Detailed syntax breakdown of Definition df-mnt
| Step | Hyp | Ref
| Expression |
| 1 | | cmnt 32968 |
. 2
class
Monot |
| 2 | | vv |
. . 3
setvar 𝑣 |
| 3 | | vw |
. . 3
setvar 𝑤 |
| 4 | | cvv 3480 |
. . 3
class
V |
| 5 | | va |
. . . 4
setvar 𝑎 |
| 6 | 2 | cv 1539 |
. . . . 5
class 𝑣 |
| 7 | | cbs 17247 |
. . . . 5
class
Base |
| 8 | 6, 7 | cfv 6561 |
. . . 4
class
(Base‘𝑣) |
| 9 | | vx |
. . . . . . . . . 10
setvar 𝑥 |
| 10 | 9 | cv 1539 |
. . . . . . . . 9
class 𝑥 |
| 11 | | vy |
. . . . . . . . . 10
setvar 𝑦 |
| 12 | 11 | cv 1539 |
. . . . . . . . 9
class 𝑦 |
| 13 | | cple 17304 |
. . . . . . . . . 10
class
le |
| 14 | 6, 13 | cfv 6561 |
. . . . . . . . 9
class
(le‘𝑣) |
| 15 | 10, 12, 14 | wbr 5143 |
. . . . . . . 8
wff 𝑥(le‘𝑣)𝑦 |
| 16 | | vf |
. . . . . . . . . . 11
setvar 𝑓 |
| 17 | 16 | cv 1539 |
. . . . . . . . . 10
class 𝑓 |
| 18 | 10, 17 | cfv 6561 |
. . . . . . . . 9
class (𝑓‘𝑥) |
| 19 | 12, 17 | cfv 6561 |
. . . . . . . . 9
class (𝑓‘𝑦) |
| 20 | 3 | cv 1539 |
. . . . . . . . . 10
class 𝑤 |
| 21 | 20, 13 | cfv 6561 |
. . . . . . . . 9
class
(le‘𝑤) |
| 22 | 18, 19, 21 | wbr 5143 |
. . . . . . . 8
wff (𝑓‘𝑥)(le‘𝑤)(𝑓‘𝑦) |
| 23 | 15, 22 | wi 4 |
. . . . . . 7
wff (𝑥(le‘𝑣)𝑦 → (𝑓‘𝑥)(le‘𝑤)(𝑓‘𝑦)) |
| 24 | 5 | cv 1539 |
. . . . . . 7
class 𝑎 |
| 25 | 23, 11, 24 | wral 3061 |
. . . . . 6
wff
∀𝑦 ∈
𝑎 (𝑥(le‘𝑣)𝑦 → (𝑓‘𝑥)(le‘𝑤)(𝑓‘𝑦)) |
| 26 | 25, 9, 24 | wral 3061 |
. . . . 5
wff
∀𝑥 ∈
𝑎 ∀𝑦 ∈ 𝑎 (𝑥(le‘𝑣)𝑦 → (𝑓‘𝑥)(le‘𝑤)(𝑓‘𝑦)) |
| 27 | 20, 7 | cfv 6561 |
. . . . . 6
class
(Base‘𝑤) |
| 28 | | cmap 8866 |
. . . . . 6
class
↑m |
| 29 | 27, 24, 28 | co 7431 |
. . . . 5
class
((Base‘𝑤)
↑m 𝑎) |
| 30 | 26, 16, 29 | crab 3436 |
. . . 4
class {𝑓 ∈ ((Base‘𝑤) ↑m 𝑎) ∣ ∀𝑥 ∈ 𝑎 ∀𝑦 ∈ 𝑎 (𝑥(le‘𝑣)𝑦 → (𝑓‘𝑥)(le‘𝑤)(𝑓‘𝑦))} |
| 31 | 5, 8, 30 | csb 3899 |
. . 3
class
⦋(Base‘𝑣) / 𝑎⦌{𝑓 ∈ ((Base‘𝑤) ↑m 𝑎) ∣ ∀𝑥 ∈ 𝑎 ∀𝑦 ∈ 𝑎 (𝑥(le‘𝑣)𝑦 → (𝑓‘𝑥)(le‘𝑤)(𝑓‘𝑦))} |
| 32 | 2, 3, 4, 4, 31 | cmpo 7433 |
. 2
class (𝑣 ∈ V, 𝑤 ∈ V ↦
⦋(Base‘𝑣) / 𝑎⦌{𝑓 ∈ ((Base‘𝑤) ↑m 𝑎) ∣ ∀𝑥 ∈ 𝑎 ∀𝑦 ∈ 𝑎 (𝑥(le‘𝑣)𝑦 → (𝑓‘𝑥)(le‘𝑤)(𝑓‘𝑦))}) |
| 33 | 1, 32 | wceq 1540 |
1
wff Monot =
(𝑣 ∈ V, 𝑤 ∈ V ↦
⦋(Base‘𝑣) / 𝑎⦌{𝑓 ∈ ((Base‘𝑤) ↑m 𝑎) ∣ ∀𝑥 ∈ 𝑎 ∀𝑦 ∈ 𝑎 (𝑥(le‘𝑣)𝑦 → (𝑓‘𝑥)(le‘𝑤)(𝑓‘𝑦))}) |