Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  df-mntop Structured version   Visualization version   GIF version

Definition df-mntop 31873
Description: Define the class of 𝑁-manifold topologies, as second countable Hausdorff topologies locally homeomorphic to a ball of the Euclidean space of dimension 𝑁. (Contributed by Thierry Arnoux, 22-Dec-2019.)
Assertion
Ref Expression
df-mntop ManTop = {⟨𝑛, 𝑗⟩ ∣ (𝑛 ∈ ℕ0 ∧ (𝑗 ∈ 2ndω ∧ 𝑗 ∈ Haus ∧ 𝑗 ∈ Locally [(TopOpen‘(𝔼hil𝑛))] ≃ ))}
Distinct variable group:   𝑗,𝑛

Detailed syntax breakdown of Definition df-mntop
StepHypRef Expression
1 cmntop 31872 . 2 class ManTop
2 vn . . . . . 6 setvar 𝑛
32cv 1538 . . . . 5 class 𝑛
4 cn0 12163 . . . . 5 class 0
53, 4wcel 2108 . . . 4 wff 𝑛 ∈ ℕ0
6 vj . . . . . . 7 setvar 𝑗
76cv 1538 . . . . . 6 class 𝑗
8 c2ndc 22497 . . . . . 6 class 2ndω
97, 8wcel 2108 . . . . 5 wff 𝑗 ∈ 2ndω
10 cha 22367 . . . . . 6 class Haus
117, 10wcel 2108 . . . . 5 wff 𝑗 ∈ Haus
12 cehl 24453 . . . . . . . . . 10 class 𝔼hil
133, 12cfv 6418 . . . . . . . . 9 class (𝔼hil𝑛)
14 ctopn 17049 . . . . . . . . 9 class TopOpen
1513, 14cfv 6418 . . . . . . . 8 class (TopOpen‘(𝔼hil𝑛))
16 chmph 22813 . . . . . . . 8 class
1715, 16cec 8454 . . . . . . 7 class [(TopOpen‘(𝔼hil𝑛))] ≃
1817clly 22523 . . . . . 6 class Locally [(TopOpen‘(𝔼hil𝑛))] ≃
197, 18wcel 2108 . . . . 5 wff 𝑗 ∈ Locally [(TopOpen‘(𝔼hil𝑛))] ≃
209, 11, 19w3a 1085 . . . 4 wff (𝑗 ∈ 2ndω ∧ 𝑗 ∈ Haus ∧ 𝑗 ∈ Locally [(TopOpen‘(𝔼hil𝑛))] ≃ )
215, 20wa 395 . . 3 wff (𝑛 ∈ ℕ0 ∧ (𝑗 ∈ 2ndω ∧ 𝑗 ∈ Haus ∧ 𝑗 ∈ Locally [(TopOpen‘(𝔼hil𝑛))] ≃ ))
2221, 2, 6copab 5132 . 2 class {⟨𝑛, 𝑗⟩ ∣ (𝑛 ∈ ℕ0 ∧ (𝑗 ∈ 2ndω ∧ 𝑗 ∈ Haus ∧ 𝑗 ∈ Locally [(TopOpen‘(𝔼hil𝑛))] ≃ ))}
231, 22wceq 1539 1 wff ManTop = {⟨𝑛, 𝑗⟩ ∣ (𝑛 ∈ ℕ0 ∧ (𝑗 ∈ 2ndω ∧ 𝑗 ∈ Haus ∧ 𝑗 ∈ Locally [(TopOpen‘(𝔼hil𝑛))] ≃ ))}
Colors of variables: wff setvar class
This definition is referenced by:  relmntop  31874  ismntoplly  31875
  Copyright terms: Public domain W3C validator