Detailed syntax breakdown of Definition df-mon
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | cmon 17773 | . 2
class
Mono | 
| 2 |  | vc | . . 3
setvar 𝑐 | 
| 3 |  | ccat 17708 | . . 3
class
Cat | 
| 4 |  | vb | . . . 4
setvar 𝑏 | 
| 5 | 2 | cv 1538 | . . . . 5
class 𝑐 | 
| 6 |  | cbs 17248 | . . . . 5
class
Base | 
| 7 | 5, 6 | cfv 6560 | . . . 4
class
(Base‘𝑐) | 
| 8 |  | vh | . . . . 5
setvar ℎ | 
| 9 |  | chom 17309 | . . . . . 6
class
Hom | 
| 10 | 5, 9 | cfv 6560 | . . . . 5
class (Hom
‘𝑐) | 
| 11 |  | vx | . . . . . 6
setvar 𝑥 | 
| 12 |  | vy | . . . . . 6
setvar 𝑦 | 
| 13 | 4 | cv 1538 | . . . . . 6
class 𝑏 | 
| 14 |  | vg | . . . . . . . . . . 11
setvar 𝑔 | 
| 15 |  | vz | . . . . . . . . . . . . 13
setvar 𝑧 | 
| 16 | 15 | cv 1538 | . . . . . . . . . . . 12
class 𝑧 | 
| 17 | 11 | cv 1538 | . . . . . . . . . . . 12
class 𝑥 | 
| 18 | 8 | cv 1538 | . . . . . . . . . . . 12
class ℎ | 
| 19 | 16, 17, 18 | co 7432 | . . . . . . . . . . 11
class (𝑧ℎ𝑥) | 
| 20 |  | vf | . . . . . . . . . . . . 13
setvar 𝑓 | 
| 21 | 20 | cv 1538 | . . . . . . . . . . . 12
class 𝑓 | 
| 22 | 14 | cv 1538 | . . . . . . . . . . . 12
class 𝑔 | 
| 23 | 16, 17 | cop 4631 | . . . . . . . . . . . . 13
class
〈𝑧, 𝑥〉 | 
| 24 | 12 | cv 1538 | . . . . . . . . . . . . 13
class 𝑦 | 
| 25 |  | cco 17310 | . . . . . . . . . . . . . 14
class
comp | 
| 26 | 5, 25 | cfv 6560 | . . . . . . . . . . . . 13
class
(comp‘𝑐) | 
| 27 | 23, 24, 26 | co 7432 | . . . . . . . . . . . 12
class
(〈𝑧, 𝑥〉(comp‘𝑐)𝑦) | 
| 28 | 21, 22, 27 | co 7432 | . . . . . . . . . . 11
class (𝑓(〈𝑧, 𝑥〉(comp‘𝑐)𝑦)𝑔) | 
| 29 | 14, 19, 28 | cmpt 5224 | . . . . . . . . . 10
class (𝑔 ∈ (𝑧ℎ𝑥) ↦ (𝑓(〈𝑧, 𝑥〉(comp‘𝑐)𝑦)𝑔)) | 
| 30 | 29 | ccnv 5683 | . . . . . . . . 9
class ◡(𝑔 ∈ (𝑧ℎ𝑥) ↦ (𝑓(〈𝑧, 𝑥〉(comp‘𝑐)𝑦)𝑔)) | 
| 31 | 30 | wfun 6554 | . . . . . . . 8
wff Fun ◡(𝑔 ∈ (𝑧ℎ𝑥) ↦ (𝑓(〈𝑧, 𝑥〉(comp‘𝑐)𝑦)𝑔)) | 
| 32 | 31, 15, 13 | wral 3060 | . . . . . . 7
wff
∀𝑧 ∈
𝑏 Fun ◡(𝑔 ∈ (𝑧ℎ𝑥) ↦ (𝑓(〈𝑧, 𝑥〉(comp‘𝑐)𝑦)𝑔)) | 
| 33 | 17, 24, 18 | co 7432 | . . . . . . 7
class (𝑥ℎ𝑦) | 
| 34 | 32, 20, 33 | crab 3435 | . . . . . 6
class {𝑓 ∈ (𝑥ℎ𝑦) ∣ ∀𝑧 ∈ 𝑏 Fun ◡(𝑔 ∈ (𝑧ℎ𝑥) ↦ (𝑓(〈𝑧, 𝑥〉(comp‘𝑐)𝑦)𝑔))} | 
| 35 | 11, 12, 13, 13, 34 | cmpo 7434 | . . . . 5
class (𝑥 ∈ 𝑏, 𝑦 ∈ 𝑏 ↦ {𝑓 ∈ (𝑥ℎ𝑦) ∣ ∀𝑧 ∈ 𝑏 Fun ◡(𝑔 ∈ (𝑧ℎ𝑥) ↦ (𝑓(〈𝑧, 𝑥〉(comp‘𝑐)𝑦)𝑔))}) | 
| 36 | 8, 10, 35 | csb 3898 | . . . 4
class
⦋(Hom ‘𝑐) / ℎ⦌(𝑥 ∈ 𝑏, 𝑦 ∈ 𝑏 ↦ {𝑓 ∈ (𝑥ℎ𝑦) ∣ ∀𝑧 ∈ 𝑏 Fun ◡(𝑔 ∈ (𝑧ℎ𝑥) ↦ (𝑓(〈𝑧, 𝑥〉(comp‘𝑐)𝑦)𝑔))}) | 
| 37 | 4, 7, 36 | csb 3898 | . . 3
class
⦋(Base‘𝑐) / 𝑏⦌⦋(Hom
‘𝑐) / ℎ⦌(𝑥 ∈ 𝑏, 𝑦 ∈ 𝑏 ↦ {𝑓 ∈ (𝑥ℎ𝑦) ∣ ∀𝑧 ∈ 𝑏 Fun ◡(𝑔 ∈ (𝑧ℎ𝑥) ↦ (𝑓(〈𝑧, 𝑥〉(comp‘𝑐)𝑦)𝑔))}) | 
| 38 | 2, 3, 37 | cmpt 5224 | . 2
class (𝑐 ∈ Cat ↦
⦋(Base‘𝑐) / 𝑏⦌⦋(Hom
‘𝑐) / ℎ⦌(𝑥 ∈ 𝑏, 𝑦 ∈ 𝑏 ↦ {𝑓 ∈ (𝑥ℎ𝑦) ∣ ∀𝑧 ∈ 𝑏 Fun ◡(𝑔 ∈ (𝑧ℎ𝑥) ↦ (𝑓(〈𝑧, 𝑥〉(comp‘𝑐)𝑦)𝑔))})) | 
| 39 | 1, 38 | wceq 1539 | 1
wff Mono =
(𝑐 ∈ Cat ↦
⦋(Base‘𝑐) / 𝑏⦌⦋(Hom
‘𝑐) / ℎ⦌(𝑥 ∈ 𝑏, 𝑦 ∈ 𝑏 ↦ {𝑓 ∈ (𝑥ℎ𝑦) ∣ ∀𝑧 ∈ 𝑏 Fun ◡(𝑔 ∈ (𝑧ℎ𝑥) ↦ (𝑓(〈𝑧, 𝑥〉(comp‘𝑐)𝑦)𝑔))})) |