Detailed syntax breakdown of Definition df-mvsb
Step | Hyp | Ref
| Expression |
1 | | cmvsb 33548 |
. 2
class
mVSubst |
2 | | vt |
. . 3
setvar 𝑡 |
3 | | cvv 3430 |
. . 3
class
V |
4 | | vs |
. . . . . . . 8
setvar 𝑠 |
5 | 4 | cv 1540 |
. . . . . . 7
class 𝑠 |
6 | 2 | cv 1540 |
. . . . . . . . 9
class 𝑡 |
7 | | cmsub 33412 |
. . . . . . . . 9
class
mSubst |
8 | 6, 7 | cfv 6430 |
. . . . . . . 8
class
(mSubst‘𝑡) |
9 | 8 | crn 5589 |
. . . . . . 7
class ran
(mSubst‘𝑡) |
10 | 5, 9 | wcel 2109 |
. . . . . 6
wff 𝑠 ∈ ran (mSubst‘𝑡) |
11 | | vm |
. . . . . . . 8
setvar 𝑚 |
12 | 11 | cv 1540 |
. . . . . . 7
class 𝑚 |
13 | | cmvl 33547 |
. . . . . . . 8
class
mVL |
14 | 6, 13 | cfv 6430 |
. . . . . . 7
class
(mVL‘𝑡) |
15 | 12, 14 | wcel 2109 |
. . . . . 6
wff 𝑚 ∈ (mVL‘𝑡) |
16 | 10, 15 | wa 395 |
. . . . 5
wff (𝑠 ∈ ran (mSubst‘𝑡) ∧ 𝑚 ∈ (mVL‘𝑡)) |
17 | | vv |
. . . . . . . . . 10
setvar 𝑣 |
18 | 17 | cv 1540 |
. . . . . . . . 9
class 𝑣 |
19 | | cmvh 33413 |
. . . . . . . . . 10
class
mVH |
20 | 6, 19 | cfv 6430 |
. . . . . . . . 9
class
(mVH‘𝑡) |
21 | 18, 20 | cfv 6430 |
. . . . . . . 8
class
((mVH‘𝑡)‘𝑣) |
22 | 21, 5 | cfv 6430 |
. . . . . . 7
class (𝑠‘((mVH‘𝑡)‘𝑣)) |
23 | | cmevl 33551 |
. . . . . . . . 9
class
mEval |
24 | 6, 23 | cfv 6430 |
. . . . . . . 8
class
(mEval‘𝑡) |
25 | 24 | cdm 5588 |
. . . . . . 7
class dom
(mEval‘𝑡) |
26 | 12, 22, 25 | wbr 5078 |
. . . . . 6
wff 𝑚dom (mEval‘𝑡)(𝑠‘((mVH‘𝑡)‘𝑣)) |
27 | | cmvar 33402 |
. . . . . . 7
class
mVR |
28 | 6, 27 | cfv 6430 |
. . . . . 6
class
(mVR‘𝑡) |
29 | 26, 17, 28 | wral 3065 |
. . . . 5
wff
∀𝑣 ∈
(mVR‘𝑡)𝑚dom (mEval‘𝑡)(𝑠‘((mVH‘𝑡)‘𝑣)) |
30 | | vx |
. . . . . . 7
setvar 𝑥 |
31 | 30 | cv 1540 |
. . . . . 6
class 𝑥 |
32 | 12, 22, 24 | co 7268 |
. . . . . . 7
class (𝑚(mEval‘𝑡)(𝑠‘((mVH‘𝑡)‘𝑣))) |
33 | 17, 28, 32 | cmpt 5161 |
. . . . . 6
class (𝑣 ∈ (mVR‘𝑡) ↦ (𝑚(mEval‘𝑡)(𝑠‘((mVH‘𝑡)‘𝑣)))) |
34 | 31, 33 | wceq 1541 |
. . . . 5
wff 𝑥 = (𝑣 ∈ (mVR‘𝑡) ↦ (𝑚(mEval‘𝑡)(𝑠‘((mVH‘𝑡)‘𝑣)))) |
35 | 16, 29, 34 | w3a 1085 |
. . . 4
wff ((𝑠 ∈ ran (mSubst‘𝑡) ∧ 𝑚 ∈ (mVL‘𝑡)) ∧ ∀𝑣 ∈ (mVR‘𝑡)𝑚dom (mEval‘𝑡)(𝑠‘((mVH‘𝑡)‘𝑣)) ∧ 𝑥 = (𝑣 ∈ (mVR‘𝑡) ↦ (𝑚(mEval‘𝑡)(𝑠‘((mVH‘𝑡)‘𝑣))))) |
36 | 35, 4, 11, 30 | coprab 7269 |
. . 3
class
{〈〈𝑠,
𝑚〉, 𝑥〉 ∣ ((𝑠 ∈ ran (mSubst‘𝑡) ∧ 𝑚 ∈ (mVL‘𝑡)) ∧ ∀𝑣 ∈ (mVR‘𝑡)𝑚dom (mEval‘𝑡)(𝑠‘((mVH‘𝑡)‘𝑣)) ∧ 𝑥 = (𝑣 ∈ (mVR‘𝑡) ↦ (𝑚(mEval‘𝑡)(𝑠‘((mVH‘𝑡)‘𝑣)))))} |
37 | 2, 3, 36 | cmpt 5161 |
. 2
class (𝑡 ∈ V ↦
{〈〈𝑠, 𝑚〉, 𝑥〉 ∣ ((𝑠 ∈ ran (mSubst‘𝑡) ∧ 𝑚 ∈ (mVL‘𝑡)) ∧ ∀𝑣 ∈ (mVR‘𝑡)𝑚dom (mEval‘𝑡)(𝑠‘((mVH‘𝑡)‘𝑣)) ∧ 𝑥 = (𝑣 ∈ (mVR‘𝑡) ↦ (𝑚(mEval‘𝑡)(𝑠‘((mVH‘𝑡)‘𝑣)))))}) |
38 | 1, 37 | wceq 1541 |
1
wff mVSubst =
(𝑡 ∈ V ↦
{〈〈𝑠, 𝑚〉, 𝑥〉 ∣ ((𝑠 ∈ ran (mSubst‘𝑡) ∧ 𝑚 ∈ (mVL‘𝑡)) ∧ ∀𝑣 ∈ (mVR‘𝑡)𝑚dom (mEval‘𝑡)(𝑠‘((mVH‘𝑡)‘𝑣)) ∧ 𝑥 = (𝑣 ∈ (mVR‘𝑡) ↦ (𝑚(mEval‘𝑡)(𝑠‘((mVH‘𝑡)‘𝑣)))))}) |