜑 → (𝐹~~>*+∞ ↔ ∀𝑥 ∈ ℝ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)𝑥 ≤ (𝐹‘𝑘))) | ||
| Theorem | xlimmnfmpt 45820* | A function converges to plus infinity if it eventually becomes (and stays) larger than any given real number. (Contributed by Glauco Siliprandi, 5-Feb-2022.) |
| ⊢ Ⅎ𝑘𝜑 & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐵 ∈ ℝ*) & ⊢ 𝐹 = (𝑘 ∈ 𝑍 ↦ 𝐵) ⇒ ⊢ (𝜑 → (𝐹~~>*-∞ ↔ ∀𝑥 ∈ ℝ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)𝐵 ≤ 𝑥)) | ||
| Theorem | xlimpnfmpt 45821* | A function converges to plus infinity if it eventually becomes (and stays) larger than any given real number. (Contributed by Glauco Siliprandi, 5-Feb-2022.) |
| ⊢ Ⅎ𝑘𝜑 & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐵 ∈ ℝ*) & ⊢ 𝐹 = (𝑘 ∈ 𝑍 ↦ 𝐵) ⇒ ⊢ (𝜑 → (𝐹~~>*+∞ ↔ ∀𝑥 ∈ ℝ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)𝑥 ≤ 𝐵)) | ||
| Theorem | climxlim2lem 45822 | In this lemma for climxlim2 45823 there is the additional assumption that the converging function is complex-valued on the whole domain. (Contributed by Glauco Siliprandi, 5-Feb-2022.) |
| ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝐹:𝑍⟶ℝ*) & ⊢ (𝜑 → 𝐹:𝑍⟶ℂ) & ⊢ (𝜑 → 𝐹 ⇝ 𝐴) ⇒ ⊢ (𝜑 → 𝐹~~>*𝐴) | ||
| Theorem | climxlim2 45823 | A sequence of extended reals, converging w.r.t. the standard topology on the complex numbers is a converging sequence w.r.t. the standard topology on the extended reals. This is non-trivial, because +∞ and -∞ could, in principle, be complex numbers. (Contributed by Glauco Siliprandi, 5-Feb-2022.) |
| ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝐹:𝑍⟶ℝ*) & ⊢ (𝜑 → 𝐹 ⇝ 𝐴) ⇒ ⊢ (𝜑 → 𝐹~~>*𝐴) | ||
| Theorem | dfxlim2v 45824* | An alternative definition for the convergence relation in the extended real numbers. This resembles what's found in most textbooks: three distinct definitions for the same symbol (limit of a sequence). (Contributed by Glauco Siliprandi, 5-Feb-2022.) |
| ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝐹:𝑍⟶ℝ*) ⇒ ⊢ (𝜑 → (𝐹~~>*𝐴 ↔ (𝐹 ⇝ 𝐴 ∨ (𝐴 = -∞ ∧ ∀𝑥 ∈ ℝ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ≤ 𝑥) ∨ (𝐴 = +∞ ∧ ∀𝑥 ∈ ℝ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)𝑥 ≤ (𝐹‘𝑘))))) | ||
| Theorem | dfxlim2 45825* | An alternative definition for the convergence relation in the extended real numbers. This resembles what's found in most textbooks: three distinct definitions for the same symbol (limit of a sequence). (Contributed by Glauco Siliprandi, 5-Feb-2022.) |
| ⊢ Ⅎ𝑘𝐹 & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝐹:𝑍⟶ℝ*) ⇒ ⊢ (𝜑 → (𝐹~~>*𝐴 ↔ (𝐹 ⇝ 𝐴 ∨ (𝐴 = -∞ ∧ ∀𝑥 ∈ ℝ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ≤ 𝑥) ∨ (𝐴 = +∞ ∧ ∀𝑥 ∈ ℝ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)𝑥 ≤ (𝐹‘𝑘))))) | ||
| Theorem | climresd 45826 | A function restricted to upper integers converges iff the original function converges. (Contributed by Glauco Siliprandi, 23-Apr-2023.) |
| ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐹 ∈ 𝑉) ⇒ ⊢ (𝜑 → ((𝐹 ↾ (ℤ≥‘𝑀)) ⇝ 𝐴 ↔ 𝐹 ⇝ 𝐴)) | ||
| Theorem | climresdm 45827 | A real function converges iff its restriction to an upper integers set converges. (Contributed by Glauco Siliprandi, 23-Apr-2023.) |
| ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐹 ∈ 𝑉) ⇒ ⊢ (𝜑 → (𝐹 ∈ dom ⇝ ↔ (𝐹 ↾ (ℤ≥‘𝑀)) ∈ dom ⇝ )) | ||
| Theorem | dmclimxlim 45828 | A real valued sequence that converges w.r.t. the topology on the complex numbers, converges w.r.t. the topology on the extended reals (Contributed by Glauco Siliprandi, 23-Apr-2023.) |
| ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝐹:𝑍⟶ℝ) & ⊢ (𝜑 → 𝐹 ∈ dom ⇝ ) ⇒ ⊢ (𝜑 → 𝐹 ∈ dom ~~>*) | ||
| Theorem | xlimmnflimsup2 45829 | A sequence of extended reals converges to -∞ if and only if its superior limit is also -∞. (Contributed by Glauco Siliprandi, 23-Apr-2023.) |
| ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝐹:𝑍⟶ℝ*) ⇒ ⊢ (𝜑 → (𝐹~~>*-∞ ↔ (lim sup‘𝐹) = -∞)) | ||
| Theorem | xlimuni 45830 | An infinite sequence converges to at most one limit (w.r.t. to the standard topology on the extended reals). (Contributed by Glauco Siliprandi, 23-Apr-2023.) |
| ⊢ (𝜑 → 𝐹~~>*𝐴) & ⊢ (𝜑 → 𝐹~~>*𝐵) ⇒ ⊢ (𝜑 → 𝐴 = 𝐵) | ||
| Theorem | xlimclimdm 45831 | A sequence of extended reals that converges to a real w.r.t. the standard topology on the extended reals, also converges w.r.t. to the standard topology on the complex numbers. (Contributed by Glauco Siliprandi, 23-Apr-2023.) |
| ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝐹:𝑍⟶ℝ*) & ⊢ (𝜑 → 𝐹~~>*𝐴) & ⊢ (𝜑 → 𝐴 ∈ ℝ) ⇒ ⊢ (𝜑 → 𝐹 ∈ dom ⇝ ) | ||
| Theorem | xlimfun 45832 | The convergence relation on the extended reals is a function. (Contributed by Glauco Siliprandi, 23-Apr-2023.) |
| ⊢ Fun ~~>* | ||
| Theorem | xlimmnflimsup 45833 | If a sequence of extended reals converges to -∞ then its superior limit is also -∞. (Contributed by Glauco Siliprandi, 23-Apr-2023.) |
| ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝐹:𝑍⟶ℝ*) & ⊢ (𝜑 → 𝐹~~>*-∞) ⇒ ⊢ (𝜑 → (lim sup‘𝐹) = -∞) | ||
| Theorem | xlimdm 45834 | Two ways to express that a function has a limit. (The expression (~~>*‘𝐹) is sometimes useful as a shorthand for "the unique limit of the function 𝐹"). (Contributed by Glauco Siliprandi, 23-Apr-2023.) |
| ⊢ (𝐹 ∈ dom ~~>* ↔ 𝐹~~>*(~~>*‘𝐹)) | ||
| Theorem | xlimpnfxnegmnf2 45835* | A sequence converges to +∞ if and only if its negation converges to -∞. (Contributed by Glauco Siliprandi, 23-Apr-2023.) |
| ⊢ Ⅎ𝑗𝐹 & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝐹:𝑍⟶ℝ*) ⇒ ⊢ (𝜑 → (𝐹~~>*+∞ ↔ (𝑗 ∈ 𝑍 ↦ -𝑒(𝐹‘𝑗))~~>*-∞)) | ||
| Theorem | xlimresdm 45836 | A function converges in the extended reals iff its restriction to an upper integers set converges. (Contributed by Glauco Siliprandi, 23-Apr-2023.) |
| ⊢ (𝜑 → 𝐹 ∈ (ℝ* ↑pm ℂ)) & ⊢ (𝜑 → 𝑀 ∈ ℤ) ⇒ ⊢ (𝜑 → (𝐹 ∈ dom ~~>* ↔ (𝐹 ↾ (ℤ≥‘𝑀)) ∈ dom ~~>*)) | ||
| Theorem | xlimpnfliminf 45837 | If a sequence of extended reals converges to +∞ then its superior limit is also +∞. (Contributed by Glauco Siliprandi, 23-Apr-2023.) |
| ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝐹:𝑍⟶ℝ*) & ⊢ (𝜑 → 𝐹~~>*+∞) ⇒ ⊢ (𝜑 → (lim inf‘𝐹) = +∞) | ||
| Theorem | xlimpnfliminf2 45838 | A sequence of extended reals converges to +∞ if and only if its superior limit is also +∞. (Contributed by Glauco Siliprandi, 23-Apr-2023.) |
| ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝐹:𝑍⟶ℝ*) ⇒ ⊢ (𝜑 → (𝐹~~>*+∞ ↔ (lim inf‘𝐹) = +∞)) | ||
| Theorem | xlimliminflimsup 45839 | A sequence of extended reals converges if and only if its inferior limit and its superior limit are equal. (Contributed by Glauco Siliprandi, 23-Apr-2023.) |
| ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝐹:𝑍⟶ℝ*) ⇒ ⊢ (𝜑 → (𝐹 ∈ dom ~~>* ↔ (lim inf‘𝐹) = (lim sup‘𝐹))) | ||
| Theorem | xlimlimsupleliminf 45840 | A sequence of extended reals converges if and only if its superior limit is smaller than or equal to its inferior limit. (Contributed by Glauco Siliprandi, 2-Dec-2023.) |
| ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝐹:𝑍⟶ℝ*) ⇒ ⊢ (𝜑 → (𝐹 ∈ dom ~~>* ↔ (lim sup‘𝐹) ≤ (lim inf‘𝐹))) | ||
| Theorem | coseq0 45841 | A complex number whose cosine is zero. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ (𝐴 ∈ ℂ → ((cos‘𝐴) = 0 ↔ ((𝐴 / π) + (1 / 2)) ∈ ℤ)) | ||
| Theorem | sinmulcos 45842 | Multiplication formula for sine and cosine. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((sin‘𝐴) · (cos‘𝐵)) = (((sin‘(𝐴 + 𝐵)) + (sin‘(𝐴 − 𝐵))) / 2)) | ||
| Theorem | coskpi2 45843 | The cosine of an integer multiple of negative π is either 1 or negative 1. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ (𝐾 ∈ ℤ → (cos‘(𝐾 · π)) = if(2 ∥ 𝐾, 1, -1)) | ||
| Theorem | cosnegpi 45844 | The cosine of negative π is negative 1. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ (cos‘-π) = -1 | ||
| Theorem | sinaover2ne0 45845 | If 𝐴 in (0, 2π) then sin(𝐴 / 2) is not 0. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ (𝐴 ∈ (0(,)(2 · π)) → (sin‘(𝐴 / 2)) ≠ 0) | ||
| Theorem | cosknegpi 45846 | The cosine of an integer multiple of negative π is either 1 or negative 1. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ (𝐾 ∈ ℤ → (cos‘(𝐾 · -π)) = if(2 ∥ 𝐾, 1, -1)) | ||
| Theorem | mulcncff 45847 | The multiplication of two continuous complex functions is continuous. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ (𝜑 → 𝐹 ∈ (𝑋–cn→ℂ)) & ⊢ (𝜑 → 𝐺 ∈ (𝑋–cn→ℂ)) ⇒ ⊢ (𝜑 → (𝐹 ∘f · 𝐺) ∈ (𝑋–cn→ℂ)) | ||
| Theorem | cncfmptssg 45848* | A continuous complex function restricted to a subset is continuous, using maps-to notation. This theorem generalizes cncfmptss 45564 because it allows to establish a subset for the codomain also. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐸) & ⊢ (𝜑 → 𝐹 ∈ (𝐴–cn→𝐵)) & ⊢ (𝜑 → 𝐶 ⊆ 𝐴) & ⊢ (𝜑 → 𝐷 ⊆ 𝐵) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → 𝐸 ∈ 𝐷) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝐶 ↦ 𝐸) ∈ (𝐶–cn→𝐷)) | ||
| Theorem | constcncfg 45849* | A constant function is a continuous function on ℂ. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ (𝜑 → 𝐴 ⊆ ℂ) & ⊢ (𝜑 → 𝐵 ∈ 𝐶) & ⊢ (𝜑 → 𝐶 ⊆ ℂ) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ (𝐴–cn→𝐶)) | ||
| Theorem | idcncfg 45850* | The identity function is a continuous function on ℂ. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ (𝜑 → 𝐴 ⊆ 𝐵) & ⊢ (𝜑 → 𝐵 ⊆ ℂ) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝑥) ∈ (𝐴–cn→𝐵)) | ||
| Theorem | cncfshift 45851* | A periodic continuous function stays continuous if the domain is shifted a period. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ (𝜑 → 𝐴 ⊆ ℂ) & ⊢ (𝜑 → 𝑇 ∈ ℂ) & ⊢ 𝐵 = {𝑥 ∈ ℂ ∣ ∃𝑦 ∈ 𝐴 𝑥 = (𝑦 + 𝑇)} & ⊢ (𝜑 → 𝐹 ∈ (𝐴–cn→ℂ)) & ⊢ 𝐺 = (𝑥 ∈ 𝐵 ↦ (𝐹‘(𝑥 − 𝑇))) ⇒ ⊢ (𝜑 → 𝐺 ∈ (𝐵–cn→ℂ)) | ||
| Theorem | resincncf 45852 | sin restricted to reals is continuous from reals to reals. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ (sin ↾ ℝ) ∈ (ℝ–cn→ℝ) | ||
| Theorem | addccncf2 45853* | Adding a constant is a continuous function. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ (𝐵 + 𝑥)) ⇒ ⊢ ((𝐴 ⊆ ℂ ∧ 𝐵 ∈ ℂ) → 𝐹 ∈ (𝐴–cn→ℂ)) | ||
| Theorem | 0cnf 45854 | The empty set is a continuous function. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ ∅ ∈ ({∅} Cn {∅}) | ||
| Theorem | fsumcncf 45855* | The finite sum of continuous complex function is continuous. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ (𝜑 → 𝑋 ⊆ ℂ) & ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (𝑥 ∈ 𝑋 ↦ 𝐵) ∈ (𝑋–cn→ℂ)) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ 𝐴 𝐵) ∈ (𝑋–cn→ℂ)) | ||
| Theorem | cncfperiod 45856* | A periodic continuous function stays continuous if the domain is shifted a period. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ (𝜑 → 𝐴 ⊆ ℂ) & ⊢ (𝜑 → 𝑇 ∈ ℝ) & ⊢ 𝐵 = {𝑥 ∈ ℂ ∣ ∃𝑦 ∈ 𝐴 𝑥 = (𝑦 + 𝑇)} & ⊢ (𝜑 → 𝐹:dom 𝐹⟶ℂ) & ⊢ (𝜑 → 𝐵 ⊆ dom 𝐹) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐹‘(𝑥 + 𝑇)) = (𝐹‘𝑥)) & ⊢ (𝜑 → (𝐹 ↾ 𝐴) ∈ (𝐴–cn→ℂ)) ⇒ ⊢ (𝜑 → (𝐹 ↾ 𝐵) ∈ (𝐵–cn→ℂ)) | ||
| Theorem | subcncff 45857 | The subtraction of two continuous complex functions is continuous. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ (𝜑 → 𝐹 ∈ (𝑋–cn→ℂ)) & ⊢ (𝜑 → 𝐺 ∈ (𝑋–cn→ℂ)) ⇒ ⊢ (𝜑 → (𝐹 ∘f − 𝐺) ∈ (𝑋–cn→ℂ)) | ||
| Theorem | negcncfg 45858* | The opposite of a continuous function is continuous. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ (𝐴–cn→ℂ)) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ -𝐵) ∈ (𝐴–cn→ℂ)) | ||
| Theorem | cnfdmsn 45859* | A function with a singleton domain is continuous. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝑥 ∈ {𝐴} ↦ 𝐵) ∈ (𝒫 {𝐴} Cn 𝒫 {𝐵})) | ||
| Theorem | cncfcompt 45860* | Composition of continuous functions. A generalization of cncfmpt1f 24856 to arbitrary domains. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ (𝐴–cn→𝐶)) & ⊢ (𝜑 → 𝐹 ∈ (𝐶–cn→𝐷)) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ (𝐹‘𝐵)) ∈ (𝐴–cn→𝐷)) | ||
| Theorem | addcncff 45861 | The sum of two continuous complex functions is continuous. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ (𝜑 → 𝐹 ∈ (𝑋–cn→ℂ)) & ⊢ (𝜑 → 𝐺 ∈ (𝑋–cn→ℂ)) ⇒ ⊢ (𝜑 → (𝐹 ∘f + 𝐺) ∈ (𝑋–cn→ℂ)) | ||
| Theorem | ioccncflimc 45862 | Limit at the upper bound of a continuous function defined on a left-open right-closed interval. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ*) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐴 < 𝐵) & ⊢ (𝜑 → 𝐹 ∈ ((𝐴(,]𝐵)–cn→ℂ)) ⇒ ⊢ (𝜑 → (𝐹‘𝐵) ∈ ((𝐹 ↾ (𝐴(,)𝐵)) limℂ 𝐵)) | ||
| Theorem | cncfuni 45863* | A complex function on a subset of the complex numbers is continuous if its domain is the union of relatively open subsets over which the function is continuous. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ (𝜑 → 𝐴 ⊆ ℂ) & ⊢ (𝜑 → 𝐹:𝐴⟶ℂ) & ⊢ (𝜑 → 𝐴 ⊆ ∪ 𝐵) & ⊢ ((𝜑 ∧ 𝑏 ∈ 𝐵) → (𝐴 ∩ 𝑏) ∈ ((TopOpen‘ℂfld) ↾t 𝐴)) & ⊢ ((𝜑 ∧ 𝑏 ∈ 𝐵) → (𝐹 ↾ 𝑏) ∈ ((𝐴 ∩ 𝑏)–cn→ℂ)) ⇒ ⊢ (𝜑 → 𝐹 ∈ (𝐴–cn→ℂ)) | ||
| Theorem | icccncfext 45864* | A continuous function on a closed interval can be extended to a continuous function on the whole real line. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ Ⅎ𝑥𝐹 & ⊢ 𝐽 = (topGen‘ran (,)) & ⊢ 𝑌 = ∪ 𝐾 & ⊢ 𝐺 = (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐴[,]𝐵), (𝐹‘𝑥), if(𝑥 < 𝐴, (𝐹‘𝐴), (𝐹‘𝐵)))) & ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐴 ≤ 𝐵) & ⊢ (𝜑 → 𝐾 ∈ Top) & ⊢ (𝜑 → 𝐹 ∈ ((𝐽 ↾t (𝐴[,]𝐵)) Cn 𝐾)) ⇒ ⊢ (𝜑 → (𝐺 ∈ (𝐽 Cn (𝐾 ↾t ran 𝐹)) ∧ (𝐺 ↾ (𝐴[,]𝐵)) = 𝐹)) | ||
| Theorem | cncficcgt0 45865* | A the absolute value of a continuous function on a closed interval, that is never 0, has a strictly positive lower bound. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ 𝐹 = (𝑥 ∈ (𝐴[,]𝐵) ↦ 𝐶) & ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐴 ≤ 𝐵) & ⊢ (𝜑 → 𝐹 ∈ ((𝐴[,]𝐵)–cn→(ℝ ∖ {0}))) ⇒ ⊢ (𝜑 → ∃𝑦 ∈ ℝ+ ∀𝑥 ∈ (𝐴[,]𝐵)𝑦 ≤ (abs‘𝐶)) | ||
| Theorem | icocncflimc 45866 | Limit at the lower bound, of a continuous function defined on a left-closed right-open interval. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ*) & ⊢ (𝜑 → 𝐴 < 𝐵) & ⊢ (𝜑 → 𝐹 ∈ ((𝐴[,)𝐵)–cn→ℂ)) ⇒ ⊢ (𝜑 → (𝐹‘𝐴) ∈ ((𝐹 ↾ (𝐴(,)𝐵)) limℂ 𝐴)) | ||
| Theorem | cncfdmsn 45867* | A complex function with a singleton domain is continuous. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝑥 ∈ {𝐴} ↦ 𝐵) ∈ ({𝐴}–cn→{𝐵})) | ||
| Theorem | divcncff 45868 | The quotient of two continuous complex functions is continuous. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ (𝜑 → 𝐹 ∈ (𝑋–cn→ℂ)) & ⊢ (𝜑 → 𝐺 ∈ (𝑋–cn→(ℂ ∖ {0}))) ⇒ ⊢ (𝜑 → (𝐹 ∘f / 𝐺) ∈ (𝑋–cn→ℂ)) | ||
| Theorem | cncfshiftioo 45869* | A periodic continuous function stays continuous if the domain is an open interval that is shifted a period. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ 𝐶 = (𝐴(,)𝐵) & ⊢ (𝜑 → 𝑇 ∈ ℝ) & ⊢ 𝐷 = ((𝐴 + 𝑇)(,)(𝐵 + 𝑇)) & ⊢ (𝜑 → 𝐹 ∈ (𝐶–cn→ℂ)) & ⊢ 𝐺 = (𝑥 ∈ 𝐷 ↦ (𝐹‘(𝑥 − 𝑇))) ⇒ ⊢ (𝜑 → 𝐺 ∈ (𝐷–cn→ℂ)) | ||
| Theorem | cncfiooicclem1 45870* | A continuous function 𝐹 on an open interval (𝐴(,)𝐵) can be extended to a continuous function 𝐺 on the corresponding closed interval, if it has a finite right limit 𝑅 in 𝐴 and a finite left limit 𝐿 in 𝐵. 𝐹 can be complex-valued. This lemma assumes 𝐴 < 𝐵, the invoking theorem drops this assumption. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ Ⅎ𝑥𝜑 & ⊢ 𝐺 = (𝑥 ∈ (𝐴[,]𝐵) ↦ if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹‘𝑥)))) & ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐴 < 𝐵) & ⊢ (𝜑 → 𝐹 ∈ ((𝐴(,)𝐵)–cn→ℂ)) & ⊢ (𝜑 → 𝐿 ∈ (𝐹 limℂ 𝐵)) & ⊢ (𝜑 → 𝑅 ∈ (𝐹 limℂ 𝐴)) ⇒ ⊢ (𝜑 → 𝐺 ∈ ((𝐴[,]𝐵)–cn→ℂ)) | ||
| Theorem | cncfiooicc 45871* | A continuous function 𝐹 on an open interval (𝐴(,)𝐵) can be extended to a continuous function 𝐺 on the corresponding closed interval, if it has a finite right limit 𝑅 in 𝐴 and a finite left limit 𝐿 in 𝐵. 𝐹 can be complex-valued. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ Ⅎ𝑥𝜑 & ⊢ 𝐺 = (𝑥 ∈ (𝐴[,]𝐵) ↦ if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹‘𝑥)))) & ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐹 ∈ ((𝐴(,)𝐵)–cn→ℂ)) & ⊢ (𝜑 → 𝐿 ∈ (𝐹 limℂ 𝐵)) & ⊢ (𝜑 → 𝑅 ∈ (𝐹 limℂ 𝐴)) ⇒ ⊢ (𝜑 → 𝐺 ∈ ((𝐴[,]𝐵)–cn→ℂ)) | ||
| Theorem | cncfiooiccre 45872* | A continuous function 𝐹 on an open interval (𝐴(,)𝐵) can be extended to a continuous function 𝐺 on the corresponding closed interval, if it has a finite right limit 𝑅 in 𝐴 and a finite left limit 𝐿 in 𝐵. 𝐹 is assumed to be real-valued. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ Ⅎ𝑥𝜑 & ⊢ 𝐺 = (𝑥 ∈ (𝐴[,]𝐵) ↦ if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹‘𝑥)))) & ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐴 < 𝐵) & ⊢ (𝜑 → 𝐹 ∈ ((𝐴(,)𝐵)–cn→ℝ)) & ⊢ (𝜑 → 𝐿 ∈ (𝐹 limℂ 𝐵)) & ⊢ (𝜑 → 𝑅 ∈ (𝐹 limℂ 𝐴)) ⇒ ⊢ (𝜑 → 𝐺 ∈ ((𝐴[,]𝐵)–cn→ℝ)) | ||
| Theorem | cncfioobdlem 45873* | 𝐺 actually extends 𝐹. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐹:(𝐴(,)𝐵)⟶𝑉) & ⊢ 𝐺 = (𝑥 ∈ (𝐴[,]𝐵) ↦ if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹‘𝑥)))) & ⊢ (𝜑 → 𝐶 ∈ (𝐴(,)𝐵)) ⇒ ⊢ (𝜑 → (𝐺‘𝐶) = (𝐹‘𝐶)) | ||
| Theorem | cncfioobd 45874* | A continuous function 𝐹 on an open interval (𝐴(,)𝐵) with a finite right limit 𝑅 in 𝐴 and a finite left limit 𝐿 in 𝐵 is bounded. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐹 ∈ ((𝐴(,)𝐵)–cn→ℂ)) & ⊢ (𝜑 → 𝐿 ∈ (𝐹 limℂ 𝐵)) & ⊢ (𝜑 → 𝑅 ∈ (𝐹 limℂ 𝐴)) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ ℝ ∀𝑦 ∈ (𝐴(,)𝐵)(abs‘(𝐹‘𝑦)) ≤ 𝑥) | ||
| Theorem | jumpncnp 45875 | Jump discontinuity or discontinuity of the first kind: if the left and the right limit don't match, the function is discontinuous at the point. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ 𝐾 = (TopOpen‘ℂfld) & ⊢ (𝜑 → 𝐴 ⊆ ℝ) & ⊢ 𝐽 = (topGen‘ran (,)) & ⊢ (𝜑 → 𝐹:𝐴⟶ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ((limPt‘𝐽)‘(𝐴 ∩ (-∞(,)𝐵)))) & ⊢ (𝜑 → 𝐵 ∈ ((limPt‘𝐽)‘(𝐴 ∩ (𝐵(,)+∞)))) & ⊢ (𝜑 → 𝐿 ∈ ((𝐹 ↾ (-∞(,)𝐵)) limℂ 𝐵)) & ⊢ (𝜑 → 𝑅 ∈ ((𝐹 ↾ (𝐵(,)+∞)) limℂ 𝐵)) & ⊢ (𝜑 → 𝐿 ≠ 𝑅) ⇒ ⊢ (𝜑 → ¬ 𝐹 ∈ ((𝐽 CnP (TopOpen‘ℂfld))‘𝐵)) | ||
| Theorem | cxpcncf2 45876* | The complex power function is continuous with respect to its second argument. (Contributed by Glauco Siliprandi, 5-Apr-2020.) |
| ⊢ (𝐴 ∈ (ℂ ∖ (-∞(,]0)) → (𝑥 ∈ ℂ ↦ (𝐴↑𝑐𝑥)) ∈ (ℂ–cn→ℂ)) | ||
| Theorem | fprodcncf 45877* | The finite product of continuous complex functions is continuous. (Contributed by Glauco Siliprandi, 5-Apr-2020.) |
| ⊢ (𝜑 → 𝐴 ⊆ ℂ) & ⊢ (𝜑 → 𝐵 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵) → 𝐶 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐵) → (𝑥 ∈ 𝐴 ↦ 𝐶) ∈ (𝐴–cn→ℂ)) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ ∏𝑘 ∈ 𝐵 𝐶) ∈ (𝐴–cn→ℂ)) | ||
| Theorem | add1cncf 45878* | Addition to a constant is a continuous function. (Contributed by Glauco Siliprandi, 8-Apr-2021.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ 𝐹 = (𝑥 ∈ ℂ ↦ (𝑥 + 𝐴)) ⇒ ⊢ (𝜑 → 𝐹 ∈ (ℂ–cn→ℂ)) | ||
| Theorem | add2cncf 45879* | Addition to a constant is a continuous function. (Contributed by Glauco Siliprandi, 8-Apr-2021.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ 𝐹 = (𝑥 ∈ ℂ ↦ (𝐴 + 𝑥)) ⇒ ⊢ (𝜑 → 𝐹 ∈ (ℂ–cn→ℂ)) | ||
| Theorem | sub1cncfd 45880* | Subtracting a constant is a continuous function. (Contributed by Glauco Siliprandi, 8-Apr-2021.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ 𝐹 = (𝑥 ∈ ℂ ↦ (𝑥 − 𝐴)) ⇒ ⊢ (𝜑 → 𝐹 ∈ (ℂ–cn→ℂ)) | ||
| Theorem | sub2cncfd 45881* | Subtraction from a constant is a continuous function. (Contributed by Glauco Siliprandi, 8-Apr-2021.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ 𝐹 = (𝑥 ∈ ℂ ↦ (𝐴 − 𝑥)) ⇒ ⊢ (𝜑 → 𝐹 ∈ (ℂ–cn→ℂ)) | ||
| Theorem | fprodsub2cncf 45882* | 𝐹 is continuous. (Contributed by Glauco Siliprandi, 8-Apr-2021.) |
| ⊢ Ⅎ𝑘𝜑 & ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) & ⊢ 𝐹 = (𝑥 ∈ ℂ ↦ ∏𝑘 ∈ 𝐴 (𝐵 − 𝑥)) ⇒ ⊢ (𝜑 → 𝐹 ∈ (ℂ–cn→ℂ)) | ||
| Theorem | fprodadd2cncf 45883* | 𝐹 is continuous. (Contributed by Glauco Siliprandi, 8-Apr-2021.) |
| ⊢ Ⅎ𝑘𝜑 & ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) & ⊢ 𝐹 = (𝑥 ∈ ℂ ↦ ∏𝑘 ∈ 𝐴 (𝐵 + 𝑥)) ⇒ ⊢ (𝜑 → 𝐹 ∈ (ℂ–cn→ℂ)) | ||
| Theorem | fprodsubrecnncnvlem 45884* | The sequence 𝑆 of finite products, where every factor is subtracted an "always smaller" amount, converges to the finite product of the factors. (Contributed by Glauco Siliprandi, 8-Apr-2021.) |
| ⊢ Ⅎ𝑘𝜑 & ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) & ⊢ 𝑆 = (𝑛 ∈ ℕ ↦ ∏𝑘 ∈ 𝐴 (𝐵 − (1 / 𝑛))) & ⊢ 𝐹 = (𝑥 ∈ ℂ ↦ ∏𝑘 ∈ 𝐴 (𝐵 − 𝑥)) & ⊢ 𝐺 = (𝑛 ∈ ℕ ↦ (1 / 𝑛)) ⇒ ⊢ (𝜑 → 𝑆 ⇝ ∏𝑘 ∈ 𝐴 𝐵) | ||
| Theorem | fprodsubrecnncnv 45885* | The sequence 𝑆 of finite products, where every factor is subtracted an "always smaller" amount, converges to the finite product of the factors. (Contributed by Glauco Siliprandi, 8-Apr-2021.) |
| ⊢ Ⅎ𝑘𝜑 & ⊢ (𝜑 → 𝑋 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → 𝐴 ∈ ℂ) & ⊢ 𝑆 = (𝑛 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (𝐴 − (1 / 𝑛))) ⇒ ⊢ (𝜑 → 𝑆 ⇝ ∏𝑘 ∈ 𝑋 𝐴) | ||
| Theorem | fprodaddrecnncnvlem 45886* | The sequence 𝑆 of finite products, where every factor is added an "always smaller" amount, converges to the finite product of the factors. (Contributed by Glauco Siliprandi, 8-Apr-2021.) |
| ⊢ Ⅎ𝑘𝜑 & ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) & ⊢ 𝑆 = (𝑛 ∈ ℕ ↦ ∏𝑘 ∈ 𝐴 (𝐵 + (1 / 𝑛))) & ⊢ 𝐹 = (𝑥 ∈ ℂ ↦ ∏𝑘 ∈ 𝐴 (𝐵 + 𝑥)) & ⊢ 𝐺 = (𝑛 ∈ ℕ ↦ (1 / 𝑛)) ⇒ ⊢ (𝜑 → 𝑆 ⇝ ∏𝑘 ∈ 𝐴 𝐵) | ||
| Theorem | fprodaddrecnncnv 45887* | The sequence 𝑆 of finite products, where every factor is added an "always smaller" amount, converges to the finite product of the factors. (Contributed by Glauco Siliprandi, 8-Apr-2021.) |
| ⊢ Ⅎ𝑘𝜑 & ⊢ (𝜑 → 𝑋 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → 𝐴 ∈ ℂ) & ⊢ 𝑆 = (𝑛 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (𝐴 + (1 / 𝑛))) ⇒ ⊢ (𝜑 → 𝑆 ⇝ ∏𝑘 ∈ 𝑋 𝐴) | ||
| Theorem | dvsinexp 45888* | The derivative of sin^N . (Contributed by Glauco Siliprandi, 29-Jun-2017.) |
| ⊢ (𝜑 → 𝑁 ∈ ℕ) ⇒ ⊢ (𝜑 → (ℂ D (𝑥 ∈ ℂ ↦ ((sin‘𝑥)↑𝑁))) = (𝑥 ∈ ℂ ↦ ((𝑁 · ((sin‘𝑥)↑(𝑁 − 1))) · (cos‘𝑥)))) | ||
| Theorem | dvcosre 45889 | The real derivative of the cosine. (Contributed by Glauco Siliprandi, 29-Jun-2017.) |
| ⊢ (ℝ D (𝑥 ∈ ℝ ↦ (cos‘𝑥))) = (𝑥 ∈ ℝ ↦ -(sin‘𝑥)) | ||
| Theorem | dvsinax 45890* | Derivative exercise: the derivative with respect to y of sin(Ay), given a constant 𝐴. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ (𝐴 ∈ ℂ → (ℂ D (𝑦 ∈ ℂ ↦ (sin‘(𝐴 · 𝑦)))) = (𝑦 ∈ ℂ ↦ (𝐴 · (cos‘(𝐴 · 𝑦))))) | ||
| Theorem | dvsubf 45891 | The subtraction rule for everywhere-differentiable functions. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) & ⊢ (𝜑 → 𝐹:𝑋⟶ℂ) & ⊢ (𝜑 → 𝐺:𝑋⟶ℂ) & ⊢ (𝜑 → dom (𝑆 D 𝐹) = 𝑋) & ⊢ (𝜑 → dom (𝑆 D 𝐺) = 𝑋) ⇒ ⊢ (𝜑 → (𝑆 D (𝐹 ∘f − 𝐺)) = ((𝑆 D 𝐹) ∘f − (𝑆 D 𝐺))) | ||
| Theorem | dvmptconst 45892* | Function-builder for derivative: derivative of a constant. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) & ⊢ (𝜑 → 𝐴 ∈ ((TopOpen‘ℂfld) ↾t 𝑆)) & ⊢ (𝜑 → 𝐵 ∈ ℂ) ⇒ ⊢ (𝜑 → (𝑆 D (𝑥 ∈ 𝐴 ↦ 𝐵)) = (𝑥 ∈ 𝐴 ↦ 0)) | ||
| Theorem | dvcnre 45893 | From complex differentiation to real differentiation. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ ((𝐹:ℂ⟶ℂ ∧ ℝ ⊆ dom (ℂ D 𝐹)) → (ℝ D (𝐹 ↾ ℝ)) = ((ℂ D 𝐹) ↾ ℝ)) | ||
| Theorem | dvmptidg 45894* | Function-builder for derivative: derivative of the identity. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) & ⊢ (𝜑 → 𝐴 ∈ ((TopOpen‘ℂfld) ↾t 𝑆)) ⇒ ⊢ (𝜑 → (𝑆 D (𝑥 ∈ 𝐴 ↦ 𝑥)) = (𝑥 ∈ 𝐴 ↦ 1)) | ||
| Theorem | dvresntr 45895 | Function-builder for derivative: expand the function from an open set to its closure. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ (𝜑 → 𝑆 ⊆ ℂ) & ⊢ (𝜑 → 𝑋 ⊆ 𝑆) & ⊢ (𝜑 → 𝐹:𝑋⟶ℂ) & ⊢ 𝐽 = (𝐾 ↾t 𝑆) & ⊢ 𝐾 = (TopOpen‘ℂfld) & ⊢ (𝜑 → ((int‘𝐽)‘𝑋) = 𝑌) ⇒ ⊢ (𝜑 → (𝑆 D 𝐹) = (𝑆 D (𝐹 ↾ 𝑌))) | ||
| Theorem | fperdvper 45896* | The derivative of a periodic function is periodic. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ (𝜑 → 𝐹:ℝ⟶ℂ) & ⊢ (𝜑 → 𝑇 ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (𝐹‘(𝑥 + 𝑇)) = (𝐹‘𝑥)) & ⊢ 𝐺 = (ℝ D 𝐹) ⇒ ⊢ ((𝜑 ∧ 𝑥 ∈ dom 𝐺) → ((𝑥 + 𝑇) ∈ dom 𝐺 ∧ (𝐺‘(𝑥 + 𝑇)) = (𝐺‘𝑥))) | ||
| Theorem | dvasinbx 45897* | Derivative exercise: the derivative with respect to y of A x sin(By), given two constants 𝐴 and 𝐵. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (ℂ D (𝑦 ∈ ℂ ↦ (𝐴 · (sin‘(𝐵 · 𝑦))))) = (𝑦 ∈ ℂ ↦ ((𝐴 · 𝐵) · (cos‘(𝐵 · 𝑦))))) | ||
| Theorem | dvresioo 45898 | Restriction of a derivative to an open interval. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ ((𝐴 ⊆ ℝ ∧ 𝐹:𝐴⟶ℂ) → (ℝ D (𝐹 ↾ (𝐵(,)𝐶))) = ((ℝ D 𝐹) ↾ (𝐵(,)𝐶))) | ||
| Theorem | dvdivf 45899 | The quotient rule for everywhere-differentiable functions. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) & ⊢ (𝜑 → 𝐹:𝑋⟶ℂ) & ⊢ (𝜑 → 𝐺:𝑋⟶(ℂ ∖ {0})) & ⊢ (𝜑 → dom (𝑆 D 𝐹) = 𝑋) & ⊢ (𝜑 → dom (𝑆 D 𝐺) = 𝑋) ⇒ ⊢ (𝜑 → (𝑆 D (𝐹 ∘f / 𝐺)) = ((((𝑆 D 𝐹) ∘f · 𝐺) ∘f − ((𝑆 D 𝐺) ∘f · 𝐹)) ∘f / (𝐺 ∘f · 𝐺))) | ||
| Theorem | dvdivbd 45900* | A sufficient condition for the derivative to be bounded, for the quotient of two functions. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐴 ∈ ℂ) & ⊢ (𝜑 → (𝑆 D (𝑥 ∈ 𝑋 ↦ 𝐴)) = (𝑥 ∈ 𝑋 ↦ 𝐶)) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐶 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝑈 ∈ ℝ) & ⊢ (𝜑 → 𝑅 ∈ ℝ) & ⊢ (𝜑 → 𝑇 ∈ ℝ) & ⊢ (𝜑 → 𝑄 ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (abs‘𝐶) ≤ 𝑈) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (abs‘𝐵) ≤ 𝑅) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (abs‘𝐷) ≤ 𝑇) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (abs‘𝐴) ≤ 𝑄) & ⊢ (𝜑 → (𝑆 D (𝑥 ∈ 𝑋 ↦ 𝐵)) = (𝑥 ∈ 𝑋 ↦ 𝐷)) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐷 ∈ ℂ) & ⊢ (𝜑 → 𝐸 ∈ ℝ+) & ⊢ (𝜑 → ∀𝑥 ∈ 𝑋 𝐸 ≤ (abs‘𝐵)) & ⊢ 𝐹 = (𝑆 D (𝑥 ∈ 𝑋 ↦ (𝐴 / 𝐵))) ⇒ ⊢ (𝜑 → ∃𝑏 ∈ ℝ ∀𝑥 ∈ 𝑋 (abs‘(𝐹‘𝑥)) ≤ 𝑏) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |