Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ismntoplly Structured version   Visualization version   GIF version

Theorem ismntoplly 33300
Description: Property of being a manifold. (Contributed by Thierry Arnoux, 28-Dec-2019.)
Assertion
Ref Expression
ismntoplly ((𝑁 ∈ β„•0 ∧ 𝐽 ∈ 𝑉) β†’ (𝑁ManTop𝐽 ↔ (𝐽 ∈ 2ndΟ‰ ∧ 𝐽 ∈ Haus ∧ 𝐽 ∈ Locally [(TopOpenβ€˜(𝔼hilβ€˜π‘))] ≃ )))

Proof of Theorem ismntoplly
Dummy variables 𝑗 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 482 . 2 ((𝑁 ∈ β„•0 ∧ 𝐽 ∈ 𝑉) β†’ 𝑁 ∈ β„•0)
2 simpl 482 . . . . 5 ((𝑛 = 𝑁 ∧ 𝑗 = 𝐽) β†’ 𝑛 = 𝑁)
32eleq1d 2817 . . . 4 ((𝑛 = 𝑁 ∧ 𝑗 = 𝐽) β†’ (𝑛 ∈ β„•0 ↔ 𝑁 ∈ β„•0))
4 simpr 484 . . . . . 6 ((𝑛 = 𝑁 ∧ 𝑗 = 𝐽) β†’ 𝑗 = 𝐽)
54eleq1d 2817 . . . . 5 ((𝑛 = 𝑁 ∧ 𝑗 = 𝐽) β†’ (𝑗 ∈ 2ndΟ‰ ↔ 𝐽 ∈ 2ndΟ‰))
64eleq1d 2817 . . . . 5 ((𝑛 = 𝑁 ∧ 𝑗 = 𝐽) β†’ (𝑗 ∈ Haus ↔ 𝐽 ∈ Haus))
7 2fveq3 6897 . . . . . . . . 9 (𝑛 = 𝑁 β†’ (TopOpenβ€˜(𝔼hilβ€˜π‘›)) = (TopOpenβ€˜(𝔼hilβ€˜π‘)))
87eceq1d 8745 . . . . . . . 8 (𝑛 = 𝑁 β†’ [(TopOpenβ€˜(𝔼hilβ€˜π‘›))] ≃ = [(TopOpenβ€˜(𝔼hilβ€˜π‘))] ≃ )
9 llyeq 23195 . . . . . . . 8 ([(TopOpenβ€˜(𝔼hilβ€˜π‘›))] ≃ = [(TopOpenβ€˜(𝔼hilβ€˜π‘))] ≃ β†’ Locally [(TopOpenβ€˜(𝔼hilβ€˜π‘›))] ≃ = Locally [(TopOpenβ€˜(𝔼hilβ€˜π‘))] ≃ )
108, 9syl 17 . . . . . . 7 (𝑛 = 𝑁 β†’ Locally [(TopOpenβ€˜(𝔼hilβ€˜π‘›))] ≃ = Locally [(TopOpenβ€˜(𝔼hilβ€˜π‘))] ≃ )
1110adantr 480 . . . . . 6 ((𝑛 = 𝑁 ∧ 𝑗 = 𝐽) β†’ Locally [(TopOpenβ€˜(𝔼hilβ€˜π‘›))] ≃ = Locally [(TopOpenβ€˜(𝔼hilβ€˜π‘))] ≃ )
124, 11eleq12d 2826 . . . . 5 ((𝑛 = 𝑁 ∧ 𝑗 = 𝐽) β†’ (𝑗 ∈ Locally [(TopOpenβ€˜(𝔼hilβ€˜π‘›))] ≃ ↔ 𝐽 ∈ Locally [(TopOpenβ€˜(𝔼hilβ€˜π‘))] ≃ ))
135, 6, 123anbi123d 1435 . . . 4 ((𝑛 = 𝑁 ∧ 𝑗 = 𝐽) β†’ ((𝑗 ∈ 2ndΟ‰ ∧ 𝑗 ∈ Haus ∧ 𝑗 ∈ Locally [(TopOpenβ€˜(𝔼hilβ€˜π‘›))] ≃ ) ↔ (𝐽 ∈ 2ndΟ‰ ∧ 𝐽 ∈ Haus ∧ 𝐽 ∈ Locally [(TopOpenβ€˜(𝔼hilβ€˜π‘))] ≃ )))
143, 13anbi12d 630 . . 3 ((𝑛 = 𝑁 ∧ 𝑗 = 𝐽) β†’ ((𝑛 ∈ β„•0 ∧ (𝑗 ∈ 2ndΟ‰ ∧ 𝑗 ∈ Haus ∧ 𝑗 ∈ Locally [(TopOpenβ€˜(𝔼hilβ€˜π‘›))] ≃ )) ↔ (𝑁 ∈ β„•0 ∧ (𝐽 ∈ 2ndΟ‰ ∧ 𝐽 ∈ Haus ∧ 𝐽 ∈ Locally [(TopOpenβ€˜(𝔼hilβ€˜π‘))] ≃ ))))
15 df-mntop 33298 . . 3 ManTop = {βŸ¨π‘›, π‘—βŸ© ∣ (𝑛 ∈ β„•0 ∧ (𝑗 ∈ 2ndΟ‰ ∧ 𝑗 ∈ Haus ∧ 𝑗 ∈ Locally [(TopOpenβ€˜(𝔼hilβ€˜π‘›))] ≃ ))}
1614, 15brabga 5535 . 2 ((𝑁 ∈ β„•0 ∧ 𝐽 ∈ 𝑉) β†’ (𝑁ManTop𝐽 ↔ (𝑁 ∈ β„•0 ∧ (𝐽 ∈ 2ndΟ‰ ∧ 𝐽 ∈ Haus ∧ 𝐽 ∈ Locally [(TopOpenβ€˜(𝔼hilβ€˜π‘))] ≃ ))))
171, 16mpbirand 704 1 ((𝑁 ∈ β„•0 ∧ 𝐽 ∈ 𝑉) β†’ (𝑁ManTop𝐽 ↔ (𝐽 ∈ 2ndΟ‰ ∧ 𝐽 ∈ Haus ∧ 𝐽 ∈ Locally [(TopOpenβ€˜(𝔼hilβ€˜π‘))] ≃ )))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 395   ∧ w3a 1086   = wceq 1540   ∈ wcel 2105   class class class wbr 5149  β€˜cfv 6544  [cec 8704  β„•0cn0 12477  TopOpenctopn 17372  Hauscha 23033  2ndΟ‰c2ndc 23163  Locally clly 23189   ≃ chmph 23479  π”Όhilcehl 25133  ManTopcmntop 33297
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-ext 2702  ax-sep 5300  ax-nul 5307  ax-pr 5428
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-sb 2067  df-clab 2709  df-cleq 2723  df-clel 2809  df-ral 3061  df-rex 3070  df-rab 3432  df-v 3475  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-br 5150  df-opab 5212  df-xp 5683  df-cnv 5685  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-iota 6496  df-fv 6552  df-ec 8708  df-lly 23191  df-mntop 33298
This theorem is referenced by:  ismntop  33301
  Copyright terms: Public domain W3C validator