Mathbox for Thierry Arnoux < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  relmntop Structured version   Visualization version   GIF version

Theorem relmntop 30613
 Description: Manifold is a relation. (Contributed by Thierry Arnoux, 28-Dec-2019.)
Assertion
Ref Expression
relmntop Rel ManTop

Proof of Theorem relmntop
Dummy variables 𝑗 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-mntop 30612 . 2 ManTop = {⟨𝑛, 𝑗⟩ ∣ (𝑛 ∈ ℕ0 ∧ (𝑗 ∈ 2nd𝜔 ∧ 𝑗 ∈ Haus ∧ 𝑗 ∈ Locally [(TopOpen‘(𝔼hil𝑛))] ≃ ))}
21relopabi 5478 1 Rel ManTop
 Colors of variables: wff setvar class Syntax hints:   ∧ wa 386   ∧ w3a 1113   ∈ wcel 2166  Rel wrel 5347  ‘cfv 6123  [cec 8007  ℕ0cn0 11618  TopOpenctopn 16435  Hauscha 21483  2nd𝜔c2ndc 21612  Locally clly 21638   ≃ chmph 21928  𝔼hilcehl 23552  ManTopcmntop 30611 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1896  ax-4 1910  ax-5 2011  ax-6 2077  ax-7 2114  ax-9 2175  ax-10 2194  ax-11 2209  ax-12 2222  ax-13 2391  ax-ext 2803 This theorem depends on definitions:  df-bi 199  df-an 387  df-or 881  df-3an 1115  df-tru 1662  df-ex 1881  df-nf 1885  df-sb 2070  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-rab 3126  df-v 3416  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-nul 4145  df-if 4307  df-sn 4398  df-pr 4400  df-op 4404  df-opab 4936  df-xp 5348  df-rel 5349  df-mntop 30612 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator