Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  relmntop Structured version   Visualization version   GIF version

Theorem relmntop 34001
Description: Manifold is a relation. (Contributed by Thierry Arnoux, 28-Dec-2019.)
Assertion
Ref Expression
relmntop Rel ManTop

Proof of Theorem relmntop
Dummy variables 𝑗 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-mntop 34000 . 2 ManTop = {⟨𝑛, 𝑗⟩ ∣ (𝑛 ∈ ℕ0 ∧ (𝑗 ∈ 2ndω ∧ 𝑗 ∈ Haus ∧ 𝑗 ∈ Locally [(TopOpen‘(𝔼hil𝑛))] ≃ ))}
21relopabiv 5799 1 Rel ManTop
Colors of variables: wff setvar class
Syntax hints:  wa 395  w3a 1086  wcel 2108  Rel wrel 5659  cfv 6530  [cec 8715  0cn0 12499  TopOpenctopn 17433  Hauscha 23244  2ndωc2ndc 23374  Locally clly 23400  chmph 23690  𝔼hilcehl 25334  ManTopcmntop 33999
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2707
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2065  df-clab 2714  df-cleq 2727  df-clel 2809  df-v 3461  df-ss 3943  df-opab 5182  df-xp 5660  df-rel 5661  df-mntop 34000
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator