Step | Hyp | Ref
| Expression |
1 | | simpl 482 |
. 2
β’ ((π β β0
β§ π½ β π) β π β
β0) |
2 | | simpl 482 |
. . . . 5
β’ ((π = π β§ π = π½) β π = π) |
3 | 2 | eleq1d 2817 |
. . . 4
β’ ((π = π β§ π = π½) β (π β β0 β π β
β0)) |
4 | | simpr 484 |
. . . . . 6
β’ ((π = π β§ π = π½) β π = π½) |
5 | 4 | eleq1d 2817 |
. . . . 5
β’ ((π = π β§ π = π½) β (π β 2ndΟ β π½ β
2ndΟ)) |
6 | 4 | eleq1d 2817 |
. . . . 5
β’ ((π = π β§ π = π½) β (π β Haus β π½ β Haus)) |
7 | | 2fveq3 6897 |
. . . . . . . . 9
β’ (π = π β
(TopOpenβ(πΌhilβπ)) =
(TopOpenβ(πΌhilβπ))) |
8 | 7 | eceq1d 8745 |
. . . . . . . 8
β’ (π = π β
[(TopOpenβ(πΌhilβπ))] β =
[(TopOpenβ(πΌhilβπ))] β ) |
9 | | llyeq 23195 |
. . . . . . . 8
β’
([(TopOpenβ(πΌhilβπ))] β =
[(TopOpenβ(πΌhilβπ))] β β Locally
[(TopOpenβ(πΌhilβπ))] β = Locally
[(TopOpenβ(πΌhilβπ))] β ) |
10 | 8, 9 | syl 17 |
. . . . . . 7
β’ (π = π β Locally
[(TopOpenβ(πΌhilβπ))] β = Locally
[(TopOpenβ(πΌhilβπ))] β ) |
11 | 10 | adantr 480 |
. . . . . 6
β’ ((π = π β§ π = π½) β Locally
[(TopOpenβ(πΌhilβπ))] β = Locally
[(TopOpenβ(πΌhilβπ))] β ) |
12 | 4, 11 | eleq12d 2826 |
. . . . 5
β’ ((π = π β§ π = π½) β (π β Locally
[(TopOpenβ(πΌhilβπ))] β β π½ β Locally
[(TopOpenβ(πΌhilβπ))] β )) |
13 | 5, 6, 12 | 3anbi123d 1435 |
. . . 4
β’ ((π = π β§ π = π½) β ((π β 2ndΟ β§ π β Haus β§ π β Locally
[(TopOpenβ(πΌhilβπ))] β ) β (π½ β 2ndΟ β§ π½ β Haus β§ π½ β Locally
[(TopOpenβ(πΌhilβπ))] β ))) |
14 | 3, 13 | anbi12d 630 |
. . 3
β’ ((π = π β§ π = π½) β ((π β β0 β§ (π β 2ndΟ
β§ π β Haus β§
π β Locally
[(TopOpenβ(πΌhilβπ))] β )) β (π β β0 β§ (π½ β 2ndΟ
β§ π½ β Haus β§
π½ β Locally
[(TopOpenβ(πΌhilβπ))] β )))) |
15 | | df-mntop 33298 |
. . 3
β’ ManTop =
{β¨π, πβ© β£ (π β β0
β§ (π β
2ndΟ β§ π β Haus β§ π β Locally
[(TopOpenβ(πΌhilβπ))] β ))} |
16 | 14, 15 | brabga 5535 |
. 2
β’ ((π β β0
β§ π½ β π) β (πManTopπ½ β (π β β0 β§ (π½ β 2ndΟ
β§ π½ β Haus β§
π½ β Locally
[(TopOpenβ(πΌhilβπ))] β )))) |
17 | 1, 16 | mpbirand 704 |
1
β’ ((π β β0
β§ π½ β π) β (πManTopπ½ β (π½ β 2ndΟ β§ π½ β Haus β§ π½ β Locally
[(TopOpenβ(πΌhilβπ))] β ))) |