Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ismntoplly Structured version   Visualization version   GIF version

Theorem ismntoplly 34020
Description: Property of being a manifold. (Contributed by Thierry Arnoux, 28-Dec-2019.)
Assertion
Ref Expression
ismntoplly ((𝑁 ∈ ℕ0𝐽𝑉) → (𝑁ManTop𝐽 ↔ (𝐽 ∈ 2ndω ∧ 𝐽 ∈ Haus ∧ 𝐽 ∈ Locally [(TopOpen‘(𝔼hil𝑁))] ≃ )))

Proof of Theorem ismntoplly
Dummy variables 𝑗 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 482 . 2 ((𝑁 ∈ ℕ0𝐽𝑉) → 𝑁 ∈ ℕ0)
2 simpl 482 . . . . 5 ((𝑛 = 𝑁𝑗 = 𝐽) → 𝑛 = 𝑁)
32eleq1d 2826 . . . 4 ((𝑛 = 𝑁𝑗 = 𝐽) → (𝑛 ∈ ℕ0𝑁 ∈ ℕ0))
4 simpr 484 . . . . . 6 ((𝑛 = 𝑁𝑗 = 𝐽) → 𝑗 = 𝐽)
54eleq1d 2826 . . . . 5 ((𝑛 = 𝑁𝑗 = 𝐽) → (𝑗 ∈ 2ndω ↔ 𝐽 ∈ 2ndω))
64eleq1d 2826 . . . . 5 ((𝑛 = 𝑁𝑗 = 𝐽) → (𝑗 ∈ Haus ↔ 𝐽 ∈ Haus))
7 2fveq3 6919 . . . . . . . . 9 (𝑛 = 𝑁 → (TopOpen‘(𝔼hil𝑛)) = (TopOpen‘(𝔼hil𝑁)))
87eceq1d 8793 . . . . . . . 8 (𝑛 = 𝑁 → [(TopOpen‘(𝔼hil𝑛))] ≃ = [(TopOpen‘(𝔼hil𝑁))] ≃ )
9 llyeq 23503 . . . . . . . 8 ([(TopOpen‘(𝔼hil𝑛))] ≃ = [(TopOpen‘(𝔼hil𝑁))] ≃ → Locally [(TopOpen‘(𝔼hil𝑛))] ≃ = Locally [(TopOpen‘(𝔼hil𝑁))] ≃ )
108, 9syl 17 . . . . . . 7 (𝑛 = 𝑁 → Locally [(TopOpen‘(𝔼hil𝑛))] ≃ = Locally [(TopOpen‘(𝔼hil𝑁))] ≃ )
1110adantr 480 . . . . . 6 ((𝑛 = 𝑁𝑗 = 𝐽) → Locally [(TopOpen‘(𝔼hil𝑛))] ≃ = Locally [(TopOpen‘(𝔼hil𝑁))] ≃ )
124, 11eleq12d 2835 . . . . 5 ((𝑛 = 𝑁𝑗 = 𝐽) → (𝑗 ∈ Locally [(TopOpen‘(𝔼hil𝑛))] ≃ ↔ 𝐽 ∈ Locally [(TopOpen‘(𝔼hil𝑁))] ≃ ))
135, 6, 123anbi123d 1437 . . . 4 ((𝑛 = 𝑁𝑗 = 𝐽) → ((𝑗 ∈ 2ndω ∧ 𝑗 ∈ Haus ∧ 𝑗 ∈ Locally [(TopOpen‘(𝔼hil𝑛))] ≃ ) ↔ (𝐽 ∈ 2ndω ∧ 𝐽 ∈ Haus ∧ 𝐽 ∈ Locally [(TopOpen‘(𝔼hil𝑁))] ≃ )))
143, 13anbi12d 632 . . 3 ((𝑛 = 𝑁𝑗 = 𝐽) → ((𝑛 ∈ ℕ0 ∧ (𝑗 ∈ 2ndω ∧ 𝑗 ∈ Haus ∧ 𝑗 ∈ Locally [(TopOpen‘(𝔼hil𝑛))] ≃ )) ↔ (𝑁 ∈ ℕ0 ∧ (𝐽 ∈ 2ndω ∧ 𝐽 ∈ Haus ∧ 𝐽 ∈ Locally [(TopOpen‘(𝔼hil𝑁))] ≃ ))))
15 df-mntop 34018 . . 3 ManTop = {⟨𝑛, 𝑗⟩ ∣ (𝑛 ∈ ℕ0 ∧ (𝑗 ∈ 2ndω ∧ 𝑗 ∈ Haus ∧ 𝑗 ∈ Locally [(TopOpen‘(𝔼hil𝑛))] ≃ ))}
1614, 15brabga 5548 . 2 ((𝑁 ∈ ℕ0𝐽𝑉) → (𝑁ManTop𝐽 ↔ (𝑁 ∈ ℕ0 ∧ (𝐽 ∈ 2ndω ∧ 𝐽 ∈ Haus ∧ 𝐽 ∈ Locally [(TopOpen‘(𝔼hil𝑁))] ≃ ))))
171, 16mpbirand 707 1 ((𝑁 ∈ ℕ0𝐽𝑉) → (𝑁ManTop𝐽 ↔ (𝐽 ∈ 2ndω ∧ 𝐽 ∈ Haus ∧ 𝐽 ∈ Locally [(TopOpen‘(𝔼hil𝑁))] ≃ )))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1539  wcel 2108   class class class wbr 5151  cfv 6569  [cec 8751  0cn0 12533  TopOpenctopn 17477  Hauscha 23341  2ndωc2ndc 23471  Locally clly 23497  chmph 23787  𝔼hilcehl 25443  ManTopcmntop 34017
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2708  ax-sep 5305  ax-nul 5315  ax-pr 5441
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1779  df-sb 2065  df-clab 2715  df-cleq 2729  df-clel 2816  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3483  df-dif 3969  df-un 3971  df-in 3973  df-ss 3983  df-nul 4343  df-if 4535  df-sn 4635  df-pr 4637  df-op 4641  df-uni 4916  df-br 5152  df-opab 5214  df-xp 5699  df-cnv 5701  df-dm 5703  df-rn 5704  df-res 5705  df-ima 5706  df-iota 6522  df-fv 6577  df-ec 8755  df-lly 23499  df-mntop 34018
This theorem is referenced by:  ismntop  34021
  Copyright terms: Public domain W3C validator