Step | Hyp | Ref
| Expression |
1 | | id 22 |
. 2
⊢ (𝑀 ∈ Meas → 𝑀 ∈ Meas) |
2 | | fex 7084 |
. . . . 5
⊢ ((𝑀:dom 𝑀⟶(0[,]+∞) ∧ dom 𝑀 ∈ SAlg) → 𝑀 ∈ V) |
3 | | id 22 |
. . . . . . . . . 10
⊢ (𝑧 = 𝑀 → 𝑧 = 𝑀) |
4 | | dmeq 5801 |
. . . . . . . . . 10
⊢ (𝑧 = 𝑀 → dom 𝑧 = dom 𝑀) |
5 | 3, 4 | feq12d 6572 |
. . . . . . . . 9
⊢ (𝑧 = 𝑀 → (𝑧:dom 𝑧⟶(0[,]+∞) ↔ 𝑀:dom 𝑀⟶(0[,]+∞))) |
6 | 4 | eleq1d 2823 |
. . . . . . . . 9
⊢ (𝑧 = 𝑀 → (dom 𝑧 ∈ SAlg ↔ dom 𝑀 ∈ SAlg)) |
7 | 5, 6 | anbi12d 630 |
. . . . . . . 8
⊢ (𝑧 = 𝑀 → ((𝑧:dom 𝑧⟶(0[,]+∞) ∧ dom 𝑧 ∈ SAlg) ↔ (𝑀:dom 𝑀⟶(0[,]+∞) ∧ dom 𝑀 ∈ SAlg))) |
8 | | fveq1 6755 |
. . . . . . . . 9
⊢ (𝑧 = 𝑀 → (𝑧‘∅) = (𝑀‘∅)) |
9 | 8 | eqeq1d 2740 |
. . . . . . . 8
⊢ (𝑧 = 𝑀 → ((𝑧‘∅) = 0 ↔ (𝑀‘∅) = 0)) |
10 | 7, 9 | anbi12d 630 |
. . . . . . 7
⊢ (𝑧 = 𝑀 → (((𝑧:dom 𝑧⟶(0[,]+∞) ∧ dom 𝑧 ∈ SAlg) ∧ (𝑧‘∅) = 0) ↔
((𝑀:dom 𝑀⟶(0[,]+∞) ∧ dom 𝑀 ∈ SAlg) ∧ (𝑀‘∅) =
0))) |
11 | 4 | pweqd 4549 |
. . . . . . . 8
⊢ (𝑧 = 𝑀 → 𝒫 dom 𝑧 = 𝒫 dom 𝑀) |
12 | | fveq1 6755 |
. . . . . . . . . 10
⊢ (𝑧 = 𝑀 → (𝑧‘∪ 𝑥) = (𝑀‘∪ 𝑥)) |
13 | | reseq1 5874 |
. . . . . . . . . . 11
⊢ (𝑧 = 𝑀 → (𝑧 ↾ 𝑥) = (𝑀 ↾ 𝑥)) |
14 | 13 | fveq2d 6760 |
. . . . . . . . . 10
⊢ (𝑧 = 𝑀 →
(Σ^‘(𝑧 ↾ 𝑥)) =
(Σ^‘(𝑀 ↾ 𝑥))) |
15 | 12, 14 | eqeq12d 2754 |
. . . . . . . . 9
⊢ (𝑧 = 𝑀 → ((𝑧‘∪ 𝑥) =
(Σ^‘(𝑧 ↾ 𝑥)) ↔ (𝑀‘∪ 𝑥) =
(Σ^‘(𝑀 ↾ 𝑥)))) |
16 | 15 | imbi2d 340 |
. . . . . . . 8
⊢ (𝑧 = 𝑀 → (((𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦) → (𝑧‘∪ 𝑥) =
(Σ^‘(𝑧 ↾ 𝑥))) ↔ ((𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦) → (𝑀‘∪ 𝑥) =
(Σ^‘(𝑀 ↾ 𝑥))))) |
17 | 11, 16 | raleqbidv 3327 |
. . . . . . 7
⊢ (𝑧 = 𝑀 → (∀𝑥 ∈ 𝒫 dom 𝑧((𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦) → (𝑧‘∪ 𝑥) =
(Σ^‘(𝑧 ↾ 𝑥))) ↔ ∀𝑥 ∈ 𝒫 dom 𝑀((𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦) → (𝑀‘∪ 𝑥) =
(Σ^‘(𝑀 ↾ 𝑥))))) |
18 | 10, 17 | anbi12d 630 |
. . . . . 6
⊢ (𝑧 = 𝑀 → ((((𝑧:dom 𝑧⟶(0[,]+∞) ∧ dom 𝑧 ∈ SAlg) ∧ (𝑧‘∅) = 0) ∧
∀𝑥 ∈ 𝒫
dom 𝑧((𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦) → (𝑧‘∪ 𝑥) =
(Σ^‘(𝑧 ↾ 𝑥)))) ↔ (((𝑀:dom 𝑀⟶(0[,]+∞) ∧ dom 𝑀 ∈ SAlg) ∧ (𝑀‘∅) = 0) ∧
∀𝑥 ∈ 𝒫
dom 𝑀((𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦) → (𝑀‘∪ 𝑥) =
(Σ^‘(𝑀 ↾ 𝑥)))))) |
19 | | df-mea 43878 |
. . . . . 6
⊢ Meas =
{𝑧 ∣ (((𝑧:dom 𝑧⟶(0[,]+∞) ∧ dom 𝑧 ∈ SAlg) ∧ (𝑧‘∅) = 0) ∧
∀𝑥 ∈ 𝒫
dom 𝑧((𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦) → (𝑧‘∪ 𝑥) =
(Σ^‘(𝑧 ↾ 𝑥))))} |
20 | 18, 19 | elab2g 3604 |
. . . . 5
⊢ (𝑀 ∈ V → (𝑀 ∈ Meas ↔ (((𝑀:dom 𝑀⟶(0[,]+∞) ∧ dom 𝑀 ∈ SAlg) ∧ (𝑀‘∅) = 0) ∧
∀𝑥 ∈ 𝒫
dom 𝑀((𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦) → (𝑀‘∪ 𝑥) =
(Σ^‘(𝑀 ↾ 𝑥)))))) |
21 | 2, 20 | syl 17 |
. . . 4
⊢ ((𝑀:dom 𝑀⟶(0[,]+∞) ∧ dom 𝑀 ∈ SAlg) → (𝑀 ∈ Meas ↔ (((𝑀:dom 𝑀⟶(0[,]+∞) ∧ dom 𝑀 ∈ SAlg) ∧ (𝑀‘∅) = 0) ∧
∀𝑥 ∈ 𝒫
dom 𝑀((𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦) → (𝑀‘∪ 𝑥) =
(Σ^‘(𝑀 ↾ 𝑥)))))) |
22 | 21 | ad2antrr 722 |
. . 3
⊢ ((((𝑀:dom 𝑀⟶(0[,]+∞) ∧ dom 𝑀 ∈ SAlg) ∧ (𝑀‘∅) = 0) ∧
∀𝑥 ∈ 𝒫
dom 𝑀((𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦) → (𝑀‘∪ 𝑥) =
(Σ^‘(𝑀 ↾ 𝑥)))) → (𝑀 ∈ Meas ↔ (((𝑀:dom 𝑀⟶(0[,]+∞) ∧ dom 𝑀 ∈ SAlg) ∧ (𝑀‘∅) = 0) ∧
∀𝑥 ∈ 𝒫
dom 𝑀((𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦) → (𝑀‘∪ 𝑥) =
(Σ^‘(𝑀 ↾ 𝑥)))))) |
23 | 22 | ibir 267 |
. 2
⊢ ((((𝑀:dom 𝑀⟶(0[,]+∞) ∧ dom 𝑀 ∈ SAlg) ∧ (𝑀‘∅) = 0) ∧
∀𝑥 ∈ 𝒫
dom 𝑀((𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦) → (𝑀‘∪ 𝑥) =
(Σ^‘(𝑀 ↾ 𝑥)))) → 𝑀 ∈ Meas) |
24 | 18, 19 | elab2g 3604 |
. 2
⊢ (𝑀 ∈ Meas → (𝑀 ∈ Meas ↔ (((𝑀:dom 𝑀⟶(0[,]+∞) ∧ dom 𝑀 ∈ SAlg) ∧ (𝑀‘∅) = 0) ∧
∀𝑥 ∈ 𝒫
dom 𝑀((𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦) → (𝑀‘∪ 𝑥) =
(Σ^‘(𝑀 ↾ 𝑥)))))) |
25 | 1, 23, 24 | pm5.21nii 379 |
1
⊢ (𝑀 ∈ Meas ↔ (((𝑀:dom 𝑀⟶(0[,]+∞) ∧ dom 𝑀 ∈ SAlg) ∧ (𝑀‘∅) = 0) ∧
∀𝑥 ∈ 𝒫
dom 𝑀((𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦) → (𝑀‘∪ 𝑥) =
(Σ^‘(𝑀 ↾ 𝑥))))) |