Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  relmntop Structured version   Visualization version   GIF version

Theorem relmntop 31974
Description: Manifold is a relation. (Contributed by Thierry Arnoux, 28-Dec-2019.)
Assertion
Ref Expression
relmntop Rel ManTop

Proof of Theorem relmntop
Dummy variables 𝑗 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-mntop 31973 . 2 ManTop = {⟨𝑛, 𝑗⟩ ∣ (𝑛 ∈ ℕ0 ∧ (𝑗 ∈ 2ndω ∧ 𝑗 ∈ Haus ∧ 𝑗 ∈ Locally [(TopOpen‘(𝔼hil𝑛))] ≃ ))}
21relopabiv 5730 1 Rel ManTop
Colors of variables: wff setvar class
Syntax hints:  wa 396  w3a 1086  wcel 2106  Rel wrel 5594  cfv 6433  [cec 8496  0cn0 12233  TopOpenctopn 17132  Hauscha 22459  2ndωc2ndc 22589  Locally clly 22615  chmph 22905  𝔼hilcehl 24548  ManTopcmntop 31972
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-tru 1542  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-v 3434  df-in 3894  df-ss 3904  df-opab 5137  df-xp 5595  df-rel 5596  df-mntop 31973
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator