MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mndifsplit Structured version   Visualization version   GIF version

Theorem mndifsplit 21785
Description: Lemma for maducoeval2 21789. (Contributed by SO, 16-Jul-2018.)
Hypotheses
Ref Expression
mndifsplit.b 𝐵 = (Base‘𝑀)
mndifsplit.0g 0 = (0g𝑀)
mndifsplit.pg + = (+g𝑀)
Assertion
Ref Expression
mndifsplit ((𝑀 ∈ Mnd ∧ 𝐴𝐵 ∧ ¬ (𝜑𝜓)) → if((𝜑𝜓), 𝐴, 0 ) = (if(𝜑, 𝐴, 0 ) + if(𝜓, 𝐴, 0 )))

Proof of Theorem mndifsplit
StepHypRef Expression
1 pm2.21 123 . . . 4 (¬ (𝜑𝜓) → ((𝜑𝜓) → if((𝜑𝜓), 𝐴, 0 ) = (if(𝜑, 𝐴, 0 ) + if(𝜓, 𝐴, 0 ))))
21imp 407 . . 3 ((¬ (𝜑𝜓) ∧ (𝜑𝜓)) → if((𝜑𝜓), 𝐴, 0 ) = (if(𝜑, 𝐴, 0 ) + if(𝜓, 𝐴, 0 )))
323ad2antl3 1186 . 2 (((𝑀 ∈ Mnd ∧ 𝐴𝐵 ∧ ¬ (𝜑𝜓)) ∧ (𝜑𝜓)) → if((𝜑𝜓), 𝐴, 0 ) = (if(𝜑, 𝐴, 0 ) + if(𝜓, 𝐴, 0 )))
4 mndifsplit.b . . . . . 6 𝐵 = (Base‘𝑀)
5 mndifsplit.pg . . . . . 6 + = (+g𝑀)
6 mndifsplit.0g . . . . . 6 0 = (0g𝑀)
74, 5, 6mndrid 18406 . . . . 5 ((𝑀 ∈ Mnd ∧ 𝐴𝐵) → (𝐴 + 0 ) = 𝐴)
873adant3 1131 . . . 4 ((𝑀 ∈ Mnd ∧ 𝐴𝐵 ∧ ¬ (𝜑𝜓)) → (𝐴 + 0 ) = 𝐴)
98adantr 481 . . 3 (((𝑀 ∈ Mnd ∧ 𝐴𝐵 ∧ ¬ (𝜑𝜓)) ∧ (𝜑 ∧ ¬ 𝜓)) → (𝐴 + 0 ) = 𝐴)
10 iftrue 4465 . . . . 5 (𝜑 → if(𝜑, 𝐴, 0 ) = 𝐴)
11 iffalse 4468 . . . . 5 𝜓 → if(𝜓, 𝐴, 0 ) = 0 )
1210, 11oveqan12d 7294 . . . 4 ((𝜑 ∧ ¬ 𝜓) → (if(𝜑, 𝐴, 0 ) + if(𝜓, 𝐴, 0 )) = (𝐴 + 0 ))
1312adantl 482 . . 3 (((𝑀 ∈ Mnd ∧ 𝐴𝐵 ∧ ¬ (𝜑𝜓)) ∧ (𝜑 ∧ ¬ 𝜓)) → (if(𝜑, 𝐴, 0 ) + if(𝜓, 𝐴, 0 )) = (𝐴 + 0 ))
14 iftrue 4465 . . . . 5 ((𝜑𝜓) → if((𝜑𝜓), 𝐴, 0 ) = 𝐴)
1514orcs 872 . . . 4 (𝜑 → if((𝜑𝜓), 𝐴, 0 ) = 𝐴)
1615ad2antrl 725 . . 3 (((𝑀 ∈ Mnd ∧ 𝐴𝐵 ∧ ¬ (𝜑𝜓)) ∧ (𝜑 ∧ ¬ 𝜓)) → if((𝜑𝜓), 𝐴, 0 ) = 𝐴)
179, 13, 163eqtr4rd 2789 . 2 (((𝑀 ∈ Mnd ∧ 𝐴𝐵 ∧ ¬ (𝜑𝜓)) ∧ (𝜑 ∧ ¬ 𝜓)) → if((𝜑𝜓), 𝐴, 0 ) = (if(𝜑, 𝐴, 0 ) + if(𝜓, 𝐴, 0 )))
184, 5, 6mndlid 18405 . . . . 5 ((𝑀 ∈ Mnd ∧ 𝐴𝐵) → ( 0 + 𝐴) = 𝐴)
19183adant3 1131 . . . 4 ((𝑀 ∈ Mnd ∧ 𝐴𝐵 ∧ ¬ (𝜑𝜓)) → ( 0 + 𝐴) = 𝐴)
2019adantr 481 . . 3 (((𝑀 ∈ Mnd ∧ 𝐴𝐵 ∧ ¬ (𝜑𝜓)) ∧ (¬ 𝜑𝜓)) → ( 0 + 𝐴) = 𝐴)
21 iffalse 4468 . . . . 5 𝜑 → if(𝜑, 𝐴, 0 ) = 0 )
22 iftrue 4465 . . . . 5 (𝜓 → if(𝜓, 𝐴, 0 ) = 𝐴)
2321, 22oveqan12d 7294 . . . 4 ((¬ 𝜑𝜓) → (if(𝜑, 𝐴, 0 ) + if(𝜓, 𝐴, 0 )) = ( 0 + 𝐴))
2423adantl 482 . . 3 (((𝑀 ∈ Mnd ∧ 𝐴𝐵 ∧ ¬ (𝜑𝜓)) ∧ (¬ 𝜑𝜓)) → (if(𝜑, 𝐴, 0 ) + if(𝜓, 𝐴, 0 )) = ( 0 + 𝐴))
2514olcs 873 . . . 4 (𝜓 → if((𝜑𝜓), 𝐴, 0 ) = 𝐴)
2625ad2antll 726 . . 3 (((𝑀 ∈ Mnd ∧ 𝐴𝐵 ∧ ¬ (𝜑𝜓)) ∧ (¬ 𝜑𝜓)) → if((𝜑𝜓), 𝐴, 0 ) = 𝐴)
2720, 24, 263eqtr4rd 2789 . 2 (((𝑀 ∈ Mnd ∧ 𝐴𝐵 ∧ ¬ (𝜑𝜓)) ∧ (¬ 𝜑𝜓)) → if((𝜑𝜓), 𝐴, 0 ) = (if(𝜑, 𝐴, 0 ) + if(𝜓, 𝐴, 0 )))
28 simp1 1135 . . . . 5 ((𝑀 ∈ Mnd ∧ 𝐴𝐵 ∧ ¬ (𝜑𝜓)) → 𝑀 ∈ Mnd)
294, 6mndidcl 18400 . . . . 5 (𝑀 ∈ Mnd → 0𝐵)
304, 5, 6mndlid 18405 . . . . 5 ((𝑀 ∈ Mnd ∧ 0𝐵) → ( 0 + 0 ) = 0 )
3128, 29, 30syl2anc2 585 . . . 4 ((𝑀 ∈ Mnd ∧ 𝐴𝐵 ∧ ¬ (𝜑𝜓)) → ( 0 + 0 ) = 0 )
3231adantr 481 . . 3 (((𝑀 ∈ Mnd ∧ 𝐴𝐵 ∧ ¬ (𝜑𝜓)) ∧ (¬ 𝜑 ∧ ¬ 𝜓)) → ( 0 + 0 ) = 0 )
3321, 11oveqan12d 7294 . . . 4 ((¬ 𝜑 ∧ ¬ 𝜓) → (if(𝜑, 𝐴, 0 ) + if(𝜓, 𝐴, 0 )) = ( 0 + 0 ))
3433adantl 482 . . 3 (((𝑀 ∈ Mnd ∧ 𝐴𝐵 ∧ ¬ (𝜑𝜓)) ∧ (¬ 𝜑 ∧ ¬ 𝜓)) → (if(𝜑, 𝐴, 0 ) + if(𝜓, 𝐴, 0 )) = ( 0 + 0 ))
35 ioran 981 . . . . 5 (¬ (𝜑𝜓) ↔ (¬ 𝜑 ∧ ¬ 𝜓))
36 iffalse 4468 . . . . 5 (¬ (𝜑𝜓) → if((𝜑𝜓), 𝐴, 0 ) = 0 )
3735, 36sylbir 234 . . . 4 ((¬ 𝜑 ∧ ¬ 𝜓) → if((𝜑𝜓), 𝐴, 0 ) = 0 )
3837adantl 482 . . 3 (((𝑀 ∈ Mnd ∧ 𝐴𝐵 ∧ ¬ (𝜑𝜓)) ∧ (¬ 𝜑 ∧ ¬ 𝜓)) → if((𝜑𝜓), 𝐴, 0 ) = 0 )
3932, 34, 383eqtr4rd 2789 . 2 (((𝑀 ∈ Mnd ∧ 𝐴𝐵 ∧ ¬ (𝜑𝜓)) ∧ (¬ 𝜑 ∧ ¬ 𝜓)) → if((𝜑𝜓), 𝐴, 0 ) = (if(𝜑, 𝐴, 0 ) + if(𝜓, 𝐴, 0 )))
403, 17, 27, 394casesdan 1039 1 ((𝑀 ∈ Mnd ∧ 𝐴𝐵 ∧ ¬ (𝜑𝜓)) → if((𝜑𝜓), 𝐴, 0 ) = (if(𝜑, 𝐴, 0 ) + if(𝜓, 𝐴, 0 )))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396  wo 844  w3a 1086   = wceq 1539  wcel 2106  ifcif 4459  cfv 6433  (class class class)co 7275  Basecbs 16912  +gcplusg 16962  0gc0g 17150  Mndcmnd 18385
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-iota 6391  df-fun 6435  df-fv 6441  df-riota 7232  df-ov 7278  df-0g 17152  df-mgm 18326  df-sgrp 18375  df-mnd 18386
This theorem is referenced by:  maducoeval2  21789  madugsum  21792
  Copyright terms: Public domain W3C validator