Detailed syntax breakdown of Definition df-minmar1
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | cminmar1 22640 | . 2
class 
minMatR1 | 
| 2 |  | vn | . . 3
setvar 𝑛 | 
| 3 |  | vr | . . 3
setvar 𝑟 | 
| 4 |  | cvv 3479 | . . 3
class
V | 
| 5 |  | vm | . . . 4
setvar 𝑚 | 
| 6 | 2 | cv 1538 | . . . . . 6
class 𝑛 | 
| 7 | 3 | cv 1538 | . . . . . 6
class 𝑟 | 
| 8 |  | cmat 22412 | . . . . . 6
class 
Mat | 
| 9 | 6, 7, 8 | co 7432 | . . . . 5
class (𝑛 Mat 𝑟) | 
| 10 |  | cbs 17248 | . . . . 5
class
Base | 
| 11 | 9, 10 | cfv 6560 | . . . 4
class
(Base‘(𝑛 Mat
𝑟)) | 
| 12 |  | vk | . . . . 5
setvar 𝑘 | 
| 13 |  | vl | . . . . 5
setvar 𝑙 | 
| 14 |  | vi | . . . . . 6
setvar 𝑖 | 
| 15 |  | vj | . . . . . 6
setvar 𝑗 | 
| 16 | 14, 12 | weq 1961 | . . . . . . 7
wff 𝑖 = 𝑘 | 
| 17 | 15, 13 | weq 1961 | . . . . . . . 8
wff 𝑗 = 𝑙 | 
| 18 |  | cur 20179 | . . . . . . . . 9
class
1r | 
| 19 | 7, 18 | cfv 6560 | . . . . . . . 8
class
(1r‘𝑟) | 
| 20 |  | c0g 17485 | . . . . . . . . 9
class
0g | 
| 21 | 7, 20 | cfv 6560 | . . . . . . . 8
class
(0g‘𝑟) | 
| 22 | 17, 19, 21 | cif 4524 | . . . . . . 7
class if(𝑗 = 𝑙, (1r‘𝑟), (0g‘𝑟)) | 
| 23 | 14 | cv 1538 | . . . . . . . 8
class 𝑖 | 
| 24 | 15 | cv 1538 | . . . . . . . 8
class 𝑗 | 
| 25 | 5 | cv 1538 | . . . . . . . 8
class 𝑚 | 
| 26 | 23, 24, 25 | co 7432 | . . . . . . 7
class (𝑖𝑚𝑗) | 
| 27 | 16, 22, 26 | cif 4524 | . . . . . 6
class if(𝑖 = 𝑘, if(𝑗 = 𝑙, (1r‘𝑟), (0g‘𝑟)), (𝑖𝑚𝑗)) | 
| 28 | 14, 15, 6, 6, 27 | cmpo 7434 | . . . . 5
class (𝑖 ∈ 𝑛, 𝑗 ∈ 𝑛 ↦ if(𝑖 = 𝑘, if(𝑗 = 𝑙, (1r‘𝑟), (0g‘𝑟)), (𝑖𝑚𝑗))) | 
| 29 | 12, 13, 6, 6, 28 | cmpo 7434 | . . . 4
class (𝑘 ∈ 𝑛, 𝑙 ∈ 𝑛 ↦ (𝑖 ∈ 𝑛, 𝑗 ∈ 𝑛 ↦ if(𝑖 = 𝑘, if(𝑗 = 𝑙, (1r‘𝑟), (0g‘𝑟)), (𝑖𝑚𝑗)))) | 
| 30 | 5, 11, 29 | cmpt 5224 | . . 3
class (𝑚 ∈ (Base‘(𝑛 Mat 𝑟)) ↦ (𝑘 ∈ 𝑛, 𝑙 ∈ 𝑛 ↦ (𝑖 ∈ 𝑛, 𝑗 ∈ 𝑛 ↦ if(𝑖 = 𝑘, if(𝑗 = 𝑙, (1r‘𝑟), (0g‘𝑟)), (𝑖𝑚𝑗))))) | 
| 31 | 2, 3, 4, 4, 30 | cmpo 7434 | . 2
class (𝑛 ∈ V, 𝑟 ∈ V ↦ (𝑚 ∈ (Base‘(𝑛 Mat 𝑟)) ↦ (𝑘 ∈ 𝑛, 𝑙 ∈ 𝑛 ↦ (𝑖 ∈ 𝑛, 𝑗 ∈ 𝑛 ↦ if(𝑖 = 𝑘, if(𝑗 = 𝑙, (1r‘𝑟), (0g‘𝑟)), (𝑖𝑚𝑗)))))) | 
| 32 | 1, 31 | wceq 1539 | 1
wff  minMatR1 =
(𝑛 ∈ V, 𝑟 ∈ V ↦ (𝑚 ∈ (Base‘(𝑛 Mat 𝑟)) ↦ (𝑘 ∈ 𝑛, 𝑙 ∈ 𝑛 ↦ (𝑖 ∈ 𝑛, 𝑗 ∈ 𝑛 ↦ if(𝑖 = 𝑘, if(𝑗 = 𝑙, (1r‘𝑟), (0g‘𝑟)), (𝑖𝑚𝑗)))))) |