Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > relmntop | Structured version Visualization version GIF version |
Description: Manifold is a relation. (Contributed by Thierry Arnoux, 28-Dec-2019.) |
Ref | Expression |
---|---|
relmntop | ⊢ Rel ManTop |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-mntop 31973 | . 2 ⊢ ManTop = {〈𝑛, 𝑗〉 ∣ (𝑛 ∈ ℕ0 ∧ (𝑗 ∈ 2ndω ∧ 𝑗 ∈ Haus ∧ 𝑗 ∈ Locally [(TopOpen‘(𝔼hil‘𝑛))] ≃ ))} | |
2 | 1 | relopabiv 5730 | 1 ⊢ Rel ManTop |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 396 ∧ w3a 1086 ∈ wcel 2106 Rel wrel 5594 ‘cfv 6433 [cec 8496 ℕ0cn0 12233 TopOpenctopn 17132 Hauscha 22459 2ndωc2ndc 22589 Locally clly 22615 ≃ chmph 22905 𝔼hilcehl 24548 ManTopcmntop 31972 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-v 3434 df-in 3894 df-ss 3904 df-opab 5137 df-xp 5595 df-rel 5596 df-mntop 31973 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |