MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  monfval Structured version   Visualization version   GIF version

Theorem monfval 17542
Description: Definition of a monomorphism in a category. (Contributed by Mario Carneiro, 3-Jan-2017.)
Hypotheses
Ref Expression
ismon.b 𝐵 = (Base‘𝐶)
ismon.h 𝐻 = (Hom ‘𝐶)
ismon.o · = (comp‘𝐶)
ismon.s 𝑀 = (Mono‘𝐶)
ismon.c (𝜑𝐶 ∈ Cat)
Assertion
Ref Expression
monfval (𝜑𝑀 = (𝑥𝐵, 𝑦𝐵 ↦ {𝑓 ∈ (𝑥𝐻𝑦) ∣ ∀𝑧𝐵 Fun (𝑔 ∈ (𝑧𝐻𝑥) ↦ (𝑓(⟨𝑧, 𝑥· 𝑦)𝑔))}))
Distinct variable groups:   𝑓,𝑔,𝑥,𝑦,𝑧,𝐵   𝜑,𝑓,𝑔,𝑥,𝑦,𝑧   𝐶,𝑓,𝑔,𝑥,𝑦,𝑧   𝑓,𝐻,𝑔,𝑥,𝑦,𝑧   · ,𝑓,𝑔,𝑥,𝑦,𝑧   𝑓,𝑀
Allowed substitution hints:   𝑀(𝑥,𝑦,𝑧,𝑔)

Proof of Theorem monfval
Dummy variables 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ismon.s . 2 𝑀 = (Mono‘𝐶)
2 ismon.c . . 3 (𝜑𝐶 ∈ Cat)
3 fvexd 6845 . . . . 5 (𝑐 = 𝐶 → (Base‘𝑐) ∈ V)
4 fveq2 6830 . . . . . 6 (𝑐 = 𝐶 → (Base‘𝑐) = (Base‘𝐶))
5 ismon.b . . . . . 6 𝐵 = (Base‘𝐶)
64, 5eqtr4di 2795 . . . . 5 (𝑐 = 𝐶 → (Base‘𝑐) = 𝐵)
7 fvexd 6845 . . . . . 6 ((𝑐 = 𝐶𝑏 = 𝐵) → (Hom ‘𝑐) ∈ V)
8 simpl 484 . . . . . . . 8 ((𝑐 = 𝐶𝑏 = 𝐵) → 𝑐 = 𝐶)
98fveq2d 6834 . . . . . . 7 ((𝑐 = 𝐶𝑏 = 𝐵) → (Hom ‘𝑐) = (Hom ‘𝐶))
10 ismon.h . . . . . . 7 𝐻 = (Hom ‘𝐶)
119, 10eqtr4di 2795 . . . . . 6 ((𝑐 = 𝐶𝑏 = 𝐵) → (Hom ‘𝑐) = 𝐻)
12 simplr 767 . . . . . . 7 (((𝑐 = 𝐶𝑏 = 𝐵) ∧ = 𝐻) → 𝑏 = 𝐵)
13 simpr 486 . . . . . . . . 9 (((𝑐 = 𝐶𝑏 = 𝐵) ∧ = 𝐻) → = 𝐻)
1413oveqd 7359 . . . . . . . 8 (((𝑐 = 𝐶𝑏 = 𝐵) ∧ = 𝐻) → (𝑥𝑦) = (𝑥𝐻𝑦))
1513oveqd 7359 . . . . . . . . . . . 12 (((𝑐 = 𝐶𝑏 = 𝐵) ∧ = 𝐻) → (𝑧𝑥) = (𝑧𝐻𝑥))
16 simpll 765 . . . . . . . . . . . . . . . 16 (((𝑐 = 𝐶𝑏 = 𝐵) ∧ = 𝐻) → 𝑐 = 𝐶)
1716fveq2d 6834 . . . . . . . . . . . . . . 15 (((𝑐 = 𝐶𝑏 = 𝐵) ∧ = 𝐻) → (comp‘𝑐) = (comp‘𝐶))
18 ismon.o . . . . . . . . . . . . . . 15 · = (comp‘𝐶)
1917, 18eqtr4di 2795 . . . . . . . . . . . . . 14 (((𝑐 = 𝐶𝑏 = 𝐵) ∧ = 𝐻) → (comp‘𝑐) = · )
2019oveqd 7359 . . . . . . . . . . . . 13 (((𝑐 = 𝐶𝑏 = 𝐵) ∧ = 𝐻) → (⟨𝑧, 𝑥⟩(comp‘𝑐)𝑦) = (⟨𝑧, 𝑥· 𝑦))
2120oveqd 7359 . . . . . . . . . . . 12 (((𝑐 = 𝐶𝑏 = 𝐵) ∧ = 𝐻) → (𝑓(⟨𝑧, 𝑥⟩(comp‘𝑐)𝑦)𝑔) = (𝑓(⟨𝑧, 𝑥· 𝑦)𝑔))
2215, 21mpteq12dv 5188 . . . . . . . . . . 11 (((𝑐 = 𝐶𝑏 = 𝐵) ∧ = 𝐻) → (𝑔 ∈ (𝑧𝑥) ↦ (𝑓(⟨𝑧, 𝑥⟩(comp‘𝑐)𝑦)𝑔)) = (𝑔 ∈ (𝑧𝐻𝑥) ↦ (𝑓(⟨𝑧, 𝑥· 𝑦)𝑔)))
2322cnveqd 5822 . . . . . . . . . 10 (((𝑐 = 𝐶𝑏 = 𝐵) ∧ = 𝐻) → (𝑔 ∈ (𝑧𝑥) ↦ (𝑓(⟨𝑧, 𝑥⟩(comp‘𝑐)𝑦)𝑔)) = (𝑔 ∈ (𝑧𝐻𝑥) ↦ (𝑓(⟨𝑧, 𝑥· 𝑦)𝑔)))
2423funeqd 6511 . . . . . . . . 9 (((𝑐 = 𝐶𝑏 = 𝐵) ∧ = 𝐻) → (Fun (𝑔 ∈ (𝑧𝑥) ↦ (𝑓(⟨𝑧, 𝑥⟩(comp‘𝑐)𝑦)𝑔)) ↔ Fun (𝑔 ∈ (𝑧𝐻𝑥) ↦ (𝑓(⟨𝑧, 𝑥· 𝑦)𝑔))))
2512, 24raleqbidv 3316 . . . . . . . 8 (((𝑐 = 𝐶𝑏 = 𝐵) ∧ = 𝐻) → (∀𝑧𝑏 Fun (𝑔 ∈ (𝑧𝑥) ↦ (𝑓(⟨𝑧, 𝑥⟩(comp‘𝑐)𝑦)𝑔)) ↔ ∀𝑧𝐵 Fun (𝑔 ∈ (𝑧𝐻𝑥) ↦ (𝑓(⟨𝑧, 𝑥· 𝑦)𝑔))))
2614, 25rabeqbidv 3421 . . . . . . 7 (((𝑐 = 𝐶𝑏 = 𝐵) ∧ = 𝐻) → {𝑓 ∈ (𝑥𝑦) ∣ ∀𝑧𝑏 Fun (𝑔 ∈ (𝑧𝑥) ↦ (𝑓(⟨𝑧, 𝑥⟩(comp‘𝑐)𝑦)𝑔))} = {𝑓 ∈ (𝑥𝐻𝑦) ∣ ∀𝑧𝐵 Fun (𝑔 ∈ (𝑧𝐻𝑥) ↦ (𝑓(⟨𝑧, 𝑥· 𝑦)𝑔))})
2712, 12, 26mpoeq123dv 7417 . . . . . 6 (((𝑐 = 𝐶𝑏 = 𝐵) ∧ = 𝐻) → (𝑥𝑏, 𝑦𝑏 ↦ {𝑓 ∈ (𝑥𝑦) ∣ ∀𝑧𝑏 Fun (𝑔 ∈ (𝑧𝑥) ↦ (𝑓(⟨𝑧, 𝑥⟩(comp‘𝑐)𝑦)𝑔))}) = (𝑥𝐵, 𝑦𝐵 ↦ {𝑓 ∈ (𝑥𝐻𝑦) ∣ ∀𝑧𝐵 Fun (𝑔 ∈ (𝑧𝐻𝑥) ↦ (𝑓(⟨𝑧, 𝑥· 𝑦)𝑔))}))
287, 11, 27csbied2 3887 . . . . 5 ((𝑐 = 𝐶𝑏 = 𝐵) → (Hom ‘𝑐) / (𝑥𝑏, 𝑦𝑏 ↦ {𝑓 ∈ (𝑥𝑦) ∣ ∀𝑧𝑏 Fun (𝑔 ∈ (𝑧𝑥) ↦ (𝑓(⟨𝑧, 𝑥⟩(comp‘𝑐)𝑦)𝑔))}) = (𝑥𝐵, 𝑦𝐵 ↦ {𝑓 ∈ (𝑥𝐻𝑦) ∣ ∀𝑧𝐵 Fun (𝑔 ∈ (𝑧𝐻𝑥) ↦ (𝑓(⟨𝑧, 𝑥· 𝑦)𝑔))}))
293, 6, 28csbied2 3887 . . . 4 (𝑐 = 𝐶(Base‘𝑐) / 𝑏(Hom ‘𝑐) / (𝑥𝑏, 𝑦𝑏 ↦ {𝑓 ∈ (𝑥𝑦) ∣ ∀𝑧𝑏 Fun (𝑔 ∈ (𝑧𝑥) ↦ (𝑓(⟨𝑧, 𝑥⟩(comp‘𝑐)𝑦)𝑔))}) = (𝑥𝐵, 𝑦𝐵 ↦ {𝑓 ∈ (𝑥𝐻𝑦) ∣ ∀𝑧𝐵 Fun (𝑔 ∈ (𝑧𝐻𝑥) ↦ (𝑓(⟨𝑧, 𝑥· 𝑦)𝑔))}))
30 df-mon 17540 . . . 4 Mono = (𝑐 ∈ Cat ↦ (Base‘𝑐) / 𝑏(Hom ‘𝑐) / (𝑥𝑏, 𝑦𝑏 ↦ {𝑓 ∈ (𝑥𝑦) ∣ ∀𝑧𝑏 Fun (𝑔 ∈ (𝑧𝑥) ↦ (𝑓(⟨𝑧, 𝑥⟩(comp‘𝑐)𝑦)𝑔))}))
315fvexi 6844 . . . . 5 𝐵 ∈ V
3231, 31mpoex 7993 . . . 4 (𝑥𝐵, 𝑦𝐵 ↦ {𝑓 ∈ (𝑥𝐻𝑦) ∣ ∀𝑧𝐵 Fun (𝑔 ∈ (𝑧𝐻𝑥) ↦ (𝑓(⟨𝑧, 𝑥· 𝑦)𝑔))}) ∈ V
3329, 30, 32fvmpt 6936 . . 3 (𝐶 ∈ Cat → (Mono‘𝐶) = (𝑥𝐵, 𝑦𝐵 ↦ {𝑓 ∈ (𝑥𝐻𝑦) ∣ ∀𝑧𝐵 Fun (𝑔 ∈ (𝑧𝐻𝑥) ↦ (𝑓(⟨𝑧, 𝑥· 𝑦)𝑔))}))
342, 33syl 17 . 2 (𝜑 → (Mono‘𝐶) = (𝑥𝐵, 𝑦𝐵 ↦ {𝑓 ∈ (𝑥𝐻𝑦) ∣ ∀𝑧𝐵 Fun (𝑔 ∈ (𝑧𝐻𝑥) ↦ (𝑓(⟨𝑧, 𝑥· 𝑦)𝑔))}))
351, 34eqtrid 2789 1 (𝜑𝑀 = (𝑥𝐵, 𝑦𝐵 ↦ {𝑓 ∈ (𝑥𝐻𝑦) ∣ ∀𝑧𝐵 Fun (𝑔 ∈ (𝑧𝐻𝑥) ↦ (𝑓(⟨𝑧, 𝑥· 𝑦)𝑔))}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397   = wceq 1541  wcel 2106  wral 3062  {crab 3404  Vcvv 3442  csb 3847  cop 4584  cmpt 5180  ccnv 5624  Fun wfun 6478  cfv 6484  (class class class)co 7342  cmpo 7344  Basecbs 17010  Hom chom 17071  compcco 17072  Catccat 17471  Monocmon 17538
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2708  ax-rep 5234  ax-sep 5248  ax-nul 5255  ax-pow 5313  ax-pr 5377  ax-un 7655
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-ral 3063  df-rex 3072  df-reu 3351  df-rab 3405  df-v 3444  df-sbc 3732  df-csb 3848  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4275  df-if 4479  df-pw 4554  df-sn 4579  df-pr 4581  df-op 4585  df-uni 4858  df-iun 4948  df-br 5098  df-opab 5160  df-mpt 5181  df-id 5523  df-xp 5631  df-rel 5632  df-cnv 5633  df-co 5634  df-dm 5635  df-rn 5636  df-res 5637  df-ima 5638  df-iota 6436  df-fun 6486  df-fn 6487  df-f 6488  df-f1 6489  df-fo 6490  df-f1o 6491  df-fv 6492  df-ov 7345  df-oprab 7346  df-mpo 7347  df-1st 7904  df-2nd 7905  df-mon 17540
This theorem is referenced by:  ismon  17543  monpropd  17547
  Copyright terms: Public domain W3C validator