Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ismntoplly Structured version   Visualization version   GIF version

Theorem ismntoplly 33985
Description: Property of being a manifold. (Contributed by Thierry Arnoux, 28-Dec-2019.)
Assertion
Ref Expression
ismntoplly ((𝑁 ∈ ℕ0𝐽𝑉) → (𝑁ManTop𝐽 ↔ (𝐽 ∈ 2ndω ∧ 𝐽 ∈ Haus ∧ 𝐽 ∈ Locally [(TopOpen‘(𝔼hil𝑁))] ≃ )))

Proof of Theorem ismntoplly
Dummy variables 𝑗 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 482 . 2 ((𝑁 ∈ ℕ0𝐽𝑉) → 𝑁 ∈ ℕ0)
2 simpl 482 . . . . 5 ((𝑛 = 𝑁𝑗 = 𝐽) → 𝑛 = 𝑁)
32eleq1d 2818 . . . 4 ((𝑛 = 𝑁𝑗 = 𝐽) → (𝑛 ∈ ℕ0𝑁 ∈ ℕ0))
4 simpr 484 . . . . . 6 ((𝑛 = 𝑁𝑗 = 𝐽) → 𝑗 = 𝐽)
54eleq1d 2818 . . . . 5 ((𝑛 = 𝑁𝑗 = 𝐽) → (𝑗 ∈ 2ndω ↔ 𝐽 ∈ 2ndω))
64eleq1d 2818 . . . . 5 ((𝑛 = 𝑁𝑗 = 𝐽) → (𝑗 ∈ Haus ↔ 𝐽 ∈ Haus))
7 2fveq3 6891 . . . . . . . . 9 (𝑛 = 𝑁 → (TopOpen‘(𝔼hil𝑛)) = (TopOpen‘(𝔼hil𝑁)))
87eceq1d 8767 . . . . . . . 8 (𝑛 = 𝑁 → [(TopOpen‘(𝔼hil𝑛))] ≃ = [(TopOpen‘(𝔼hil𝑁))] ≃ )
9 llyeq 23424 . . . . . . . 8 ([(TopOpen‘(𝔼hil𝑛))] ≃ = [(TopOpen‘(𝔼hil𝑁))] ≃ → Locally [(TopOpen‘(𝔼hil𝑛))] ≃ = Locally [(TopOpen‘(𝔼hil𝑁))] ≃ )
108, 9syl 17 . . . . . . 7 (𝑛 = 𝑁 → Locally [(TopOpen‘(𝔼hil𝑛))] ≃ = Locally [(TopOpen‘(𝔼hil𝑁))] ≃ )
1110adantr 480 . . . . . 6 ((𝑛 = 𝑁𝑗 = 𝐽) → Locally [(TopOpen‘(𝔼hil𝑛))] ≃ = Locally [(TopOpen‘(𝔼hil𝑁))] ≃ )
124, 11eleq12d 2827 . . . . 5 ((𝑛 = 𝑁𝑗 = 𝐽) → (𝑗 ∈ Locally [(TopOpen‘(𝔼hil𝑛))] ≃ ↔ 𝐽 ∈ Locally [(TopOpen‘(𝔼hil𝑁))] ≃ ))
135, 6, 123anbi123d 1437 . . . 4 ((𝑛 = 𝑁𝑗 = 𝐽) → ((𝑗 ∈ 2ndω ∧ 𝑗 ∈ Haus ∧ 𝑗 ∈ Locally [(TopOpen‘(𝔼hil𝑛))] ≃ ) ↔ (𝐽 ∈ 2ndω ∧ 𝐽 ∈ Haus ∧ 𝐽 ∈ Locally [(TopOpen‘(𝔼hil𝑁))] ≃ )))
143, 13anbi12d 632 . . 3 ((𝑛 = 𝑁𝑗 = 𝐽) → ((𝑛 ∈ ℕ0 ∧ (𝑗 ∈ 2ndω ∧ 𝑗 ∈ Haus ∧ 𝑗 ∈ Locally [(TopOpen‘(𝔼hil𝑛))] ≃ )) ↔ (𝑁 ∈ ℕ0 ∧ (𝐽 ∈ 2ndω ∧ 𝐽 ∈ Haus ∧ 𝐽 ∈ Locally [(TopOpen‘(𝔼hil𝑁))] ≃ ))))
15 df-mntop 33983 . . 3 ManTop = {⟨𝑛, 𝑗⟩ ∣ (𝑛 ∈ ℕ0 ∧ (𝑗 ∈ 2ndω ∧ 𝑗 ∈ Haus ∧ 𝑗 ∈ Locally [(TopOpen‘(𝔼hil𝑛))] ≃ ))}
1614, 15brabga 5519 . 2 ((𝑁 ∈ ℕ0𝐽𝑉) → (𝑁ManTop𝐽 ↔ (𝑁 ∈ ℕ0 ∧ (𝐽 ∈ 2ndω ∧ 𝐽 ∈ Haus ∧ 𝐽 ∈ Locally [(TopOpen‘(𝔼hil𝑁))] ≃ ))))
171, 16mpbirand 707 1 ((𝑁 ∈ ℕ0𝐽𝑉) → (𝑁ManTop𝐽 ↔ (𝐽 ∈ 2ndω ∧ 𝐽 ∈ Haus ∧ 𝐽 ∈ Locally [(TopOpen‘(𝔼hil𝑁))] ≃ )))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1539  wcel 2107   class class class wbr 5123  cfv 6541  [cec 8725  0cn0 12509  TopOpenctopn 17437  Hauscha 23262  2ndωc2ndc 23392  Locally clly 23418  chmph 23708  𝔼hilcehl 25354  ManTopcmntop 33982
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-ext 2706  ax-sep 5276  ax-nul 5286  ax-pr 5412
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-sb 2064  df-clab 2713  df-cleq 2726  df-clel 2808  df-ral 3051  df-rex 3060  df-rab 3420  df-v 3465  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-br 5124  df-opab 5186  df-xp 5671  df-cnv 5673  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-iota 6494  df-fv 6549  df-ec 8729  df-lly 23420  df-mntop 33983
This theorem is referenced by:  ismntop  33986
  Copyright terms: Public domain W3C validator