MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mndifsplit Structured version   Visualization version   GIF version

Theorem mndifsplit 21693
Description: Lemma for maducoeval2 21697. (Contributed by SO, 16-Jul-2018.)
Hypotheses
Ref Expression
mndifsplit.b 𝐵 = (Base‘𝑀)
mndifsplit.0g 0 = (0g𝑀)
mndifsplit.pg + = (+g𝑀)
Assertion
Ref Expression
mndifsplit ((𝑀 ∈ Mnd ∧ 𝐴𝐵 ∧ ¬ (𝜑𝜓)) → if((𝜑𝜓), 𝐴, 0 ) = (if(𝜑, 𝐴, 0 ) + if(𝜓, 𝐴, 0 )))

Proof of Theorem mndifsplit
StepHypRef Expression
1 pm2.21 123 . . . 4 (¬ (𝜑𝜓) → ((𝜑𝜓) → if((𝜑𝜓), 𝐴, 0 ) = (if(𝜑, 𝐴, 0 ) + if(𝜓, 𝐴, 0 ))))
21imp 406 . . 3 ((¬ (𝜑𝜓) ∧ (𝜑𝜓)) → if((𝜑𝜓), 𝐴, 0 ) = (if(𝜑, 𝐴, 0 ) + if(𝜓, 𝐴, 0 )))
323ad2antl3 1185 . 2 (((𝑀 ∈ Mnd ∧ 𝐴𝐵 ∧ ¬ (𝜑𝜓)) ∧ (𝜑𝜓)) → if((𝜑𝜓), 𝐴, 0 ) = (if(𝜑, 𝐴, 0 ) + if(𝜓, 𝐴, 0 )))
4 mndifsplit.b . . . . . 6 𝐵 = (Base‘𝑀)
5 mndifsplit.pg . . . . . 6 + = (+g𝑀)
6 mndifsplit.0g . . . . . 6 0 = (0g𝑀)
74, 5, 6mndrid 18321 . . . . 5 ((𝑀 ∈ Mnd ∧ 𝐴𝐵) → (𝐴 + 0 ) = 𝐴)
873adant3 1130 . . . 4 ((𝑀 ∈ Mnd ∧ 𝐴𝐵 ∧ ¬ (𝜑𝜓)) → (𝐴 + 0 ) = 𝐴)
98adantr 480 . . 3 (((𝑀 ∈ Mnd ∧ 𝐴𝐵 ∧ ¬ (𝜑𝜓)) ∧ (𝜑 ∧ ¬ 𝜓)) → (𝐴 + 0 ) = 𝐴)
10 iftrue 4462 . . . . 5 (𝜑 → if(𝜑, 𝐴, 0 ) = 𝐴)
11 iffalse 4465 . . . . 5 𝜓 → if(𝜓, 𝐴, 0 ) = 0 )
1210, 11oveqan12d 7274 . . . 4 ((𝜑 ∧ ¬ 𝜓) → (if(𝜑, 𝐴, 0 ) + if(𝜓, 𝐴, 0 )) = (𝐴 + 0 ))
1312adantl 481 . . 3 (((𝑀 ∈ Mnd ∧ 𝐴𝐵 ∧ ¬ (𝜑𝜓)) ∧ (𝜑 ∧ ¬ 𝜓)) → (if(𝜑, 𝐴, 0 ) + if(𝜓, 𝐴, 0 )) = (𝐴 + 0 ))
14 iftrue 4462 . . . . 5 ((𝜑𝜓) → if((𝜑𝜓), 𝐴, 0 ) = 𝐴)
1514orcs 871 . . . 4 (𝜑 → if((𝜑𝜓), 𝐴, 0 ) = 𝐴)
1615ad2antrl 724 . . 3 (((𝑀 ∈ Mnd ∧ 𝐴𝐵 ∧ ¬ (𝜑𝜓)) ∧ (𝜑 ∧ ¬ 𝜓)) → if((𝜑𝜓), 𝐴, 0 ) = 𝐴)
179, 13, 163eqtr4rd 2789 . 2 (((𝑀 ∈ Mnd ∧ 𝐴𝐵 ∧ ¬ (𝜑𝜓)) ∧ (𝜑 ∧ ¬ 𝜓)) → if((𝜑𝜓), 𝐴, 0 ) = (if(𝜑, 𝐴, 0 ) + if(𝜓, 𝐴, 0 )))
184, 5, 6mndlid 18320 . . . . 5 ((𝑀 ∈ Mnd ∧ 𝐴𝐵) → ( 0 + 𝐴) = 𝐴)
19183adant3 1130 . . . 4 ((𝑀 ∈ Mnd ∧ 𝐴𝐵 ∧ ¬ (𝜑𝜓)) → ( 0 + 𝐴) = 𝐴)
2019adantr 480 . . 3 (((𝑀 ∈ Mnd ∧ 𝐴𝐵 ∧ ¬ (𝜑𝜓)) ∧ (¬ 𝜑𝜓)) → ( 0 + 𝐴) = 𝐴)
21 iffalse 4465 . . . . 5 𝜑 → if(𝜑, 𝐴, 0 ) = 0 )
22 iftrue 4462 . . . . 5 (𝜓 → if(𝜓, 𝐴, 0 ) = 𝐴)
2321, 22oveqan12d 7274 . . . 4 ((¬ 𝜑𝜓) → (if(𝜑, 𝐴, 0 ) + if(𝜓, 𝐴, 0 )) = ( 0 + 𝐴))
2423adantl 481 . . 3 (((𝑀 ∈ Mnd ∧ 𝐴𝐵 ∧ ¬ (𝜑𝜓)) ∧ (¬ 𝜑𝜓)) → (if(𝜑, 𝐴, 0 ) + if(𝜓, 𝐴, 0 )) = ( 0 + 𝐴))
2514olcs 872 . . . 4 (𝜓 → if((𝜑𝜓), 𝐴, 0 ) = 𝐴)
2625ad2antll 725 . . 3 (((𝑀 ∈ Mnd ∧ 𝐴𝐵 ∧ ¬ (𝜑𝜓)) ∧ (¬ 𝜑𝜓)) → if((𝜑𝜓), 𝐴, 0 ) = 𝐴)
2720, 24, 263eqtr4rd 2789 . 2 (((𝑀 ∈ Mnd ∧ 𝐴𝐵 ∧ ¬ (𝜑𝜓)) ∧ (¬ 𝜑𝜓)) → if((𝜑𝜓), 𝐴, 0 ) = (if(𝜑, 𝐴, 0 ) + if(𝜓, 𝐴, 0 )))
28 simp1 1134 . . . . 5 ((𝑀 ∈ Mnd ∧ 𝐴𝐵 ∧ ¬ (𝜑𝜓)) → 𝑀 ∈ Mnd)
294, 6mndidcl 18315 . . . . 5 (𝑀 ∈ Mnd → 0𝐵)
304, 5, 6mndlid 18320 . . . . 5 ((𝑀 ∈ Mnd ∧ 0𝐵) → ( 0 + 0 ) = 0 )
3128, 29, 30syl2anc2 584 . . . 4 ((𝑀 ∈ Mnd ∧ 𝐴𝐵 ∧ ¬ (𝜑𝜓)) → ( 0 + 0 ) = 0 )
3231adantr 480 . . 3 (((𝑀 ∈ Mnd ∧ 𝐴𝐵 ∧ ¬ (𝜑𝜓)) ∧ (¬ 𝜑 ∧ ¬ 𝜓)) → ( 0 + 0 ) = 0 )
3321, 11oveqan12d 7274 . . . 4 ((¬ 𝜑 ∧ ¬ 𝜓) → (if(𝜑, 𝐴, 0 ) + if(𝜓, 𝐴, 0 )) = ( 0 + 0 ))
3433adantl 481 . . 3 (((𝑀 ∈ Mnd ∧ 𝐴𝐵 ∧ ¬ (𝜑𝜓)) ∧ (¬ 𝜑 ∧ ¬ 𝜓)) → (if(𝜑, 𝐴, 0 ) + if(𝜓, 𝐴, 0 )) = ( 0 + 0 ))
35 ioran 980 . . . . 5 (¬ (𝜑𝜓) ↔ (¬ 𝜑 ∧ ¬ 𝜓))
36 iffalse 4465 . . . . 5 (¬ (𝜑𝜓) → if((𝜑𝜓), 𝐴, 0 ) = 0 )
3735, 36sylbir 234 . . . 4 ((¬ 𝜑 ∧ ¬ 𝜓) → if((𝜑𝜓), 𝐴, 0 ) = 0 )
3837adantl 481 . . 3 (((𝑀 ∈ Mnd ∧ 𝐴𝐵 ∧ ¬ (𝜑𝜓)) ∧ (¬ 𝜑 ∧ ¬ 𝜓)) → if((𝜑𝜓), 𝐴, 0 ) = 0 )
3932, 34, 383eqtr4rd 2789 . 2 (((𝑀 ∈ Mnd ∧ 𝐴𝐵 ∧ ¬ (𝜑𝜓)) ∧ (¬ 𝜑 ∧ ¬ 𝜓)) → if((𝜑𝜓), 𝐴, 0 ) = (if(𝜑, 𝐴, 0 ) + if(𝜓, 𝐴, 0 )))
403, 17, 27, 394casesdan 1038 1 ((𝑀 ∈ Mnd ∧ 𝐴𝐵 ∧ ¬ (𝜑𝜓)) → if((𝜑𝜓), 𝐴, 0 ) = (if(𝜑, 𝐴, 0 ) + if(𝜓, 𝐴, 0 )))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 843  w3a 1085   = wceq 1539  wcel 2108  ifcif 4456  cfv 6418  (class class class)co 7255  Basecbs 16840  +gcplusg 16888  0gc0g 17067  Mndcmnd 18300
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-iota 6376  df-fun 6420  df-fv 6426  df-riota 7212  df-ov 7258  df-0g 17069  df-mgm 18241  df-sgrp 18290  df-mnd 18301
This theorem is referenced by:  maducoeval2  21697  madugsum  21700
  Copyright terms: Public domain W3C validator