MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  minmar1fval Structured version   Visualization version   GIF version

Theorem minmar1fval 22533
Description: First substitution for the definition of a matrix for a minor. (Contributed by AV, 31-Dec-2018.)
Hypotheses
Ref Expression
minmar1fval.a 𝐴 = (𝑁 Mat 𝑅)
minmar1fval.b 𝐵 = (Base‘𝐴)
minmar1fval.q 𝑄 = (𝑁 minMatR1 𝑅)
minmar1fval.o 1 = (1r𝑅)
minmar1fval.z 0 = (0g𝑅)
Assertion
Ref Expression
minmar1fval 𝑄 = (𝑚𝐵 ↦ (𝑘𝑁, 𝑙𝑁 ↦ (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑘, if(𝑗 = 𝑙, 1 , 0 ), (𝑖𝑚𝑗)))))
Distinct variable groups:   𝐵,𝑚   𝑖,𝑁,𝑗,𝑘,𝑙,𝑚   𝑅,𝑖,𝑗,𝑘,𝑙,𝑚
Allowed substitution hints:   𝐴(𝑖,𝑗,𝑘,𝑚,𝑙)   𝐵(𝑖,𝑗,𝑘,𝑙)   𝑄(𝑖,𝑗,𝑘,𝑚,𝑙)   1 (𝑖,𝑗,𝑘,𝑚,𝑙)   0 (𝑖,𝑗,𝑘,𝑚,𝑙)

Proof of Theorem minmar1fval
Dummy variables 𝑛 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 minmar1fval.q . 2 𝑄 = (𝑁 minMatR1 𝑅)
2 oveq12 7396 . . . . . . . 8 ((𝑛 = 𝑁𝑟 = 𝑅) → (𝑛 Mat 𝑟) = (𝑁 Mat 𝑅))
3 minmar1fval.a . . . . . . . 8 𝐴 = (𝑁 Mat 𝑅)
42, 3eqtr4di 2782 . . . . . . 7 ((𝑛 = 𝑁𝑟 = 𝑅) → (𝑛 Mat 𝑟) = 𝐴)
54fveq2d 6862 . . . . . 6 ((𝑛 = 𝑁𝑟 = 𝑅) → (Base‘(𝑛 Mat 𝑟)) = (Base‘𝐴))
6 minmar1fval.b . . . . . 6 𝐵 = (Base‘𝐴)
75, 6eqtr4di 2782 . . . . 5 ((𝑛 = 𝑁𝑟 = 𝑅) → (Base‘(𝑛 Mat 𝑟)) = 𝐵)
8 simpl 482 . . . . . 6 ((𝑛 = 𝑁𝑟 = 𝑅) → 𝑛 = 𝑁)
9 fveq2 6858 . . . . . . . . . . 11 (𝑟 = 𝑅 → (1r𝑟) = (1r𝑅))
10 minmar1fval.o . . . . . . . . . . 11 1 = (1r𝑅)
119, 10eqtr4di 2782 . . . . . . . . . 10 (𝑟 = 𝑅 → (1r𝑟) = 1 )
12 fveq2 6858 . . . . . . . . . . 11 (𝑟 = 𝑅 → (0g𝑟) = (0g𝑅))
13 minmar1fval.z . . . . . . . . . . 11 0 = (0g𝑅)
1412, 13eqtr4di 2782 . . . . . . . . . 10 (𝑟 = 𝑅 → (0g𝑟) = 0 )
1511, 14ifeq12d 4510 . . . . . . . . 9 (𝑟 = 𝑅 → if(𝑗 = 𝑙, (1r𝑟), (0g𝑟)) = if(𝑗 = 𝑙, 1 , 0 ))
1615ifeq1d 4508 . . . . . . . 8 (𝑟 = 𝑅 → if(𝑖 = 𝑘, if(𝑗 = 𝑙, (1r𝑟), (0g𝑟)), (𝑖𝑚𝑗)) = if(𝑖 = 𝑘, if(𝑗 = 𝑙, 1 , 0 ), (𝑖𝑚𝑗)))
1716adantl 481 . . . . . . 7 ((𝑛 = 𝑁𝑟 = 𝑅) → if(𝑖 = 𝑘, if(𝑗 = 𝑙, (1r𝑟), (0g𝑟)), (𝑖𝑚𝑗)) = if(𝑖 = 𝑘, if(𝑗 = 𝑙, 1 , 0 ), (𝑖𝑚𝑗)))
188, 8, 17mpoeq123dv 7464 . . . . . 6 ((𝑛 = 𝑁𝑟 = 𝑅) → (𝑖𝑛, 𝑗𝑛 ↦ if(𝑖 = 𝑘, if(𝑗 = 𝑙, (1r𝑟), (0g𝑟)), (𝑖𝑚𝑗))) = (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑘, if(𝑗 = 𝑙, 1 , 0 ), (𝑖𝑚𝑗))))
198, 8, 18mpoeq123dv 7464 . . . . 5 ((𝑛 = 𝑁𝑟 = 𝑅) → (𝑘𝑛, 𝑙𝑛 ↦ (𝑖𝑛, 𝑗𝑛 ↦ if(𝑖 = 𝑘, if(𝑗 = 𝑙, (1r𝑟), (0g𝑟)), (𝑖𝑚𝑗)))) = (𝑘𝑁, 𝑙𝑁 ↦ (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑘, if(𝑗 = 𝑙, 1 , 0 ), (𝑖𝑚𝑗)))))
207, 19mpteq12dv 5194 . . . 4 ((𝑛 = 𝑁𝑟 = 𝑅) → (𝑚 ∈ (Base‘(𝑛 Mat 𝑟)) ↦ (𝑘𝑛, 𝑙𝑛 ↦ (𝑖𝑛, 𝑗𝑛 ↦ if(𝑖 = 𝑘, if(𝑗 = 𝑙, (1r𝑟), (0g𝑟)), (𝑖𝑚𝑗))))) = (𝑚𝐵 ↦ (𝑘𝑁, 𝑙𝑁 ↦ (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑘, if(𝑗 = 𝑙, 1 , 0 ), (𝑖𝑚𝑗))))))
21 df-minmar1 22522 . . . 4 minMatR1 = (𝑛 ∈ V, 𝑟 ∈ V ↦ (𝑚 ∈ (Base‘(𝑛 Mat 𝑟)) ↦ (𝑘𝑛, 𝑙𝑛 ↦ (𝑖𝑛, 𝑗𝑛 ↦ if(𝑖 = 𝑘, if(𝑗 = 𝑙, (1r𝑟), (0g𝑟)), (𝑖𝑚𝑗))))))
226fvexi 6872 . . . . 5 𝐵 ∈ V
2322mptex 7197 . . . 4 (𝑚𝐵 ↦ (𝑘𝑁, 𝑙𝑁 ↦ (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑘, if(𝑗 = 𝑙, 1 , 0 ), (𝑖𝑚𝑗))))) ∈ V
2420, 21, 23ovmpoa 7544 . . 3 ((𝑁 ∈ V ∧ 𝑅 ∈ V) → (𝑁 minMatR1 𝑅) = (𝑚𝐵 ↦ (𝑘𝑁, 𝑙𝑁 ↦ (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑘, if(𝑗 = 𝑙, 1 , 0 ), (𝑖𝑚𝑗))))))
2521mpondm0 7629 . . . . 5 (¬ (𝑁 ∈ V ∧ 𝑅 ∈ V) → (𝑁 minMatR1 𝑅) = ∅)
26 mpt0 6660 . . . . 5 (𝑚 ∈ ∅ ↦ (𝑘𝑁, 𝑙𝑁 ↦ (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑘, if(𝑗 = 𝑙, 1 , 0 ), (𝑖𝑚𝑗))))) = ∅
2725, 26eqtr4di 2782 . . . 4 (¬ (𝑁 ∈ V ∧ 𝑅 ∈ V) → (𝑁 minMatR1 𝑅) = (𝑚 ∈ ∅ ↦ (𝑘𝑁, 𝑙𝑁 ↦ (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑘, if(𝑗 = 𝑙, 1 , 0 ), (𝑖𝑚𝑗))))))
283fveq2i 6861 . . . . . . 7 (Base‘𝐴) = (Base‘(𝑁 Mat 𝑅))
296, 28eqtri 2752 . . . . . 6 𝐵 = (Base‘(𝑁 Mat 𝑅))
30 matbas0pc 22296 . . . . . 6 (¬ (𝑁 ∈ V ∧ 𝑅 ∈ V) → (Base‘(𝑁 Mat 𝑅)) = ∅)
3129, 30eqtrid 2776 . . . . 5 (¬ (𝑁 ∈ V ∧ 𝑅 ∈ V) → 𝐵 = ∅)
3231mpteq1d 5197 . . . 4 (¬ (𝑁 ∈ V ∧ 𝑅 ∈ V) → (𝑚𝐵 ↦ (𝑘𝑁, 𝑙𝑁 ↦ (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑘, if(𝑗 = 𝑙, 1 , 0 ), (𝑖𝑚𝑗))))) = (𝑚 ∈ ∅ ↦ (𝑘𝑁, 𝑙𝑁 ↦ (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑘, if(𝑗 = 𝑙, 1 , 0 ), (𝑖𝑚𝑗))))))
3327, 32eqtr4d 2767 . . 3 (¬ (𝑁 ∈ V ∧ 𝑅 ∈ V) → (𝑁 minMatR1 𝑅) = (𝑚𝐵 ↦ (𝑘𝑁, 𝑙𝑁 ↦ (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑘, if(𝑗 = 𝑙, 1 , 0 ), (𝑖𝑚𝑗))))))
3424, 33pm2.61i 182 . 2 (𝑁 minMatR1 𝑅) = (𝑚𝐵 ↦ (𝑘𝑁, 𝑙𝑁 ↦ (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑘, if(𝑗 = 𝑙, 1 , 0 ), (𝑖𝑚𝑗)))))
351, 34eqtri 2752 1 𝑄 = (𝑚𝐵 ↦ (𝑘𝑁, 𝑙𝑁 ↦ (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑘, if(𝑗 = 𝑙, 1 , 0 ), (𝑖𝑚𝑗)))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 395   = wceq 1540  wcel 2109  Vcvv 3447  c0 4296  ifcif 4488  cmpt 5188  cfv 6511  (class class class)co 7387  cmpo 7389  Basecbs 17179  0gc0g 17402  1rcur 20090   Mat cmat 22294   minMatR1 cminmar1 22520
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-1cn 11126  ax-addcl 11128
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-nn 12187  df-slot 17152  df-ndx 17164  df-base 17180  df-mat 22295  df-minmar1 22522
This theorem is referenced by:  minmar1val0  22534
  Copyright terms: Public domain W3C validator