Proof of Theorem mndifsplit
| Step | Hyp | Ref
| Expression |
| 1 | | pm2.21 123 |
. . . 4
⊢ (¬
(𝜑 ∧ 𝜓) → ((𝜑 ∧ 𝜓) → if((𝜑 ∨ 𝜓), 𝐴, 0 ) = (if(𝜑, 𝐴, 0 ) + if(𝜓, 𝐴, 0 )))) |
| 2 | 1 | imp 406 |
. . 3
⊢ ((¬
(𝜑 ∧ 𝜓) ∧ (𝜑 ∧ 𝜓)) → if((𝜑 ∨ 𝜓), 𝐴, 0 ) = (if(𝜑, 𝐴, 0 ) + if(𝜓, 𝐴, 0 ))) |
| 3 | 2 | 3ad2antl3 1188 |
. 2
⊢ (((𝑀 ∈ Mnd ∧ 𝐴 ∈ 𝐵 ∧ ¬ (𝜑 ∧ 𝜓)) ∧ (𝜑 ∧ 𝜓)) → if((𝜑 ∨ 𝜓), 𝐴, 0 ) = (if(𝜑, 𝐴, 0 ) + if(𝜓, 𝐴, 0 ))) |
| 4 | | mndifsplit.b |
. . . . . 6
⊢ 𝐵 = (Base‘𝑀) |
| 5 | | mndifsplit.pg |
. . . . . 6
⊢ + =
(+g‘𝑀) |
| 6 | | mndifsplit.0g |
. . . . . 6
⊢ 0 =
(0g‘𝑀) |
| 7 | 4, 5, 6 | mndrid 18738 |
. . . . 5
⊢ ((𝑀 ∈ Mnd ∧ 𝐴 ∈ 𝐵) → (𝐴 + 0 ) = 𝐴) |
| 8 | 7 | 3adant3 1132 |
. . . 4
⊢ ((𝑀 ∈ Mnd ∧ 𝐴 ∈ 𝐵 ∧ ¬ (𝜑 ∧ 𝜓)) → (𝐴 + 0 ) = 𝐴) |
| 9 | 8 | adantr 480 |
. . 3
⊢ (((𝑀 ∈ Mnd ∧ 𝐴 ∈ 𝐵 ∧ ¬ (𝜑 ∧ 𝜓)) ∧ (𝜑 ∧ ¬ 𝜓)) → (𝐴 + 0 ) = 𝐴) |
| 10 | | iftrue 4511 |
. . . . 5
⊢ (𝜑 → if(𝜑, 𝐴, 0 ) = 𝐴) |
| 11 | | iffalse 4514 |
. . . . 5
⊢ (¬
𝜓 → if(𝜓, 𝐴, 0 ) = 0 ) |
| 12 | 10, 11 | oveqan12d 7429 |
. . . 4
⊢ ((𝜑 ∧ ¬ 𝜓) → (if(𝜑, 𝐴, 0 ) + if(𝜓, 𝐴, 0 )) = (𝐴 + 0 )) |
| 13 | 12 | adantl 481 |
. . 3
⊢ (((𝑀 ∈ Mnd ∧ 𝐴 ∈ 𝐵 ∧ ¬ (𝜑 ∧ 𝜓)) ∧ (𝜑 ∧ ¬ 𝜓)) → (if(𝜑, 𝐴, 0 ) + if(𝜓, 𝐴, 0 )) = (𝐴 + 0 )) |
| 14 | | iftrue 4511 |
. . . . 5
⊢ ((𝜑 ∨ 𝜓) → if((𝜑 ∨ 𝜓), 𝐴, 0 ) = 𝐴) |
| 15 | 14 | orcs 875 |
. . . 4
⊢ (𝜑 → if((𝜑 ∨ 𝜓), 𝐴, 0 ) = 𝐴) |
| 16 | 15 | ad2antrl 728 |
. . 3
⊢ (((𝑀 ∈ Mnd ∧ 𝐴 ∈ 𝐵 ∧ ¬ (𝜑 ∧ 𝜓)) ∧ (𝜑 ∧ ¬ 𝜓)) → if((𝜑 ∨ 𝜓), 𝐴, 0 ) = 𝐴) |
| 17 | 9, 13, 16 | 3eqtr4rd 2782 |
. 2
⊢ (((𝑀 ∈ Mnd ∧ 𝐴 ∈ 𝐵 ∧ ¬ (𝜑 ∧ 𝜓)) ∧ (𝜑 ∧ ¬ 𝜓)) → if((𝜑 ∨ 𝜓), 𝐴, 0 ) = (if(𝜑, 𝐴, 0 ) + if(𝜓, 𝐴, 0 ))) |
| 18 | 4, 5, 6 | mndlid 18737 |
. . . . 5
⊢ ((𝑀 ∈ Mnd ∧ 𝐴 ∈ 𝐵) → ( 0 + 𝐴) = 𝐴) |
| 19 | 18 | 3adant3 1132 |
. . . 4
⊢ ((𝑀 ∈ Mnd ∧ 𝐴 ∈ 𝐵 ∧ ¬ (𝜑 ∧ 𝜓)) → ( 0 + 𝐴) = 𝐴) |
| 20 | 19 | adantr 480 |
. . 3
⊢ (((𝑀 ∈ Mnd ∧ 𝐴 ∈ 𝐵 ∧ ¬ (𝜑 ∧ 𝜓)) ∧ (¬ 𝜑 ∧ 𝜓)) → ( 0 + 𝐴) = 𝐴) |
| 21 | | iffalse 4514 |
. . . . 5
⊢ (¬
𝜑 → if(𝜑, 𝐴, 0 ) = 0 ) |
| 22 | | iftrue 4511 |
. . . . 5
⊢ (𝜓 → if(𝜓, 𝐴, 0 ) = 𝐴) |
| 23 | 21, 22 | oveqan12d 7429 |
. . . 4
⊢ ((¬
𝜑 ∧ 𝜓) → (if(𝜑, 𝐴, 0 ) + if(𝜓, 𝐴, 0 )) = ( 0 + 𝐴)) |
| 24 | 23 | adantl 481 |
. . 3
⊢ (((𝑀 ∈ Mnd ∧ 𝐴 ∈ 𝐵 ∧ ¬ (𝜑 ∧ 𝜓)) ∧ (¬ 𝜑 ∧ 𝜓)) → (if(𝜑, 𝐴, 0 ) + if(𝜓, 𝐴, 0 )) = ( 0 + 𝐴)) |
| 25 | 14 | olcs 876 |
. . . 4
⊢ (𝜓 → if((𝜑 ∨ 𝜓), 𝐴, 0 ) = 𝐴) |
| 26 | 25 | ad2antll 729 |
. . 3
⊢ (((𝑀 ∈ Mnd ∧ 𝐴 ∈ 𝐵 ∧ ¬ (𝜑 ∧ 𝜓)) ∧ (¬ 𝜑 ∧ 𝜓)) → if((𝜑 ∨ 𝜓), 𝐴, 0 ) = 𝐴) |
| 27 | 20, 24, 26 | 3eqtr4rd 2782 |
. 2
⊢ (((𝑀 ∈ Mnd ∧ 𝐴 ∈ 𝐵 ∧ ¬ (𝜑 ∧ 𝜓)) ∧ (¬ 𝜑 ∧ 𝜓)) → if((𝜑 ∨ 𝜓), 𝐴, 0 ) = (if(𝜑, 𝐴, 0 ) + if(𝜓, 𝐴, 0 ))) |
| 28 | | simp1 1136 |
. . . . 5
⊢ ((𝑀 ∈ Mnd ∧ 𝐴 ∈ 𝐵 ∧ ¬ (𝜑 ∧ 𝜓)) → 𝑀 ∈ Mnd) |
| 29 | 4, 6 | mndidcl 18732 |
. . . . 5
⊢ (𝑀 ∈ Mnd → 0 ∈ 𝐵) |
| 30 | 4, 5, 6 | mndlid 18737 |
. . . . 5
⊢ ((𝑀 ∈ Mnd ∧ 0 ∈ 𝐵) → ( 0 + 0 ) = 0 ) |
| 31 | 28, 29, 30 | syl2anc2 585 |
. . . 4
⊢ ((𝑀 ∈ Mnd ∧ 𝐴 ∈ 𝐵 ∧ ¬ (𝜑 ∧ 𝜓)) → ( 0 + 0 ) = 0 ) |
| 32 | 31 | adantr 480 |
. . 3
⊢ (((𝑀 ∈ Mnd ∧ 𝐴 ∈ 𝐵 ∧ ¬ (𝜑 ∧ 𝜓)) ∧ (¬ 𝜑 ∧ ¬ 𝜓)) → ( 0 + 0 ) = 0 ) |
| 33 | 21, 11 | oveqan12d 7429 |
. . . 4
⊢ ((¬
𝜑 ∧ ¬ 𝜓) → (if(𝜑, 𝐴, 0 ) + if(𝜓, 𝐴, 0 )) = ( 0 + 0 )) |
| 34 | 33 | adantl 481 |
. . 3
⊢ (((𝑀 ∈ Mnd ∧ 𝐴 ∈ 𝐵 ∧ ¬ (𝜑 ∧ 𝜓)) ∧ (¬ 𝜑 ∧ ¬ 𝜓)) → (if(𝜑, 𝐴, 0 ) + if(𝜓, 𝐴, 0 )) = ( 0 + 0 )) |
| 35 | | ioran 985 |
. . . . 5
⊢ (¬
(𝜑 ∨ 𝜓) ↔ (¬ 𝜑 ∧ ¬ 𝜓)) |
| 36 | | iffalse 4514 |
. . . . 5
⊢ (¬
(𝜑 ∨ 𝜓) → if((𝜑 ∨ 𝜓), 𝐴, 0 ) = 0 ) |
| 37 | 35, 36 | sylbir 235 |
. . . 4
⊢ ((¬
𝜑 ∧ ¬ 𝜓) → if((𝜑 ∨ 𝜓), 𝐴, 0 ) = 0 ) |
| 38 | 37 | adantl 481 |
. . 3
⊢ (((𝑀 ∈ Mnd ∧ 𝐴 ∈ 𝐵 ∧ ¬ (𝜑 ∧ 𝜓)) ∧ (¬ 𝜑 ∧ ¬ 𝜓)) → if((𝜑 ∨ 𝜓), 𝐴, 0 ) = 0 ) |
| 39 | 32, 34, 38 | 3eqtr4rd 2782 |
. 2
⊢ (((𝑀 ∈ Mnd ∧ 𝐴 ∈ 𝐵 ∧ ¬ (𝜑 ∧ 𝜓)) ∧ (¬ 𝜑 ∧ ¬ 𝜓)) → if((𝜑 ∨ 𝜓), 𝐴, 0 ) = (if(𝜑, 𝐴, 0 ) + if(𝜓, 𝐴, 0 ))) |
| 40 | 3, 17, 27, 39 | 4casesdan 1041 |
1
⊢ ((𝑀 ∈ Mnd ∧ 𝐴 ∈ 𝐵 ∧ ¬ (𝜑 ∧ 𝜓)) → if((𝜑 ∨ 𝜓), 𝐴, 0 ) = (if(𝜑, 𝐴, 0 ) + if(𝜓, 𝐴, 0 ))) |