Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > relmntop | Structured version Visualization version GIF version |
Description: Manifold is a relation. (Contributed by Thierry Arnoux, 28-Dec-2019.) |
Ref | Expression |
---|---|
relmntop | ⊢ Rel ManTop |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-mntop 31873 | . 2 ⊢ ManTop = {〈𝑛, 𝑗〉 ∣ (𝑛 ∈ ℕ0 ∧ (𝑗 ∈ 2ndω ∧ 𝑗 ∈ Haus ∧ 𝑗 ∈ Locally [(TopOpen‘(𝔼hil‘𝑛))] ≃ ))} | |
2 | 1 | relopabiv 5719 | 1 ⊢ Rel ManTop |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 ∧ w3a 1085 ∈ wcel 2108 Rel wrel 5585 ‘cfv 6418 [cec 8454 ℕ0cn0 12163 TopOpenctopn 17049 Hauscha 22367 2ndωc2ndc 22497 Locally clly 22523 ≃ chmph 22813 𝔼hilcehl 24453 ManTopcmntop 31872 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-v 3424 df-in 3890 df-ss 3900 df-opab 5133 df-xp 5586 df-rel 5587 df-mntop 31873 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |