Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  relmntop Structured version   Visualization version   GIF version

Theorem relmntop 33073
Description: Manifold is a relation. (Contributed by Thierry Arnoux, 28-Dec-2019.)
Assertion
Ref Expression
relmntop Rel ManTop

Proof of Theorem relmntop
Dummy variables 𝑗 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-mntop 33072 . 2 ManTop = {βŸ¨π‘›, π‘—βŸ© ∣ (𝑛 ∈ β„•0 ∧ (𝑗 ∈ 2ndΟ‰ ∧ 𝑗 ∈ Haus ∧ 𝑗 ∈ Locally [(TopOpenβ€˜(𝔼hilβ€˜π‘›))] ≃ ))}
21relopabiv 5820 1 Rel ManTop
Colors of variables: wff setvar class
Syntax hints:   ∧ wa 396   ∧ w3a 1087   ∈ wcel 2106  Rel wrel 5681  β€˜cfv 6543  [cec 8703  β„•0cn0 12474  TopOpenctopn 17369  Hauscha 22819  2ndΟ‰c2ndc 22949  Locally clly 22975   ≃ chmph 23265  π”Όhilcehl 24908  ManTopcmntop 33071
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2703
This theorem depends on definitions:  df-bi 206  df-an 397  df-tru 1544  df-ex 1782  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-v 3476  df-in 3955  df-ss 3965  df-opab 5211  df-xp 5682  df-rel 5683  df-mntop 33072
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator