![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > relmntop | Structured version Visualization version GIF version |
Description: Manifold is a relation. (Contributed by Thierry Arnoux, 28-Dec-2019.) |
Ref | Expression |
---|---|
relmntop | ⊢ Rel ManTop |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-mntop 33961 | . 2 ⊢ ManTop = {〈𝑛, 𝑗〉 ∣ (𝑛 ∈ ℕ0 ∧ (𝑗 ∈ 2ndω ∧ 𝑗 ∈ Haus ∧ 𝑗 ∈ Locally [(TopOpen‘(𝔼hil‘𝑛))] ≃ ))} | |
2 | 1 | relopabiv 5839 | 1 ⊢ Rel ManTop |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 ∧ w3a 1087 ∈ wcel 2108 Rel wrel 5700 ‘cfv 6568 [cec 8755 ℕ0cn0 12547 TopOpenctopn 17475 Hauscha 23329 2ndωc2ndc 23459 Locally clly 23485 ≃ chmph 23775 𝔼hilcehl 25429 ManTopcmntop 33960 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-v 3490 df-ss 3993 df-opab 5229 df-xp 5701 df-rel 5702 df-mntop 33961 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |