MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mndifsplit Structured version   Visualization version   GIF version

Theorem mndifsplit 21891
Description: Lemma for maducoeval2 21895. (Contributed by SO, 16-Jul-2018.)
Hypotheses
Ref Expression
mndifsplit.b 𝐵 = (Base‘𝑀)
mndifsplit.0g 0 = (0g𝑀)
mndifsplit.pg + = (+g𝑀)
Assertion
Ref Expression
mndifsplit ((𝑀 ∈ Mnd ∧ 𝐴𝐵 ∧ ¬ (𝜑𝜓)) → if((𝜑𝜓), 𝐴, 0 ) = (if(𝜑, 𝐴, 0 ) + if(𝜓, 𝐴, 0 )))

Proof of Theorem mndifsplit
StepHypRef Expression
1 pm2.21 123 . . . 4 (¬ (𝜑𝜓) → ((𝜑𝜓) → if((𝜑𝜓), 𝐴, 0 ) = (if(𝜑, 𝐴, 0 ) + if(𝜓, 𝐴, 0 ))))
21imp 408 . . 3 ((¬ (𝜑𝜓) ∧ (𝜑𝜓)) → if((𝜑𝜓), 𝐴, 0 ) = (if(𝜑, 𝐴, 0 ) + if(𝜓, 𝐴, 0 )))
323ad2antl3 1187 . 2 (((𝑀 ∈ Mnd ∧ 𝐴𝐵 ∧ ¬ (𝜑𝜓)) ∧ (𝜑𝜓)) → if((𝜑𝜓), 𝐴, 0 ) = (if(𝜑, 𝐴, 0 ) + if(𝜓, 𝐴, 0 )))
4 mndifsplit.b . . . . . 6 𝐵 = (Base‘𝑀)
5 mndifsplit.pg . . . . . 6 + = (+g𝑀)
6 mndifsplit.0g . . . . . 6 0 = (0g𝑀)
74, 5, 6mndrid 18504 . . . . 5 ((𝑀 ∈ Mnd ∧ 𝐴𝐵) → (𝐴 + 0 ) = 𝐴)
873adant3 1132 . . . 4 ((𝑀 ∈ Mnd ∧ 𝐴𝐵 ∧ ¬ (𝜑𝜓)) → (𝐴 + 0 ) = 𝐴)
98adantr 482 . . 3 (((𝑀 ∈ Mnd ∧ 𝐴𝐵 ∧ ¬ (𝜑𝜓)) ∧ (𝜑 ∧ ¬ 𝜓)) → (𝐴 + 0 ) = 𝐴)
10 iftrue 4484 . . . . 5 (𝜑 → if(𝜑, 𝐴, 0 ) = 𝐴)
11 iffalse 4487 . . . . 5 𝜓 → if(𝜓, 𝐴, 0 ) = 0 )
1210, 11oveqan12d 7361 . . . 4 ((𝜑 ∧ ¬ 𝜓) → (if(𝜑, 𝐴, 0 ) + if(𝜓, 𝐴, 0 )) = (𝐴 + 0 ))
1312adantl 483 . . 3 (((𝑀 ∈ Mnd ∧ 𝐴𝐵 ∧ ¬ (𝜑𝜓)) ∧ (𝜑 ∧ ¬ 𝜓)) → (if(𝜑, 𝐴, 0 ) + if(𝜓, 𝐴, 0 )) = (𝐴 + 0 ))
14 iftrue 4484 . . . . 5 ((𝜑𝜓) → if((𝜑𝜓), 𝐴, 0 ) = 𝐴)
1514orcs 873 . . . 4 (𝜑 → if((𝜑𝜓), 𝐴, 0 ) = 𝐴)
1615ad2antrl 726 . . 3 (((𝑀 ∈ Mnd ∧ 𝐴𝐵 ∧ ¬ (𝜑𝜓)) ∧ (𝜑 ∧ ¬ 𝜓)) → if((𝜑𝜓), 𝐴, 0 ) = 𝐴)
179, 13, 163eqtr4rd 2788 . 2 (((𝑀 ∈ Mnd ∧ 𝐴𝐵 ∧ ¬ (𝜑𝜓)) ∧ (𝜑 ∧ ¬ 𝜓)) → if((𝜑𝜓), 𝐴, 0 ) = (if(𝜑, 𝐴, 0 ) + if(𝜓, 𝐴, 0 )))
184, 5, 6mndlid 18503 . . . . 5 ((𝑀 ∈ Mnd ∧ 𝐴𝐵) → ( 0 + 𝐴) = 𝐴)
19183adant3 1132 . . . 4 ((𝑀 ∈ Mnd ∧ 𝐴𝐵 ∧ ¬ (𝜑𝜓)) → ( 0 + 𝐴) = 𝐴)
2019adantr 482 . . 3 (((𝑀 ∈ Mnd ∧ 𝐴𝐵 ∧ ¬ (𝜑𝜓)) ∧ (¬ 𝜑𝜓)) → ( 0 + 𝐴) = 𝐴)
21 iffalse 4487 . . . . 5 𝜑 → if(𝜑, 𝐴, 0 ) = 0 )
22 iftrue 4484 . . . . 5 (𝜓 → if(𝜓, 𝐴, 0 ) = 𝐴)
2321, 22oveqan12d 7361 . . . 4 ((¬ 𝜑𝜓) → (if(𝜑, 𝐴, 0 ) + if(𝜓, 𝐴, 0 )) = ( 0 + 𝐴))
2423adantl 483 . . 3 (((𝑀 ∈ Mnd ∧ 𝐴𝐵 ∧ ¬ (𝜑𝜓)) ∧ (¬ 𝜑𝜓)) → (if(𝜑, 𝐴, 0 ) + if(𝜓, 𝐴, 0 )) = ( 0 + 𝐴))
2514olcs 874 . . . 4 (𝜓 → if((𝜑𝜓), 𝐴, 0 ) = 𝐴)
2625ad2antll 727 . . 3 (((𝑀 ∈ Mnd ∧ 𝐴𝐵 ∧ ¬ (𝜑𝜓)) ∧ (¬ 𝜑𝜓)) → if((𝜑𝜓), 𝐴, 0 ) = 𝐴)
2720, 24, 263eqtr4rd 2788 . 2 (((𝑀 ∈ Mnd ∧ 𝐴𝐵 ∧ ¬ (𝜑𝜓)) ∧ (¬ 𝜑𝜓)) → if((𝜑𝜓), 𝐴, 0 ) = (if(𝜑, 𝐴, 0 ) + if(𝜓, 𝐴, 0 )))
28 simp1 1136 . . . . 5 ((𝑀 ∈ Mnd ∧ 𝐴𝐵 ∧ ¬ (𝜑𝜓)) → 𝑀 ∈ Mnd)
294, 6mndidcl 18498 . . . . 5 (𝑀 ∈ Mnd → 0𝐵)
304, 5, 6mndlid 18503 . . . . 5 ((𝑀 ∈ Mnd ∧ 0𝐵) → ( 0 + 0 ) = 0 )
3128, 29, 30syl2anc2 586 . . . 4 ((𝑀 ∈ Mnd ∧ 𝐴𝐵 ∧ ¬ (𝜑𝜓)) → ( 0 + 0 ) = 0 )
3231adantr 482 . . 3 (((𝑀 ∈ Mnd ∧ 𝐴𝐵 ∧ ¬ (𝜑𝜓)) ∧ (¬ 𝜑 ∧ ¬ 𝜓)) → ( 0 + 0 ) = 0 )
3321, 11oveqan12d 7361 . . . 4 ((¬ 𝜑 ∧ ¬ 𝜓) → (if(𝜑, 𝐴, 0 ) + if(𝜓, 𝐴, 0 )) = ( 0 + 0 ))
3433adantl 483 . . 3 (((𝑀 ∈ Mnd ∧ 𝐴𝐵 ∧ ¬ (𝜑𝜓)) ∧ (¬ 𝜑 ∧ ¬ 𝜓)) → (if(𝜑, 𝐴, 0 ) + if(𝜓, 𝐴, 0 )) = ( 0 + 0 ))
35 ioran 982 . . . . 5 (¬ (𝜑𝜓) ↔ (¬ 𝜑 ∧ ¬ 𝜓))
36 iffalse 4487 . . . . 5 (¬ (𝜑𝜓) → if((𝜑𝜓), 𝐴, 0 ) = 0 )
3735, 36sylbir 234 . . . 4 ((¬ 𝜑 ∧ ¬ 𝜓) → if((𝜑𝜓), 𝐴, 0 ) = 0 )
3837adantl 483 . . 3 (((𝑀 ∈ Mnd ∧ 𝐴𝐵 ∧ ¬ (𝜑𝜓)) ∧ (¬ 𝜑 ∧ ¬ 𝜓)) → if((𝜑𝜓), 𝐴, 0 ) = 0 )
3932, 34, 383eqtr4rd 2788 . 2 (((𝑀 ∈ Mnd ∧ 𝐴𝐵 ∧ ¬ (𝜑𝜓)) ∧ (¬ 𝜑 ∧ ¬ 𝜓)) → if((𝜑𝜓), 𝐴, 0 ) = (if(𝜑, 𝐴, 0 ) + if(𝜓, 𝐴, 0 )))
403, 17, 27, 394casesdan 1040 1 ((𝑀 ∈ Mnd ∧ 𝐴𝐵 ∧ ¬ (𝜑𝜓)) → if((𝜑𝜓), 𝐴, 0 ) = (if(𝜑, 𝐴, 0 ) + if(𝜓, 𝐴, 0 )))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 397  wo 845  w3a 1087   = wceq 1541  wcel 2106  ifcif 4478  cfv 6484  (class class class)co 7342  Basecbs 17010  +gcplusg 17060  0gc0g 17248  Mndcmnd 18483
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2708  ax-sep 5248  ax-nul 5255  ax-pr 5377
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-ral 3063  df-rex 3072  df-rmo 3350  df-reu 3351  df-rab 3405  df-v 3444  df-sbc 3732  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4275  df-if 4479  df-sn 4579  df-pr 4581  df-op 4585  df-uni 4858  df-br 5098  df-opab 5160  df-mpt 5181  df-id 5523  df-xp 5631  df-rel 5632  df-cnv 5633  df-co 5634  df-dm 5635  df-iota 6436  df-fun 6486  df-fv 6492  df-riota 7298  df-ov 7345  df-0g 17250  df-mgm 18424  df-sgrp 18473  df-mnd 18484
This theorem is referenced by:  maducoeval2  21895  madugsum  21898
  Copyright terms: Public domain W3C validator