![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > relmntop | Structured version Visualization version GIF version |
Description: Manifold is a relation. (Contributed by Thierry Arnoux, 28-Dec-2019.) |
Ref | Expression |
---|---|
relmntop | ⊢ Rel ManTop |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-mntop 32834 | . 2 ⊢ ManTop = {〈𝑛, 𝑗〉 ∣ (𝑛 ∈ ℕ0 ∧ (𝑗 ∈ 2ndω ∧ 𝑗 ∈ Haus ∧ 𝑗 ∈ Locally [(TopOpen‘(𝔼hil‘𝑛))] ≃ ))} | |
2 | 1 | relopabiv 5812 | 1 ⊢ Rel ManTop |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 396 ∧ w3a 1087 ∈ wcel 2106 Rel wrel 5674 ‘cfv 6532 [cec 8684 ℕ0cn0 12454 TopOpenctopn 17349 Hauscha 22741 2ndωc2ndc 22871 Locally clly 22897 ≃ chmph 23187 𝔼hilcehl 24830 ManTopcmntop 32833 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2702 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1544 df-ex 1782 df-sb 2068 df-clab 2709 df-cleq 2723 df-clel 2809 df-v 3475 df-in 3951 df-ss 3961 df-opab 5204 df-xp 5675 df-rel 5676 df-mntop 32834 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |