| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > relmntop | Structured version Visualization version GIF version | ||
| Description: Manifold is a relation. (Contributed by Thierry Arnoux, 28-Dec-2019.) |
| Ref | Expression |
|---|---|
| relmntop | ⊢ Rel ManTop |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-mntop 33986 | . 2 ⊢ ManTop = {〈𝑛, 𝑗〉 ∣ (𝑛 ∈ ℕ0 ∧ (𝑗 ∈ 2ndω ∧ 𝑗 ∈ Haus ∧ 𝑗 ∈ Locally [(TopOpen‘(𝔼hil‘𝑛))] ≃ ))} | |
| 2 | 1 | relopabiv 5774 | 1 ⊢ Rel ManTop |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 ∧ w3a 1086 ∈ wcel 2109 Rel wrel 5636 ‘cfv 6499 [cec 8646 ℕ0cn0 12418 TopOpenctopn 17360 Hauscha 23171 2ndωc2ndc 23301 Locally clly 23327 ≃ chmph 23617 𝔼hilcehl 25260 ManTopcmntop 33985 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3446 df-ss 3928 df-opab 5165 df-xp 5637 df-rel 5638 df-mntop 33986 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |