Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ismea Structured version   Visualization version   GIF version

Theorem ismea 43090
Description: Express the predicate "𝑀 is a measure." Definition 112A of [Fremlin1] p. 14. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Assertion
Ref Expression
ismea (𝑀 ∈ Meas ↔ (((𝑀:dom 𝑀⟶(0[,]+∞) ∧ dom 𝑀 ∈ SAlg) ∧ (𝑀‘∅) = 0) ∧ ∀𝑥 ∈ 𝒫 dom 𝑀((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → (𝑀 𝑥) = (Σ^‘(𝑀𝑥)))))
Distinct variable groups:   𝑥,𝑀   𝑥,𝑦
Allowed substitution hint:   𝑀(𝑦)

Proof of Theorem ismea
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 id 22 . 2 (𝑀 ∈ Meas → 𝑀 ∈ Meas)
2 fex 6966 . . . . 5 ((𝑀:dom 𝑀⟶(0[,]+∞) ∧ dom 𝑀 ∈ SAlg) → 𝑀 ∈ V)
3 id 22 . . . . . . . . . 10 (𝑧 = 𝑀𝑧 = 𝑀)
4 dmeq 5736 . . . . . . . . . 10 (𝑧 = 𝑀 → dom 𝑧 = dom 𝑀)
53, 4feq12d 6475 . . . . . . . . 9 (𝑧 = 𝑀 → (𝑧:dom 𝑧⟶(0[,]+∞) ↔ 𝑀:dom 𝑀⟶(0[,]+∞)))
64eleq1d 2874 . . . . . . . . 9 (𝑧 = 𝑀 → (dom 𝑧 ∈ SAlg ↔ dom 𝑀 ∈ SAlg))
75, 6anbi12d 633 . . . . . . . 8 (𝑧 = 𝑀 → ((𝑧:dom 𝑧⟶(0[,]+∞) ∧ dom 𝑧 ∈ SAlg) ↔ (𝑀:dom 𝑀⟶(0[,]+∞) ∧ dom 𝑀 ∈ SAlg)))
8 fveq1 6644 . . . . . . . . 9 (𝑧 = 𝑀 → (𝑧‘∅) = (𝑀‘∅))
98eqeq1d 2800 . . . . . . . 8 (𝑧 = 𝑀 → ((𝑧‘∅) = 0 ↔ (𝑀‘∅) = 0))
107, 9anbi12d 633 . . . . . . 7 (𝑧 = 𝑀 → (((𝑧:dom 𝑧⟶(0[,]+∞) ∧ dom 𝑧 ∈ SAlg) ∧ (𝑧‘∅) = 0) ↔ ((𝑀:dom 𝑀⟶(0[,]+∞) ∧ dom 𝑀 ∈ SAlg) ∧ (𝑀‘∅) = 0)))
114pweqd 4516 . . . . . . . 8 (𝑧 = 𝑀 → 𝒫 dom 𝑧 = 𝒫 dom 𝑀)
12 fveq1 6644 . . . . . . . . . 10 (𝑧 = 𝑀 → (𝑧 𝑥) = (𝑀 𝑥))
13 reseq1 5812 . . . . . . . . . . 11 (𝑧 = 𝑀 → (𝑧𝑥) = (𝑀𝑥))
1413fveq2d 6649 . . . . . . . . . 10 (𝑧 = 𝑀 → (Σ^‘(𝑧𝑥)) = (Σ^‘(𝑀𝑥)))
1512, 14eqeq12d 2814 . . . . . . . . 9 (𝑧 = 𝑀 → ((𝑧 𝑥) = (Σ^‘(𝑧𝑥)) ↔ (𝑀 𝑥) = (Σ^‘(𝑀𝑥))))
1615imbi2d 344 . . . . . . . 8 (𝑧 = 𝑀 → (((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → (𝑧 𝑥) = (Σ^‘(𝑧𝑥))) ↔ ((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → (𝑀 𝑥) = (Σ^‘(𝑀𝑥)))))
1711, 16raleqbidv 3354 . . . . . . 7 (𝑧 = 𝑀 → (∀𝑥 ∈ 𝒫 dom 𝑧((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → (𝑧 𝑥) = (Σ^‘(𝑧𝑥))) ↔ ∀𝑥 ∈ 𝒫 dom 𝑀((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → (𝑀 𝑥) = (Σ^‘(𝑀𝑥)))))
1810, 17anbi12d 633 . . . . . 6 (𝑧 = 𝑀 → ((((𝑧:dom 𝑧⟶(0[,]+∞) ∧ dom 𝑧 ∈ SAlg) ∧ (𝑧‘∅) = 0) ∧ ∀𝑥 ∈ 𝒫 dom 𝑧((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → (𝑧 𝑥) = (Σ^‘(𝑧𝑥)))) ↔ (((𝑀:dom 𝑀⟶(0[,]+∞) ∧ dom 𝑀 ∈ SAlg) ∧ (𝑀‘∅) = 0) ∧ ∀𝑥 ∈ 𝒫 dom 𝑀((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → (𝑀 𝑥) = (Σ^‘(𝑀𝑥))))))
19 df-mea 43089 . . . . . 6 Meas = {𝑧 ∣ (((𝑧:dom 𝑧⟶(0[,]+∞) ∧ dom 𝑧 ∈ SAlg) ∧ (𝑧‘∅) = 0) ∧ ∀𝑥 ∈ 𝒫 dom 𝑧((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → (𝑧 𝑥) = (Σ^‘(𝑧𝑥))))}
2018, 19elab2g 3616 . . . . 5 (𝑀 ∈ V → (𝑀 ∈ Meas ↔ (((𝑀:dom 𝑀⟶(0[,]+∞) ∧ dom 𝑀 ∈ SAlg) ∧ (𝑀‘∅) = 0) ∧ ∀𝑥 ∈ 𝒫 dom 𝑀((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → (𝑀 𝑥) = (Σ^‘(𝑀𝑥))))))
212, 20syl 17 . . . 4 ((𝑀:dom 𝑀⟶(0[,]+∞) ∧ dom 𝑀 ∈ SAlg) → (𝑀 ∈ Meas ↔ (((𝑀:dom 𝑀⟶(0[,]+∞) ∧ dom 𝑀 ∈ SAlg) ∧ (𝑀‘∅) = 0) ∧ ∀𝑥 ∈ 𝒫 dom 𝑀((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → (𝑀 𝑥) = (Σ^‘(𝑀𝑥))))))
2221ad2antrr 725 . . 3 ((((𝑀:dom 𝑀⟶(0[,]+∞) ∧ dom 𝑀 ∈ SAlg) ∧ (𝑀‘∅) = 0) ∧ ∀𝑥 ∈ 𝒫 dom 𝑀((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → (𝑀 𝑥) = (Σ^‘(𝑀𝑥)))) → (𝑀 ∈ Meas ↔ (((𝑀:dom 𝑀⟶(0[,]+∞) ∧ dom 𝑀 ∈ SAlg) ∧ (𝑀‘∅) = 0) ∧ ∀𝑥 ∈ 𝒫 dom 𝑀((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → (𝑀 𝑥) = (Σ^‘(𝑀𝑥))))))
2322ibir 271 . 2 ((((𝑀:dom 𝑀⟶(0[,]+∞) ∧ dom 𝑀 ∈ SAlg) ∧ (𝑀‘∅) = 0) ∧ ∀𝑥 ∈ 𝒫 dom 𝑀((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → (𝑀 𝑥) = (Σ^‘(𝑀𝑥)))) → 𝑀 ∈ Meas)
2418, 19elab2g 3616 . 2 (𝑀 ∈ Meas → (𝑀 ∈ Meas ↔ (((𝑀:dom 𝑀⟶(0[,]+∞) ∧ dom 𝑀 ∈ SAlg) ∧ (𝑀‘∅) = 0) ∧ ∀𝑥 ∈ 𝒫 dom 𝑀((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → (𝑀 𝑥) = (Σ^‘(𝑀𝑥))))))
251, 23, 24pm5.21nii 383 1 (𝑀 ∈ Meas ↔ (((𝑀:dom 𝑀⟶(0[,]+∞) ∧ dom 𝑀 ∈ SAlg) ∧ (𝑀‘∅) = 0) ∧ ∀𝑥 ∈ 𝒫 dom 𝑀((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → (𝑀 𝑥) = (Σ^‘(𝑀𝑥)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1538  wcel 2111  wral 3106  Vcvv 3441  c0 4243  𝒫 cpw 4497   cuni 4800  Disj wdisj 4995   class class class wbr 5030  dom cdm 5519  cres 5521  wf 6320  cfv 6324  (class class class)co 7135  ωcom 7560  cdom 8490  0cc0 10526  +∞cpnf 10661  [,]cicc 12729  SAlgcsalg 42950  Σ^csumge0 43001  Meascmea 43088
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pr 5295
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5425  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-mea 43089
This theorem is referenced by:  dmmeasal  43091  meaf  43092  mea0  43093  meadjuni  43096  ismeannd  43106  psmeasure  43110
  Copyright terms: Public domain W3C validator