Detailed syntax breakdown of Definition df-mon
Step | Hyp | Ref
| Expression |
1 | | cmon 17357 |
. 2
class
Mono |
2 | | vc |
. . 3
setvar 𝑐 |
3 | | ccat 17290 |
. . 3
class
Cat |
4 | | vb |
. . . 4
setvar 𝑏 |
5 | 2 | cv 1538 |
. . . . 5
class 𝑐 |
6 | | cbs 16840 |
. . . . 5
class
Base |
7 | 5, 6 | cfv 6418 |
. . . 4
class
(Base‘𝑐) |
8 | | vh |
. . . . 5
setvar ℎ |
9 | | chom 16899 |
. . . . . 6
class
Hom |
10 | 5, 9 | cfv 6418 |
. . . . 5
class (Hom
‘𝑐) |
11 | | vx |
. . . . . 6
setvar 𝑥 |
12 | | vy |
. . . . . 6
setvar 𝑦 |
13 | 4 | cv 1538 |
. . . . . 6
class 𝑏 |
14 | | vg |
. . . . . . . . . . 11
setvar 𝑔 |
15 | | vz |
. . . . . . . . . . . . 13
setvar 𝑧 |
16 | 15 | cv 1538 |
. . . . . . . . . . . 12
class 𝑧 |
17 | 11 | cv 1538 |
. . . . . . . . . . . 12
class 𝑥 |
18 | 8 | cv 1538 |
. . . . . . . . . . . 12
class ℎ |
19 | 16, 17, 18 | co 7255 |
. . . . . . . . . . 11
class (𝑧ℎ𝑥) |
20 | | vf |
. . . . . . . . . . . . 13
setvar 𝑓 |
21 | 20 | cv 1538 |
. . . . . . . . . . . 12
class 𝑓 |
22 | 14 | cv 1538 |
. . . . . . . . . . . 12
class 𝑔 |
23 | 16, 17 | cop 4564 |
. . . . . . . . . . . . 13
class
〈𝑧, 𝑥〉 |
24 | 12 | cv 1538 |
. . . . . . . . . . . . 13
class 𝑦 |
25 | | cco 16900 |
. . . . . . . . . . . . . 14
class
comp |
26 | 5, 25 | cfv 6418 |
. . . . . . . . . . . . 13
class
(comp‘𝑐) |
27 | 23, 24, 26 | co 7255 |
. . . . . . . . . . . 12
class
(〈𝑧, 𝑥〉(comp‘𝑐)𝑦) |
28 | 21, 22, 27 | co 7255 |
. . . . . . . . . . 11
class (𝑓(〈𝑧, 𝑥〉(comp‘𝑐)𝑦)𝑔) |
29 | 14, 19, 28 | cmpt 5153 |
. . . . . . . . . 10
class (𝑔 ∈ (𝑧ℎ𝑥) ↦ (𝑓(〈𝑧, 𝑥〉(comp‘𝑐)𝑦)𝑔)) |
30 | 29 | ccnv 5579 |
. . . . . . . . 9
class ◡(𝑔 ∈ (𝑧ℎ𝑥) ↦ (𝑓(〈𝑧, 𝑥〉(comp‘𝑐)𝑦)𝑔)) |
31 | 30 | wfun 6412 |
. . . . . . . 8
wff Fun ◡(𝑔 ∈ (𝑧ℎ𝑥) ↦ (𝑓(〈𝑧, 𝑥〉(comp‘𝑐)𝑦)𝑔)) |
32 | 31, 15, 13 | wral 3063 |
. . . . . . 7
wff
∀𝑧 ∈
𝑏 Fun ◡(𝑔 ∈ (𝑧ℎ𝑥) ↦ (𝑓(〈𝑧, 𝑥〉(comp‘𝑐)𝑦)𝑔)) |
33 | 17, 24, 18 | co 7255 |
. . . . . . 7
class (𝑥ℎ𝑦) |
34 | 32, 20, 33 | crab 3067 |
. . . . . 6
class {𝑓 ∈ (𝑥ℎ𝑦) ∣ ∀𝑧 ∈ 𝑏 Fun ◡(𝑔 ∈ (𝑧ℎ𝑥) ↦ (𝑓(〈𝑧, 𝑥〉(comp‘𝑐)𝑦)𝑔))} |
35 | 11, 12, 13, 13, 34 | cmpo 7257 |
. . . . 5
class (𝑥 ∈ 𝑏, 𝑦 ∈ 𝑏 ↦ {𝑓 ∈ (𝑥ℎ𝑦) ∣ ∀𝑧 ∈ 𝑏 Fun ◡(𝑔 ∈ (𝑧ℎ𝑥) ↦ (𝑓(〈𝑧, 𝑥〉(comp‘𝑐)𝑦)𝑔))}) |
36 | 8, 10, 35 | csb 3828 |
. . . 4
class
⦋(Hom ‘𝑐) / ℎ⦌(𝑥 ∈ 𝑏, 𝑦 ∈ 𝑏 ↦ {𝑓 ∈ (𝑥ℎ𝑦) ∣ ∀𝑧 ∈ 𝑏 Fun ◡(𝑔 ∈ (𝑧ℎ𝑥) ↦ (𝑓(〈𝑧, 𝑥〉(comp‘𝑐)𝑦)𝑔))}) |
37 | 4, 7, 36 | csb 3828 |
. . 3
class
⦋(Base‘𝑐) / 𝑏⦌⦋(Hom
‘𝑐) / ℎ⦌(𝑥 ∈ 𝑏, 𝑦 ∈ 𝑏 ↦ {𝑓 ∈ (𝑥ℎ𝑦) ∣ ∀𝑧 ∈ 𝑏 Fun ◡(𝑔 ∈ (𝑧ℎ𝑥) ↦ (𝑓(〈𝑧, 𝑥〉(comp‘𝑐)𝑦)𝑔))}) |
38 | 2, 3, 37 | cmpt 5153 |
. 2
class (𝑐 ∈ Cat ↦
⦋(Base‘𝑐) / 𝑏⦌⦋(Hom
‘𝑐) / ℎ⦌(𝑥 ∈ 𝑏, 𝑦 ∈ 𝑏 ↦ {𝑓 ∈ (𝑥ℎ𝑦) ∣ ∀𝑧 ∈ 𝑏 Fun ◡(𝑔 ∈ (𝑧ℎ𝑥) ↦ (𝑓(〈𝑧, 𝑥〉(comp‘𝑐)𝑦)𝑔))})) |
39 | 1, 38 | wceq 1539 |
1
wff Mono =
(𝑐 ∈ Cat ↦
⦋(Base‘𝑐) / 𝑏⦌⦋(Hom
‘𝑐) / ℎ⦌(𝑥 ∈ 𝑏, 𝑦 ∈ 𝑏 ↦ {𝑓 ∈ (𝑥ℎ𝑦) ∣ ∀𝑧 ∈ 𝑏 Fun ◡(𝑔 ∈ (𝑧ℎ𝑥) ↦ (𝑓(〈𝑧, 𝑥〉(comp‘𝑐)𝑦)𝑔))})) |