Detailed syntax breakdown of Definition df-mgc
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | cmgc 32970 | . 2
class
MGalConn | 
| 2 |  | vv | . . 3
setvar 𝑣 | 
| 3 |  | vw | . . 3
setvar 𝑤 | 
| 4 |  | cvv 3479 | . . 3
class
V | 
| 5 |  | va | . . . 4
setvar 𝑎 | 
| 6 | 2 | cv 1538 | . . . . 5
class 𝑣 | 
| 7 |  | cbs 17248 | . . . . 5
class
Base | 
| 8 | 6, 7 | cfv 6560 | . . . 4
class
(Base‘𝑣) | 
| 9 |  | vb | . . . . 5
setvar 𝑏 | 
| 10 | 3 | cv 1538 | . . . . . 6
class 𝑤 | 
| 11 | 10, 7 | cfv 6560 | . . . . 5
class
(Base‘𝑤) | 
| 12 |  | vf | . . . . . . . . . 10
setvar 𝑓 | 
| 13 | 12 | cv 1538 | . . . . . . . . 9
class 𝑓 | 
| 14 | 9 | cv 1538 | . . . . . . . . . 10
class 𝑏 | 
| 15 | 5 | cv 1538 | . . . . . . . . . 10
class 𝑎 | 
| 16 |  | cmap 8867 | . . . . . . . . . 10
class 
↑m | 
| 17 | 14, 15, 16 | co 7432 | . . . . . . . . 9
class (𝑏 ↑m 𝑎) | 
| 18 | 13, 17 | wcel 2107 | . . . . . . . 8
wff 𝑓 ∈ (𝑏 ↑m 𝑎) | 
| 19 |  | vg | . . . . . . . . . 10
setvar 𝑔 | 
| 20 | 19 | cv 1538 | . . . . . . . . 9
class 𝑔 | 
| 21 | 15, 14, 16 | co 7432 | . . . . . . . . 9
class (𝑎 ↑m 𝑏) | 
| 22 | 20, 21 | wcel 2107 | . . . . . . . 8
wff 𝑔 ∈ (𝑎 ↑m 𝑏) | 
| 23 | 18, 22 | wa 395 | . . . . . . 7
wff (𝑓 ∈ (𝑏 ↑m 𝑎) ∧ 𝑔 ∈ (𝑎 ↑m 𝑏)) | 
| 24 |  | vx | . . . . . . . . . . . . 13
setvar 𝑥 | 
| 25 | 24 | cv 1538 | . . . . . . . . . . . 12
class 𝑥 | 
| 26 | 25, 13 | cfv 6560 | . . . . . . . . . . 11
class (𝑓‘𝑥) | 
| 27 |  | vy | . . . . . . . . . . . 12
setvar 𝑦 | 
| 28 | 27 | cv 1538 | . . . . . . . . . . 11
class 𝑦 | 
| 29 |  | cple 17305 | . . . . . . . . . . . 12
class
le | 
| 30 | 10, 29 | cfv 6560 | . . . . . . . . . . 11
class
(le‘𝑤) | 
| 31 | 26, 28, 30 | wbr 5142 | . . . . . . . . . 10
wff (𝑓‘𝑥)(le‘𝑤)𝑦 | 
| 32 | 28, 20 | cfv 6560 | . . . . . . . . . . 11
class (𝑔‘𝑦) | 
| 33 | 6, 29 | cfv 6560 | . . . . . . . . . . 11
class
(le‘𝑣) | 
| 34 | 25, 32, 33 | wbr 5142 | . . . . . . . . . 10
wff 𝑥(le‘𝑣)(𝑔‘𝑦) | 
| 35 | 31, 34 | wb 206 | . . . . . . . . 9
wff ((𝑓‘𝑥)(le‘𝑤)𝑦 ↔ 𝑥(le‘𝑣)(𝑔‘𝑦)) | 
| 36 | 35, 27, 14 | wral 3060 | . . . . . . . 8
wff
∀𝑦 ∈
𝑏 ((𝑓‘𝑥)(le‘𝑤)𝑦 ↔ 𝑥(le‘𝑣)(𝑔‘𝑦)) | 
| 37 | 36, 24, 15 | wral 3060 | . . . . . . 7
wff
∀𝑥 ∈
𝑎 ∀𝑦 ∈ 𝑏 ((𝑓‘𝑥)(le‘𝑤)𝑦 ↔ 𝑥(le‘𝑣)(𝑔‘𝑦)) | 
| 38 | 23, 37 | wa 395 | . . . . . 6
wff ((𝑓 ∈ (𝑏 ↑m 𝑎) ∧ 𝑔 ∈ (𝑎 ↑m 𝑏)) ∧ ∀𝑥 ∈ 𝑎 ∀𝑦 ∈ 𝑏 ((𝑓‘𝑥)(le‘𝑤)𝑦 ↔ 𝑥(le‘𝑣)(𝑔‘𝑦))) | 
| 39 | 38, 12, 19 | copab 5204 | . . . . 5
class
{〈𝑓, 𝑔〉 ∣ ((𝑓 ∈ (𝑏 ↑m 𝑎) ∧ 𝑔 ∈ (𝑎 ↑m 𝑏)) ∧ ∀𝑥 ∈ 𝑎 ∀𝑦 ∈ 𝑏 ((𝑓‘𝑥)(le‘𝑤)𝑦 ↔ 𝑥(le‘𝑣)(𝑔‘𝑦)))} | 
| 40 | 9, 11, 39 | csb 3898 | . . . 4
class
⦋(Base‘𝑤) / 𝑏⦌{〈𝑓, 𝑔〉 ∣ ((𝑓 ∈ (𝑏 ↑m 𝑎) ∧ 𝑔 ∈ (𝑎 ↑m 𝑏)) ∧ ∀𝑥 ∈ 𝑎 ∀𝑦 ∈ 𝑏 ((𝑓‘𝑥)(le‘𝑤)𝑦 ↔ 𝑥(le‘𝑣)(𝑔‘𝑦)))} | 
| 41 | 5, 8, 40 | csb 3898 | . . 3
class
⦋(Base‘𝑣) / 𝑎⦌⦋(Base‘𝑤) / 𝑏⦌{〈𝑓, 𝑔〉 ∣ ((𝑓 ∈ (𝑏 ↑m 𝑎) ∧ 𝑔 ∈ (𝑎 ↑m 𝑏)) ∧ ∀𝑥 ∈ 𝑎 ∀𝑦 ∈ 𝑏 ((𝑓‘𝑥)(le‘𝑤)𝑦 ↔ 𝑥(le‘𝑣)(𝑔‘𝑦)))} | 
| 42 | 2, 3, 4, 4, 41 | cmpo 7434 | . 2
class (𝑣 ∈ V, 𝑤 ∈ V ↦
⦋(Base‘𝑣) / 𝑎⦌⦋(Base‘𝑤) / 𝑏⦌{〈𝑓, 𝑔〉 ∣ ((𝑓 ∈ (𝑏 ↑m 𝑎) ∧ 𝑔 ∈ (𝑎 ↑m 𝑏)) ∧ ∀𝑥 ∈ 𝑎 ∀𝑦 ∈ 𝑏 ((𝑓‘𝑥)(le‘𝑤)𝑦 ↔ 𝑥(le‘𝑣)(𝑔‘𝑦)))}) | 
| 43 | 1, 42 | wceq 1539 | 1
wff MGalConn =
(𝑣 ∈ V, 𝑤 ∈ V ↦
⦋(Base‘𝑣) / 𝑎⦌⦋(Base‘𝑤) / 𝑏⦌{〈𝑓, 𝑔〉 ∣ ((𝑓 ∈ (𝑏 ↑m 𝑎) ∧ 𝑔 ∈ (𝑎 ↑m 𝑏)) ∧ ∀𝑥 ∈ 𝑎 ∀𝑦 ∈ 𝑏 ((𝑓‘𝑥)(le‘𝑤)𝑦 ↔ 𝑥(le‘𝑣)(𝑔‘𝑦)))}) |