![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > relmntop | Structured version Visualization version GIF version |
Description: Manifold is a relation. (Contributed by Thierry Arnoux, 28-Dec-2019.) |
Ref | Expression |
---|---|
relmntop | ⊢ Rel ManTop |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-mntop 33947 | . 2 ⊢ ManTop = {〈𝑛, 𝑗〉 ∣ (𝑛 ∈ ℕ0 ∧ (𝑗 ∈ 2ndω ∧ 𝑗 ∈ Haus ∧ 𝑗 ∈ Locally [(TopOpen‘(𝔼hil‘𝑛))] ≃ ))} | |
2 | 1 | relopabiv 5828 | 1 ⊢ Rel ManTop |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 ∧ w3a 1085 ∈ wcel 2104 Rel wrel 5689 ‘cfv 6559 [cec 8737 ℕ0cn0 12518 TopOpenctopn 17458 Hauscha 23314 2ndωc2ndc 23444 Locally clly 23470 ≃ chmph 23760 𝔼hilcehl 25414 ManTopcmntop 33946 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1963 ax-7 2003 ax-8 2106 ax-9 2114 ax-ext 2704 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1538 df-ex 1775 df-sb 2061 df-clab 2711 df-cleq 2725 df-clel 2812 df-v 3479 df-ss 3980 df-opab 5213 df-xp 5690 df-rel 5691 df-mntop 33947 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |