Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ismea Structured version   Visualization version   GIF version

Theorem ismea 46480
Description: Express the predicate "𝑀 is a measure." Definition 112A of [Fremlin1] p. 14. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Assertion
Ref Expression
ismea (𝑀 ∈ Meas ↔ (((𝑀:dom 𝑀⟶(0[,]+∞) ∧ dom 𝑀 ∈ SAlg) ∧ (𝑀‘∅) = 0) ∧ ∀𝑥 ∈ 𝒫 dom 𝑀((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → (𝑀 𝑥) = (Σ^‘(𝑀𝑥)))))
Distinct variable groups:   𝑥,𝑀   𝑥,𝑦
Allowed substitution hint:   𝑀(𝑦)

Proof of Theorem ismea
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 id 22 . 2 (𝑀 ∈ Meas → 𝑀 ∈ Meas)
2 fex 7218 . . . . 5 ((𝑀:dom 𝑀⟶(0[,]+∞) ∧ dom 𝑀 ∈ SAlg) → 𝑀 ∈ V)
3 id 22 . . . . . . . . . 10 (𝑧 = 𝑀𝑧 = 𝑀)
4 dmeq 5883 . . . . . . . . . 10 (𝑧 = 𝑀 → dom 𝑧 = dom 𝑀)
53, 4feq12d 6694 . . . . . . . . 9 (𝑧 = 𝑀 → (𝑧:dom 𝑧⟶(0[,]+∞) ↔ 𝑀:dom 𝑀⟶(0[,]+∞)))
64eleq1d 2819 . . . . . . . . 9 (𝑧 = 𝑀 → (dom 𝑧 ∈ SAlg ↔ dom 𝑀 ∈ SAlg))
75, 6anbi12d 632 . . . . . . . 8 (𝑧 = 𝑀 → ((𝑧:dom 𝑧⟶(0[,]+∞) ∧ dom 𝑧 ∈ SAlg) ↔ (𝑀:dom 𝑀⟶(0[,]+∞) ∧ dom 𝑀 ∈ SAlg)))
8 fveq1 6875 . . . . . . . . 9 (𝑧 = 𝑀 → (𝑧‘∅) = (𝑀‘∅))
98eqeq1d 2737 . . . . . . . 8 (𝑧 = 𝑀 → ((𝑧‘∅) = 0 ↔ (𝑀‘∅) = 0))
107, 9anbi12d 632 . . . . . . 7 (𝑧 = 𝑀 → (((𝑧:dom 𝑧⟶(0[,]+∞) ∧ dom 𝑧 ∈ SAlg) ∧ (𝑧‘∅) = 0) ↔ ((𝑀:dom 𝑀⟶(0[,]+∞) ∧ dom 𝑀 ∈ SAlg) ∧ (𝑀‘∅) = 0)))
114pweqd 4592 . . . . . . . 8 (𝑧 = 𝑀 → 𝒫 dom 𝑧 = 𝒫 dom 𝑀)
12 fveq1 6875 . . . . . . . . . 10 (𝑧 = 𝑀 → (𝑧 𝑥) = (𝑀 𝑥))
13 reseq1 5960 . . . . . . . . . . 11 (𝑧 = 𝑀 → (𝑧𝑥) = (𝑀𝑥))
1413fveq2d 6880 . . . . . . . . . 10 (𝑧 = 𝑀 → (Σ^‘(𝑧𝑥)) = (Σ^‘(𝑀𝑥)))
1512, 14eqeq12d 2751 . . . . . . . . 9 (𝑧 = 𝑀 → ((𝑧 𝑥) = (Σ^‘(𝑧𝑥)) ↔ (𝑀 𝑥) = (Σ^‘(𝑀𝑥))))
1615imbi2d 340 . . . . . . . 8 (𝑧 = 𝑀 → (((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → (𝑧 𝑥) = (Σ^‘(𝑧𝑥))) ↔ ((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → (𝑀 𝑥) = (Σ^‘(𝑀𝑥)))))
1711, 16raleqbidv 3325 . . . . . . 7 (𝑧 = 𝑀 → (∀𝑥 ∈ 𝒫 dom 𝑧((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → (𝑧 𝑥) = (Σ^‘(𝑧𝑥))) ↔ ∀𝑥 ∈ 𝒫 dom 𝑀((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → (𝑀 𝑥) = (Σ^‘(𝑀𝑥)))))
1810, 17anbi12d 632 . . . . . 6 (𝑧 = 𝑀 → ((((𝑧:dom 𝑧⟶(0[,]+∞) ∧ dom 𝑧 ∈ SAlg) ∧ (𝑧‘∅) = 0) ∧ ∀𝑥 ∈ 𝒫 dom 𝑧((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → (𝑧 𝑥) = (Σ^‘(𝑧𝑥)))) ↔ (((𝑀:dom 𝑀⟶(0[,]+∞) ∧ dom 𝑀 ∈ SAlg) ∧ (𝑀‘∅) = 0) ∧ ∀𝑥 ∈ 𝒫 dom 𝑀((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → (𝑀 𝑥) = (Σ^‘(𝑀𝑥))))))
19 df-mea 46479 . . . . . 6 Meas = {𝑧 ∣ (((𝑧:dom 𝑧⟶(0[,]+∞) ∧ dom 𝑧 ∈ SAlg) ∧ (𝑧‘∅) = 0) ∧ ∀𝑥 ∈ 𝒫 dom 𝑧((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → (𝑧 𝑥) = (Σ^‘(𝑧𝑥))))}
2018, 19elab2g 3659 . . . . 5 (𝑀 ∈ V → (𝑀 ∈ Meas ↔ (((𝑀:dom 𝑀⟶(0[,]+∞) ∧ dom 𝑀 ∈ SAlg) ∧ (𝑀‘∅) = 0) ∧ ∀𝑥 ∈ 𝒫 dom 𝑀((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → (𝑀 𝑥) = (Σ^‘(𝑀𝑥))))))
212, 20syl 17 . . . 4 ((𝑀:dom 𝑀⟶(0[,]+∞) ∧ dom 𝑀 ∈ SAlg) → (𝑀 ∈ Meas ↔ (((𝑀:dom 𝑀⟶(0[,]+∞) ∧ dom 𝑀 ∈ SAlg) ∧ (𝑀‘∅) = 0) ∧ ∀𝑥 ∈ 𝒫 dom 𝑀((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → (𝑀 𝑥) = (Σ^‘(𝑀𝑥))))))
2221ad2antrr 726 . . 3 ((((𝑀:dom 𝑀⟶(0[,]+∞) ∧ dom 𝑀 ∈ SAlg) ∧ (𝑀‘∅) = 0) ∧ ∀𝑥 ∈ 𝒫 dom 𝑀((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → (𝑀 𝑥) = (Σ^‘(𝑀𝑥)))) → (𝑀 ∈ Meas ↔ (((𝑀:dom 𝑀⟶(0[,]+∞) ∧ dom 𝑀 ∈ SAlg) ∧ (𝑀‘∅) = 0) ∧ ∀𝑥 ∈ 𝒫 dom 𝑀((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → (𝑀 𝑥) = (Σ^‘(𝑀𝑥))))))
2322ibir 268 . 2 ((((𝑀:dom 𝑀⟶(0[,]+∞) ∧ dom 𝑀 ∈ SAlg) ∧ (𝑀‘∅) = 0) ∧ ∀𝑥 ∈ 𝒫 dom 𝑀((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → (𝑀 𝑥) = (Σ^‘(𝑀𝑥)))) → 𝑀 ∈ Meas)
2418, 19elab2g 3659 . 2 (𝑀 ∈ Meas → (𝑀 ∈ Meas ↔ (((𝑀:dom 𝑀⟶(0[,]+∞) ∧ dom 𝑀 ∈ SAlg) ∧ (𝑀‘∅) = 0) ∧ ∀𝑥 ∈ 𝒫 dom 𝑀((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → (𝑀 𝑥) = (Σ^‘(𝑀𝑥))))))
251, 23, 24pm5.21nii 378 1 (𝑀 ∈ Meas ↔ (((𝑀:dom 𝑀⟶(0[,]+∞) ∧ dom 𝑀 ∈ SAlg) ∧ (𝑀‘∅) = 0) ∧ ∀𝑥 ∈ 𝒫 dom 𝑀((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → (𝑀 𝑥) = (Σ^‘(𝑀𝑥)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  wral 3051  Vcvv 3459  c0 4308  𝒫 cpw 4575   cuni 4883  Disj wdisj 5086   class class class wbr 5119  dom cdm 5654  cres 5656  wf 6527  cfv 6531  (class class class)co 7405  ωcom 7861  cdom 8957  0cc0 11129  +∞cpnf 11266  [,]cicc 13365  SAlgcsalg 46337  Σ^csumge0 46391  Meascmea 46478
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pr 5402
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-mea 46479
This theorem is referenced by:  dmmeasal  46481  meaf  46482  mea0  46483  meadjuni  46486  ismeannd  46496  psmeasure  46500
  Copyright terms: Public domain W3C validator