| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | df-mnt 32971 | . . 3
⊢ Monot =
(𝑣 ∈ V, 𝑤 ∈ V ↦
⦋(Base‘𝑣) / 𝑎⦌{𝑓 ∈ ((Base‘𝑤) ↑m 𝑎) ∣ ∀𝑥 ∈ 𝑎 ∀𝑦 ∈ 𝑎 (𝑥(le‘𝑣)𝑦 → (𝑓‘𝑥)(le‘𝑤)(𝑓‘𝑦))}) | 
| 2 | 1 | a1i 11 | . 2
⊢ ((𝑉 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌) → Monot = (𝑣 ∈ V, 𝑤 ∈ V ↦
⦋(Base‘𝑣) / 𝑎⦌{𝑓 ∈ ((Base‘𝑤) ↑m 𝑎) ∣ ∀𝑥 ∈ 𝑎 ∀𝑦 ∈ 𝑎 (𝑥(le‘𝑣)𝑦 → (𝑓‘𝑥)(le‘𝑤)(𝑓‘𝑦))})) | 
| 3 |  | fvexd 6920 | . . . 4
⊢ ((𝑣 = 𝑉 ∧ 𝑤 = 𝑊) → (Base‘𝑣) ∈ V) | 
| 4 |  | fveq2 6905 | . . . . . 6
⊢ (𝑣 = 𝑉 → (Base‘𝑣) = (Base‘𝑉)) | 
| 5 |  | mntoval.1 | . . . . . 6
⊢ 𝐴 = (Base‘𝑉) | 
| 6 | 4, 5 | eqtr4di 2794 | . . . . 5
⊢ (𝑣 = 𝑉 → (Base‘𝑣) = 𝐴) | 
| 7 | 6 | adantr 480 | . . . 4
⊢ ((𝑣 = 𝑉 ∧ 𝑤 = 𝑊) → (Base‘𝑣) = 𝐴) | 
| 8 |  | simplr 768 | . . . . . . . 8
⊢ (((𝑣 = 𝑉 ∧ 𝑤 = 𝑊) ∧ 𝑎 = 𝐴) → 𝑤 = 𝑊) | 
| 9 | 8 | fveq2d 6909 | . . . . . . 7
⊢ (((𝑣 = 𝑉 ∧ 𝑤 = 𝑊) ∧ 𝑎 = 𝐴) → (Base‘𝑤) = (Base‘𝑊)) | 
| 10 |  | mntoval.2 | . . . . . . 7
⊢ 𝐵 = (Base‘𝑊) | 
| 11 | 9, 10 | eqtr4di 2794 | . . . . . 6
⊢ (((𝑣 = 𝑉 ∧ 𝑤 = 𝑊) ∧ 𝑎 = 𝐴) → (Base‘𝑤) = 𝐵) | 
| 12 |  | simpr 484 | . . . . . 6
⊢ (((𝑣 = 𝑉 ∧ 𝑤 = 𝑊) ∧ 𝑎 = 𝐴) → 𝑎 = 𝐴) | 
| 13 | 11, 12 | oveq12d 7450 | . . . . 5
⊢ (((𝑣 = 𝑉 ∧ 𝑤 = 𝑊) ∧ 𝑎 = 𝐴) → ((Base‘𝑤) ↑m 𝑎) = (𝐵 ↑m 𝐴)) | 
| 14 |  | simpll 766 | . . . . . . . . . . 11
⊢ (((𝑣 = 𝑉 ∧ 𝑤 = 𝑊) ∧ 𝑎 = 𝐴) → 𝑣 = 𝑉) | 
| 15 | 14 | fveq2d 6909 | . . . . . . . . . 10
⊢ (((𝑣 = 𝑉 ∧ 𝑤 = 𝑊) ∧ 𝑎 = 𝐴) → (le‘𝑣) = (le‘𝑉)) | 
| 16 |  | mntoval.3 | . . . . . . . . . 10
⊢  ≤ =
(le‘𝑉) | 
| 17 | 15, 16 | eqtr4di 2794 | . . . . . . . . 9
⊢ (((𝑣 = 𝑉 ∧ 𝑤 = 𝑊) ∧ 𝑎 = 𝐴) → (le‘𝑣) = ≤ ) | 
| 18 | 17 | breqd 5153 | . . . . . . . 8
⊢ (((𝑣 = 𝑉 ∧ 𝑤 = 𝑊) ∧ 𝑎 = 𝐴) → (𝑥(le‘𝑣)𝑦 ↔ 𝑥 ≤ 𝑦)) | 
| 19 | 8 | fveq2d 6909 | . . . . . . . . . 10
⊢ (((𝑣 = 𝑉 ∧ 𝑤 = 𝑊) ∧ 𝑎 = 𝐴) → (le‘𝑤) = (le‘𝑊)) | 
| 20 |  | mntoval.4 | . . . . . . . . . 10
⊢  ≲ =
(le‘𝑊) | 
| 21 | 19, 20 | eqtr4di 2794 | . . . . . . . . 9
⊢ (((𝑣 = 𝑉 ∧ 𝑤 = 𝑊) ∧ 𝑎 = 𝐴) → (le‘𝑤) = ≲ ) | 
| 22 | 21 | breqd 5153 | . . . . . . . 8
⊢ (((𝑣 = 𝑉 ∧ 𝑤 = 𝑊) ∧ 𝑎 = 𝐴) → ((𝑓‘𝑥)(le‘𝑤)(𝑓‘𝑦) ↔ (𝑓‘𝑥) ≲ (𝑓‘𝑦))) | 
| 23 | 18, 22 | imbi12d 344 | . . . . . . 7
⊢ (((𝑣 = 𝑉 ∧ 𝑤 = 𝑊) ∧ 𝑎 = 𝐴) → ((𝑥(le‘𝑣)𝑦 → (𝑓‘𝑥)(le‘𝑤)(𝑓‘𝑦)) ↔ (𝑥 ≤ 𝑦 → (𝑓‘𝑥) ≲ (𝑓‘𝑦)))) | 
| 24 | 12, 23 | raleqbidv 3345 | . . . . . 6
⊢ (((𝑣 = 𝑉 ∧ 𝑤 = 𝑊) ∧ 𝑎 = 𝐴) → (∀𝑦 ∈ 𝑎 (𝑥(le‘𝑣)𝑦 → (𝑓‘𝑥)(le‘𝑤)(𝑓‘𝑦)) ↔ ∀𝑦 ∈ 𝐴 (𝑥 ≤ 𝑦 → (𝑓‘𝑥) ≲ (𝑓‘𝑦)))) | 
| 25 | 12, 24 | raleqbidv 3345 | . . . . 5
⊢ (((𝑣 = 𝑉 ∧ 𝑤 = 𝑊) ∧ 𝑎 = 𝐴) → (∀𝑥 ∈ 𝑎 ∀𝑦 ∈ 𝑎 (𝑥(le‘𝑣)𝑦 → (𝑓‘𝑥)(le‘𝑤)(𝑓‘𝑦)) ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ≤ 𝑦 → (𝑓‘𝑥) ≲ (𝑓‘𝑦)))) | 
| 26 | 13, 25 | rabeqbidv 3454 | . . . 4
⊢ (((𝑣 = 𝑉 ∧ 𝑤 = 𝑊) ∧ 𝑎 = 𝐴) → {𝑓 ∈ ((Base‘𝑤) ↑m 𝑎) ∣ ∀𝑥 ∈ 𝑎 ∀𝑦 ∈ 𝑎 (𝑥(le‘𝑣)𝑦 → (𝑓‘𝑥)(le‘𝑤)(𝑓‘𝑦))} = {𝑓 ∈ (𝐵 ↑m 𝐴) ∣ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ≤ 𝑦 → (𝑓‘𝑥) ≲ (𝑓‘𝑦))}) | 
| 27 | 3, 7, 26 | csbied2 3935 | . . 3
⊢ ((𝑣 = 𝑉 ∧ 𝑤 = 𝑊) → ⦋(Base‘𝑣) / 𝑎⦌{𝑓 ∈ ((Base‘𝑤) ↑m 𝑎) ∣ ∀𝑥 ∈ 𝑎 ∀𝑦 ∈ 𝑎 (𝑥(le‘𝑣)𝑦 → (𝑓‘𝑥)(le‘𝑤)(𝑓‘𝑦))} = {𝑓 ∈ (𝐵 ↑m 𝐴) ∣ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ≤ 𝑦 → (𝑓‘𝑥) ≲ (𝑓‘𝑦))}) | 
| 28 | 27 | adantl 481 | . 2
⊢ (((𝑉 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌) ∧ (𝑣 = 𝑉 ∧ 𝑤 = 𝑊)) → ⦋(Base‘𝑣) / 𝑎⦌{𝑓 ∈ ((Base‘𝑤) ↑m 𝑎) ∣ ∀𝑥 ∈ 𝑎 ∀𝑦 ∈ 𝑎 (𝑥(le‘𝑣)𝑦 → (𝑓‘𝑥)(le‘𝑤)(𝑓‘𝑦))} = {𝑓 ∈ (𝐵 ↑m 𝐴) ∣ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ≤ 𝑦 → (𝑓‘𝑥) ≲ (𝑓‘𝑦))}) | 
| 29 |  | elex 3500 | . . 3
⊢ (𝑉 ∈ 𝑋 → 𝑉 ∈ V) | 
| 30 | 29 | adantr 480 | . 2
⊢ ((𝑉 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌) → 𝑉 ∈ V) | 
| 31 |  | elex 3500 | . . 3
⊢ (𝑊 ∈ 𝑌 → 𝑊 ∈ V) | 
| 32 | 31 | adantl 481 | . 2
⊢ ((𝑉 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌) → 𝑊 ∈ V) | 
| 33 |  | eqid 2736 | . . 3
⊢ {𝑓 ∈ (𝐵 ↑m 𝐴) ∣ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ≤ 𝑦 → (𝑓‘𝑥) ≲ (𝑓‘𝑦))} = {𝑓 ∈ (𝐵 ↑m 𝐴) ∣ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ≤ 𝑦 → (𝑓‘𝑥) ≲ (𝑓‘𝑦))} | 
| 34 |  | ovexd 7467 | . . 3
⊢ ((𝑉 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌) → (𝐵 ↑m 𝐴) ∈ V) | 
| 35 | 33, 34 | rabexd 5339 | . 2
⊢ ((𝑉 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌) → {𝑓 ∈ (𝐵 ↑m 𝐴) ∣ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ≤ 𝑦 → (𝑓‘𝑥) ≲ (𝑓‘𝑦))} ∈ V) | 
| 36 | 2, 28, 30, 32, 35 | ovmpod 7586 | 1
⊢ ((𝑉 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌) → (𝑉Monot𝑊) = {𝑓 ∈ (𝐵 ↑m 𝐴) ∣ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ≤ 𝑦 → (𝑓‘𝑥) ≲ (𝑓‘𝑦))}) |