Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  df-mfrel Structured version   Visualization version   GIF version

Definition df-mfrel 33483
Description: Define the set of freshness relations. (Contributed by Mario Carneiro, 14-Jul-2016.)
Assertion
Ref Expression
df-mfrel mFRel = (𝑡 ∈ V ↦ {𝑟 ∈ 𝒫 ((mUV‘𝑡) × (mUV‘𝑡)) ∣ (𝑟 = 𝑟 ∧ ∀𝑐 ∈ (mVT‘𝑡)∀𝑤 ∈ (𝒫 (mUV‘𝑡) ∩ Fin)∃𝑣 ∈ ((mUV‘𝑡) “ {𝑐})𝑤 ⊆ (𝑟 “ {𝑣}))})
Distinct variable group:   𝑟,𝑐,𝑡,𝑣,𝑤

Detailed syntax breakdown of Definition df-mfrel
StepHypRef Expression
1 cmfr 33471 . 2 class mFRel
2 vt . . 3 setvar 𝑡
3 cvv 3422 . . 3 class V
4 vr . . . . . . . 8 setvar 𝑟
54cv 1538 . . . . . . 7 class 𝑟
65ccnv 5579 . . . . . 6 class 𝑟
76, 5wceq 1539 . . . . 5 wff 𝑟 = 𝑟
8 vw . . . . . . . . . 10 setvar 𝑤
98cv 1538 . . . . . . . . 9 class 𝑤
10 vv . . . . . . . . . . . 12 setvar 𝑣
1110cv 1538 . . . . . . . . . . 11 class 𝑣
1211csn 4558 . . . . . . . . . 10 class {𝑣}
135, 12cima 5583 . . . . . . . . 9 class (𝑟 “ {𝑣})
149, 13wss 3883 . . . . . . . 8 wff 𝑤 ⊆ (𝑟 “ {𝑣})
152cv 1538 . . . . . . . . . 10 class 𝑡
16 cmuv 33467 . . . . . . . . . 10 class mUV
1715, 16cfv 6418 . . . . . . . . 9 class (mUV‘𝑡)
18 vc . . . . . . . . . . 11 setvar 𝑐
1918cv 1538 . . . . . . . . . 10 class 𝑐
2019csn 4558 . . . . . . . . 9 class {𝑐}
2117, 20cima 5583 . . . . . . . 8 class ((mUV‘𝑡) “ {𝑐})
2214, 10, 21wrex 3064 . . . . . . 7 wff 𝑣 ∈ ((mUV‘𝑡) “ {𝑐})𝑤 ⊆ (𝑟 “ {𝑣})
2317cpw 4530 . . . . . . . 8 class 𝒫 (mUV‘𝑡)
24 cfn 8691 . . . . . . . 8 class Fin
2523, 24cin 3882 . . . . . . 7 class (𝒫 (mUV‘𝑡) ∩ Fin)
2622, 8, 25wral 3063 . . . . . 6 wff 𝑤 ∈ (𝒫 (mUV‘𝑡) ∩ Fin)∃𝑣 ∈ ((mUV‘𝑡) “ {𝑐})𝑤 ⊆ (𝑟 “ {𝑣})
27 cmvt 33325 . . . . . . 7 class mVT
2815, 27cfv 6418 . . . . . 6 class (mVT‘𝑡)
2926, 18, 28wral 3063 . . . . 5 wff 𝑐 ∈ (mVT‘𝑡)∀𝑤 ∈ (𝒫 (mUV‘𝑡) ∩ Fin)∃𝑣 ∈ ((mUV‘𝑡) “ {𝑐})𝑤 ⊆ (𝑟 “ {𝑣})
307, 29wa 395 . . . 4 wff (𝑟 = 𝑟 ∧ ∀𝑐 ∈ (mVT‘𝑡)∀𝑤 ∈ (𝒫 (mUV‘𝑡) ∩ Fin)∃𝑣 ∈ ((mUV‘𝑡) “ {𝑐})𝑤 ⊆ (𝑟 “ {𝑣}))
3117, 17cxp 5578 . . . . 5 class ((mUV‘𝑡) × (mUV‘𝑡))
3231cpw 4530 . . . 4 class 𝒫 ((mUV‘𝑡) × (mUV‘𝑡))
3330, 4, 32crab 3067 . . 3 class {𝑟 ∈ 𝒫 ((mUV‘𝑡) × (mUV‘𝑡)) ∣ (𝑟 = 𝑟 ∧ ∀𝑐 ∈ (mVT‘𝑡)∀𝑤 ∈ (𝒫 (mUV‘𝑡) ∩ Fin)∃𝑣 ∈ ((mUV‘𝑡) “ {𝑐})𝑤 ⊆ (𝑟 “ {𝑣}))}
342, 3, 33cmpt 5153 . 2 class (𝑡 ∈ V ↦ {𝑟 ∈ 𝒫 ((mUV‘𝑡) × (mUV‘𝑡)) ∣ (𝑟 = 𝑟 ∧ ∀𝑐 ∈ (mVT‘𝑡)∀𝑤 ∈ (𝒫 (mUV‘𝑡) ∩ Fin)∃𝑣 ∈ ((mUV‘𝑡) “ {𝑐})𝑤 ⊆ (𝑟 “ {𝑣}))})
351, 34wceq 1539 1 wff mFRel = (𝑡 ∈ V ↦ {𝑟 ∈ 𝒫 ((mUV‘𝑡) × (mUV‘𝑡)) ∣ (𝑟 = 𝑟 ∧ ∀𝑐 ∈ (mVT‘𝑡)∀𝑤 ∈ (𝒫 (mUV‘𝑡) ∩ Fin)∃𝑣 ∈ ((mUV‘𝑡) “ {𝑐})𝑤 ⊆ (𝑟 “ {𝑣}))})
Colors of variables: wff setvar class
This definition is referenced by: (None)
  Copyright terms: Public domain W3C validator