Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ismea Structured version   Visualization version   GIF version

Theorem ismea 44376
Description: Express the predicate "𝑀 is a measure." Definition 112A of [Fremlin1] p. 14. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Assertion
Ref Expression
ismea (𝑀 ∈ Meas ↔ (((𝑀:dom 𝑀⟶(0[,]+∞) ∧ dom 𝑀 ∈ SAlg) ∧ (𝑀‘∅) = 0) ∧ ∀𝑥 ∈ 𝒫 dom 𝑀((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → (𝑀 𝑥) = (Σ^‘(𝑀𝑥)))))
Distinct variable groups:   𝑥,𝑀   𝑥,𝑦
Allowed substitution hint:   𝑀(𝑦)

Proof of Theorem ismea
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 id 22 . 2 (𝑀 ∈ Meas → 𝑀 ∈ Meas)
2 fex 7163 . . . . 5 ((𝑀:dom 𝑀⟶(0[,]+∞) ∧ dom 𝑀 ∈ SAlg) → 𝑀 ∈ V)
3 id 22 . . . . . . . . . 10 (𝑧 = 𝑀𝑧 = 𝑀)
4 dmeq 5850 . . . . . . . . . 10 (𝑧 = 𝑀 → dom 𝑧 = dom 𝑀)
53, 4feq12d 6644 . . . . . . . . 9 (𝑧 = 𝑀 → (𝑧:dom 𝑧⟶(0[,]+∞) ↔ 𝑀:dom 𝑀⟶(0[,]+∞)))
64eleq1d 2822 . . . . . . . . 9 (𝑧 = 𝑀 → (dom 𝑧 ∈ SAlg ↔ dom 𝑀 ∈ SAlg))
75, 6anbi12d 632 . . . . . . . 8 (𝑧 = 𝑀 → ((𝑧:dom 𝑧⟶(0[,]+∞) ∧ dom 𝑧 ∈ SAlg) ↔ (𝑀:dom 𝑀⟶(0[,]+∞) ∧ dom 𝑀 ∈ SAlg)))
8 fveq1 6829 . . . . . . . . 9 (𝑧 = 𝑀 → (𝑧‘∅) = (𝑀‘∅))
98eqeq1d 2739 . . . . . . . 8 (𝑧 = 𝑀 → ((𝑧‘∅) = 0 ↔ (𝑀‘∅) = 0))
107, 9anbi12d 632 . . . . . . 7 (𝑧 = 𝑀 → (((𝑧:dom 𝑧⟶(0[,]+∞) ∧ dom 𝑧 ∈ SAlg) ∧ (𝑧‘∅) = 0) ↔ ((𝑀:dom 𝑀⟶(0[,]+∞) ∧ dom 𝑀 ∈ SAlg) ∧ (𝑀‘∅) = 0)))
114pweqd 4569 . . . . . . . 8 (𝑧 = 𝑀 → 𝒫 dom 𝑧 = 𝒫 dom 𝑀)
12 fveq1 6829 . . . . . . . . . 10 (𝑧 = 𝑀 → (𝑧 𝑥) = (𝑀 𝑥))
13 reseq1 5922 . . . . . . . . . . 11 (𝑧 = 𝑀 → (𝑧𝑥) = (𝑀𝑥))
1413fveq2d 6834 . . . . . . . . . 10 (𝑧 = 𝑀 → (Σ^‘(𝑧𝑥)) = (Σ^‘(𝑀𝑥)))
1512, 14eqeq12d 2753 . . . . . . . . 9 (𝑧 = 𝑀 → ((𝑧 𝑥) = (Σ^‘(𝑧𝑥)) ↔ (𝑀 𝑥) = (Σ^‘(𝑀𝑥))))
1615imbi2d 341 . . . . . . . 8 (𝑧 = 𝑀 → (((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → (𝑧 𝑥) = (Σ^‘(𝑧𝑥))) ↔ ((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → (𝑀 𝑥) = (Σ^‘(𝑀𝑥)))))
1711, 16raleqbidv 3316 . . . . . . 7 (𝑧 = 𝑀 → (∀𝑥 ∈ 𝒫 dom 𝑧((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → (𝑧 𝑥) = (Σ^‘(𝑧𝑥))) ↔ ∀𝑥 ∈ 𝒫 dom 𝑀((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → (𝑀 𝑥) = (Σ^‘(𝑀𝑥)))))
1810, 17anbi12d 632 . . . . . 6 (𝑧 = 𝑀 → ((((𝑧:dom 𝑧⟶(0[,]+∞) ∧ dom 𝑧 ∈ SAlg) ∧ (𝑧‘∅) = 0) ∧ ∀𝑥 ∈ 𝒫 dom 𝑧((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → (𝑧 𝑥) = (Σ^‘(𝑧𝑥)))) ↔ (((𝑀:dom 𝑀⟶(0[,]+∞) ∧ dom 𝑀 ∈ SAlg) ∧ (𝑀‘∅) = 0) ∧ ∀𝑥 ∈ 𝒫 dom 𝑀((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → (𝑀 𝑥) = (Σ^‘(𝑀𝑥))))))
19 df-mea 44375 . . . . . 6 Meas = {𝑧 ∣ (((𝑧:dom 𝑧⟶(0[,]+∞) ∧ dom 𝑧 ∈ SAlg) ∧ (𝑧‘∅) = 0) ∧ ∀𝑥 ∈ 𝒫 dom 𝑧((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → (𝑧 𝑥) = (Σ^‘(𝑧𝑥))))}
2018, 19elab2g 3625 . . . . 5 (𝑀 ∈ V → (𝑀 ∈ Meas ↔ (((𝑀:dom 𝑀⟶(0[,]+∞) ∧ dom 𝑀 ∈ SAlg) ∧ (𝑀‘∅) = 0) ∧ ∀𝑥 ∈ 𝒫 dom 𝑀((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → (𝑀 𝑥) = (Σ^‘(𝑀𝑥))))))
212, 20syl 17 . . . 4 ((𝑀:dom 𝑀⟶(0[,]+∞) ∧ dom 𝑀 ∈ SAlg) → (𝑀 ∈ Meas ↔ (((𝑀:dom 𝑀⟶(0[,]+∞) ∧ dom 𝑀 ∈ SAlg) ∧ (𝑀‘∅) = 0) ∧ ∀𝑥 ∈ 𝒫 dom 𝑀((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → (𝑀 𝑥) = (Σ^‘(𝑀𝑥))))))
2221ad2antrr 724 . . 3 ((((𝑀:dom 𝑀⟶(0[,]+∞) ∧ dom 𝑀 ∈ SAlg) ∧ (𝑀‘∅) = 0) ∧ ∀𝑥 ∈ 𝒫 dom 𝑀((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → (𝑀 𝑥) = (Σ^‘(𝑀𝑥)))) → (𝑀 ∈ Meas ↔ (((𝑀:dom 𝑀⟶(0[,]+∞) ∧ dom 𝑀 ∈ SAlg) ∧ (𝑀‘∅) = 0) ∧ ∀𝑥 ∈ 𝒫 dom 𝑀((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → (𝑀 𝑥) = (Σ^‘(𝑀𝑥))))))
2322ibir 268 . 2 ((((𝑀:dom 𝑀⟶(0[,]+∞) ∧ dom 𝑀 ∈ SAlg) ∧ (𝑀‘∅) = 0) ∧ ∀𝑥 ∈ 𝒫 dom 𝑀((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → (𝑀 𝑥) = (Σ^‘(𝑀𝑥)))) → 𝑀 ∈ Meas)
2418, 19elab2g 3625 . 2 (𝑀 ∈ Meas → (𝑀 ∈ Meas ↔ (((𝑀:dom 𝑀⟶(0[,]+∞) ∧ dom 𝑀 ∈ SAlg) ∧ (𝑀‘∅) = 0) ∧ ∀𝑥 ∈ 𝒫 dom 𝑀((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → (𝑀 𝑥) = (Σ^‘(𝑀𝑥))))))
251, 23, 24pm5.21nii 380 1 (𝑀 ∈ Meas ↔ (((𝑀:dom 𝑀⟶(0[,]+∞) ∧ dom 𝑀 ∈ SAlg) ∧ (𝑀‘∅) = 0) ∧ ∀𝑥 ∈ 𝒫 dom 𝑀((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → (𝑀 𝑥) = (Σ^‘(𝑀𝑥)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397   = wceq 1541  wcel 2106  wral 3062  Vcvv 3442  c0 4274  𝒫 cpw 4552   cuni 4857  Disj wdisj 5062   class class class wbr 5097  dom cdm 5625  cres 5627  wf 6480  cfv 6484  (class class class)co 7342  ωcom 7785  cdom 8807  0cc0 10977  +∞cpnf 11112  [,]cicc 13188  SAlgcsalg 44235  Σ^csumge0 44287  Meascmea 44374
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2708  ax-rep 5234  ax-sep 5248  ax-nul 5255  ax-pr 5377
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-ral 3063  df-rex 3072  df-reu 3351  df-rab 3405  df-v 3444  df-sbc 3732  df-csb 3848  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4275  df-if 4479  df-pw 4554  df-sn 4579  df-pr 4581  df-op 4585  df-uni 4858  df-iun 4948  df-br 5098  df-opab 5160  df-mpt 5181  df-id 5523  df-xp 5631  df-rel 5632  df-cnv 5633  df-co 5634  df-dm 5635  df-rn 5636  df-res 5637  df-ima 5638  df-iota 6436  df-fun 6486  df-fn 6487  df-f 6488  df-f1 6489  df-fo 6490  df-f1o 6491  df-fv 6492  df-mea 44375
This theorem is referenced by:  dmmeasal  44377  meaf  44378  mea0  44379  meadjuni  44382  ismeannd  44392  psmeasure  44396
  Copyright terms: Public domain W3C validator