Detailed syntax breakdown of Definition df-mfrel
| Step | Hyp | Ref
| Expression |
| 1 | | cmfr 35551 |
. 2
class
mFRel |
| 2 | | vt |
. . 3
setvar 𝑡 |
| 3 | | cvv 3464 |
. . 3
class
V |
| 4 | | vr |
. . . . . . . 8
setvar 𝑟 |
| 5 | 4 | cv 1538 |
. . . . . . 7
class 𝑟 |
| 6 | 5 | ccnv 5666 |
. . . . . 6
class ◡𝑟 |
| 7 | 6, 5 | wceq 1539 |
. . . . 5
wff ◡𝑟 = 𝑟 |
| 8 | | vw |
. . . . . . . . . 10
setvar 𝑤 |
| 9 | 8 | cv 1538 |
. . . . . . . . 9
class 𝑤 |
| 10 | | vv |
. . . . . . . . . . . 12
setvar 𝑣 |
| 11 | 10 | cv 1538 |
. . . . . . . . . . 11
class 𝑣 |
| 12 | 11 | csn 4608 |
. . . . . . . . . 10
class {𝑣} |
| 13 | 5, 12 | cima 5670 |
. . . . . . . . 9
class (𝑟 “ {𝑣}) |
| 14 | 9, 13 | wss 3933 |
. . . . . . . 8
wff 𝑤 ⊆ (𝑟 “ {𝑣}) |
| 15 | 2 | cv 1538 |
. . . . . . . . . 10
class 𝑡 |
| 16 | | cmuv 35547 |
. . . . . . . . . 10
class
mUV |
| 17 | 15, 16 | cfv 6542 |
. . . . . . . . 9
class
(mUV‘𝑡) |
| 18 | | vc |
. . . . . . . . . . 11
setvar 𝑐 |
| 19 | 18 | cv 1538 |
. . . . . . . . . 10
class 𝑐 |
| 20 | 19 | csn 4608 |
. . . . . . . . 9
class {𝑐} |
| 21 | 17, 20 | cima 5670 |
. . . . . . . 8
class
((mUV‘𝑡)
“ {𝑐}) |
| 22 | 14, 10, 21 | wrex 3059 |
. . . . . . 7
wff
∃𝑣 ∈
((mUV‘𝑡) “
{𝑐})𝑤 ⊆ (𝑟 “ {𝑣}) |
| 23 | 17 | cpw 4582 |
. . . . . . . 8
class 𝒫
(mUV‘𝑡) |
| 24 | | cfn 8968 |
. . . . . . . 8
class
Fin |
| 25 | 23, 24 | cin 3932 |
. . . . . . 7
class
(𝒫 (mUV‘𝑡) ∩ Fin) |
| 26 | 22, 8, 25 | wral 3050 |
. . . . . 6
wff
∀𝑤 ∈
(𝒫 (mUV‘𝑡)
∩ Fin)∃𝑣 ∈
((mUV‘𝑡) “
{𝑐})𝑤 ⊆ (𝑟 “ {𝑣}) |
| 27 | | cmvt 35405 |
. . . . . . 7
class
mVT |
| 28 | 15, 27 | cfv 6542 |
. . . . . 6
class
(mVT‘𝑡) |
| 29 | 26, 18, 28 | wral 3050 |
. . . . 5
wff
∀𝑐 ∈
(mVT‘𝑡)∀𝑤 ∈ (𝒫
(mUV‘𝑡) ∩
Fin)∃𝑣 ∈
((mUV‘𝑡) “
{𝑐})𝑤 ⊆ (𝑟 “ {𝑣}) |
| 30 | 7, 29 | wa 395 |
. . . 4
wff (◡𝑟 = 𝑟 ∧ ∀𝑐 ∈ (mVT‘𝑡)∀𝑤 ∈ (𝒫 (mUV‘𝑡) ∩ Fin)∃𝑣 ∈ ((mUV‘𝑡) “ {𝑐})𝑤 ⊆ (𝑟 “ {𝑣})) |
| 31 | 17, 17 | cxp 5665 |
. . . . 5
class
((mUV‘𝑡)
× (mUV‘𝑡)) |
| 32 | 31 | cpw 4582 |
. . . 4
class 𝒫
((mUV‘𝑡) ×
(mUV‘𝑡)) |
| 33 | 30, 4, 32 | crab 3420 |
. . 3
class {𝑟 ∈ 𝒫
((mUV‘𝑡) ×
(mUV‘𝑡)) ∣
(◡𝑟 = 𝑟 ∧ ∀𝑐 ∈ (mVT‘𝑡)∀𝑤 ∈ (𝒫 (mUV‘𝑡) ∩ Fin)∃𝑣 ∈ ((mUV‘𝑡) “ {𝑐})𝑤 ⊆ (𝑟 “ {𝑣}))} |
| 34 | 2, 3, 33 | cmpt 5207 |
. 2
class (𝑡 ∈ V ↦ {𝑟 ∈ 𝒫
((mUV‘𝑡) ×
(mUV‘𝑡)) ∣
(◡𝑟 = 𝑟 ∧ ∀𝑐 ∈ (mVT‘𝑡)∀𝑤 ∈ (𝒫 (mUV‘𝑡) ∩ Fin)∃𝑣 ∈ ((mUV‘𝑡) “ {𝑐})𝑤 ⊆ (𝑟 “ {𝑣}))}) |
| 35 | 1, 34 | wceq 1539 |
1
wff mFRel =
(𝑡 ∈ V ↦ {𝑟 ∈ 𝒫
((mUV‘𝑡) ×
(mUV‘𝑡)) ∣
(◡𝑟 = 𝑟 ∧ ∀𝑐 ∈ (mVT‘𝑡)∀𝑤 ∈ (𝒫 (mUV‘𝑡) ∩ Fin)∃𝑣 ∈ ((mUV‘𝑡) “ {𝑐})𝑤 ⊆ (𝑟 “ {𝑣}))}) |