Detailed syntax breakdown of Definition df-mfrel
Step | Hyp | Ref
| Expression |
1 | | cmfr 33142 |
. 2
class
mFRel |
2 | | vt |
. . 3
setvar 𝑡 |
3 | | cvv 3398 |
. . 3
class
V |
4 | | vr |
. . . . . . . 8
setvar 𝑟 |
5 | 4 | cv 1541 |
. . . . . . 7
class 𝑟 |
6 | 5 | ccnv 5524 |
. . . . . 6
class ◡𝑟 |
7 | 6, 5 | wceq 1542 |
. . . . 5
wff ◡𝑟 = 𝑟 |
8 | | vw |
. . . . . . . . . 10
setvar 𝑤 |
9 | 8 | cv 1541 |
. . . . . . . . 9
class 𝑤 |
10 | | vv |
. . . . . . . . . . . 12
setvar 𝑣 |
11 | 10 | cv 1541 |
. . . . . . . . . . 11
class 𝑣 |
12 | 11 | csn 4516 |
. . . . . . . . . 10
class {𝑣} |
13 | 5, 12 | cima 5528 |
. . . . . . . . 9
class (𝑟 “ {𝑣}) |
14 | 9, 13 | wss 3843 |
. . . . . . . 8
wff 𝑤 ⊆ (𝑟 “ {𝑣}) |
15 | 2 | cv 1541 |
. . . . . . . . . 10
class 𝑡 |
16 | | cmuv 33138 |
. . . . . . . . . 10
class
mUV |
17 | 15, 16 | cfv 6339 |
. . . . . . . . 9
class
(mUV‘𝑡) |
18 | | vc |
. . . . . . . . . . 11
setvar 𝑐 |
19 | 18 | cv 1541 |
. . . . . . . . . 10
class 𝑐 |
20 | 19 | csn 4516 |
. . . . . . . . 9
class {𝑐} |
21 | 17, 20 | cima 5528 |
. . . . . . . 8
class
((mUV‘𝑡)
“ {𝑐}) |
22 | 14, 10, 21 | wrex 3054 |
. . . . . . 7
wff
∃𝑣 ∈
((mUV‘𝑡) “
{𝑐})𝑤 ⊆ (𝑟 “ {𝑣}) |
23 | 17 | cpw 4488 |
. . . . . . . 8
class 𝒫
(mUV‘𝑡) |
24 | | cfn 8555 |
. . . . . . . 8
class
Fin |
25 | 23, 24 | cin 3842 |
. . . . . . 7
class
(𝒫 (mUV‘𝑡) ∩ Fin) |
26 | 22, 8, 25 | wral 3053 |
. . . . . 6
wff
∀𝑤 ∈
(𝒫 (mUV‘𝑡)
∩ Fin)∃𝑣 ∈
((mUV‘𝑡) “
{𝑐})𝑤 ⊆ (𝑟 “ {𝑣}) |
27 | | cmvt 32996 |
. . . . . . 7
class
mVT |
28 | 15, 27 | cfv 6339 |
. . . . . 6
class
(mVT‘𝑡) |
29 | 26, 18, 28 | wral 3053 |
. . . . 5
wff
∀𝑐 ∈
(mVT‘𝑡)∀𝑤 ∈ (𝒫
(mUV‘𝑡) ∩
Fin)∃𝑣 ∈
((mUV‘𝑡) “
{𝑐})𝑤 ⊆ (𝑟 “ {𝑣}) |
30 | 7, 29 | wa 399 |
. . . 4
wff (◡𝑟 = 𝑟 ∧ ∀𝑐 ∈ (mVT‘𝑡)∀𝑤 ∈ (𝒫 (mUV‘𝑡) ∩ Fin)∃𝑣 ∈ ((mUV‘𝑡) “ {𝑐})𝑤 ⊆ (𝑟 “ {𝑣})) |
31 | 17, 17 | cxp 5523 |
. . . . 5
class
((mUV‘𝑡)
× (mUV‘𝑡)) |
32 | 31 | cpw 4488 |
. . . 4
class 𝒫
((mUV‘𝑡) ×
(mUV‘𝑡)) |
33 | 30, 4, 32 | crab 3057 |
. . 3
class {𝑟 ∈ 𝒫
((mUV‘𝑡) ×
(mUV‘𝑡)) ∣
(◡𝑟 = 𝑟 ∧ ∀𝑐 ∈ (mVT‘𝑡)∀𝑤 ∈ (𝒫 (mUV‘𝑡) ∩ Fin)∃𝑣 ∈ ((mUV‘𝑡) “ {𝑐})𝑤 ⊆ (𝑟 “ {𝑣}))} |
34 | 2, 3, 33 | cmpt 5110 |
. 2
class (𝑡 ∈ V ↦ {𝑟 ∈ 𝒫
((mUV‘𝑡) ×
(mUV‘𝑡)) ∣
(◡𝑟 = 𝑟 ∧ ∀𝑐 ∈ (mVT‘𝑡)∀𝑤 ∈ (𝒫 (mUV‘𝑡) ∩ Fin)∃𝑣 ∈ ((mUV‘𝑡) “ {𝑐})𝑤 ⊆ (𝑟 “ {𝑣}))}) |
35 | 1, 34 | wceq 1542 |
1
wff mFRel =
(𝑡 ∈ V ↦ {𝑟 ∈ 𝒫
((mUV‘𝑡) ×
(mUV‘𝑡)) ∣
(◡𝑟 = 𝑟 ∧ ∀𝑐 ∈ (mVT‘𝑡)∀𝑤 ∈ (𝒫 (mUV‘𝑡) ∩ Fin)∃𝑣 ∈ ((mUV‘𝑡) “ {𝑐})𝑤 ⊆ (𝑟 “ {𝑣}))}) |