MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  monfval Structured version   Visualization version   GIF version

Theorem monfval 17793
Description: Definition of a monomorphism in a category. (Contributed by Mario Carneiro, 3-Jan-2017.)
Hypotheses
Ref Expression
ismon.b 𝐵 = (Base‘𝐶)
ismon.h 𝐻 = (Hom ‘𝐶)
ismon.o · = (comp‘𝐶)
ismon.s 𝑀 = (Mono‘𝐶)
ismon.c (𝜑𝐶 ∈ Cat)
Assertion
Ref Expression
monfval (𝜑𝑀 = (𝑥𝐵, 𝑦𝐵 ↦ {𝑓 ∈ (𝑥𝐻𝑦) ∣ ∀𝑧𝐵 Fun (𝑔 ∈ (𝑧𝐻𝑥) ↦ (𝑓(⟨𝑧, 𝑥· 𝑦)𝑔))}))
Distinct variable groups:   𝑓,𝑔,𝑥,𝑦,𝑧,𝐵   𝜑,𝑓,𝑔,𝑥,𝑦,𝑧   𝐶,𝑓,𝑔,𝑥,𝑦,𝑧   𝑓,𝐻,𝑔,𝑥,𝑦,𝑧   · ,𝑓,𝑔,𝑥,𝑦,𝑧   𝑓,𝑀
Allowed substitution hints:   𝑀(𝑥,𝑦,𝑧,𝑔)

Proof of Theorem monfval
Dummy variables 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ismon.s . 2 𝑀 = (Mono‘𝐶)
2 ismon.c . . 3 (𝜑𝐶 ∈ Cat)
3 fvexd 6935 . . . . 5 (𝑐 = 𝐶 → (Base‘𝑐) ∈ V)
4 fveq2 6920 . . . . . 6 (𝑐 = 𝐶 → (Base‘𝑐) = (Base‘𝐶))
5 ismon.b . . . . . 6 𝐵 = (Base‘𝐶)
64, 5eqtr4di 2798 . . . . 5 (𝑐 = 𝐶 → (Base‘𝑐) = 𝐵)
7 fvexd 6935 . . . . . 6 ((𝑐 = 𝐶𝑏 = 𝐵) → (Hom ‘𝑐) ∈ V)
8 simpl 482 . . . . . . . 8 ((𝑐 = 𝐶𝑏 = 𝐵) → 𝑐 = 𝐶)
98fveq2d 6924 . . . . . . 7 ((𝑐 = 𝐶𝑏 = 𝐵) → (Hom ‘𝑐) = (Hom ‘𝐶))
10 ismon.h . . . . . . 7 𝐻 = (Hom ‘𝐶)
119, 10eqtr4di 2798 . . . . . 6 ((𝑐 = 𝐶𝑏 = 𝐵) → (Hom ‘𝑐) = 𝐻)
12 simplr 768 . . . . . . 7 (((𝑐 = 𝐶𝑏 = 𝐵) ∧ = 𝐻) → 𝑏 = 𝐵)
13 simpr 484 . . . . . . . . 9 (((𝑐 = 𝐶𝑏 = 𝐵) ∧ = 𝐻) → = 𝐻)
1413oveqd 7465 . . . . . . . 8 (((𝑐 = 𝐶𝑏 = 𝐵) ∧ = 𝐻) → (𝑥𝑦) = (𝑥𝐻𝑦))
1513oveqd 7465 . . . . . . . . . . . 12 (((𝑐 = 𝐶𝑏 = 𝐵) ∧ = 𝐻) → (𝑧𝑥) = (𝑧𝐻𝑥))
16 simpll 766 . . . . . . . . . . . . . . . 16 (((𝑐 = 𝐶𝑏 = 𝐵) ∧ = 𝐻) → 𝑐 = 𝐶)
1716fveq2d 6924 . . . . . . . . . . . . . . 15 (((𝑐 = 𝐶𝑏 = 𝐵) ∧ = 𝐻) → (comp‘𝑐) = (comp‘𝐶))
18 ismon.o . . . . . . . . . . . . . . 15 · = (comp‘𝐶)
1917, 18eqtr4di 2798 . . . . . . . . . . . . . 14 (((𝑐 = 𝐶𝑏 = 𝐵) ∧ = 𝐻) → (comp‘𝑐) = · )
2019oveqd 7465 . . . . . . . . . . . . 13 (((𝑐 = 𝐶𝑏 = 𝐵) ∧ = 𝐻) → (⟨𝑧, 𝑥⟩(comp‘𝑐)𝑦) = (⟨𝑧, 𝑥· 𝑦))
2120oveqd 7465 . . . . . . . . . . . 12 (((𝑐 = 𝐶𝑏 = 𝐵) ∧ = 𝐻) → (𝑓(⟨𝑧, 𝑥⟩(comp‘𝑐)𝑦)𝑔) = (𝑓(⟨𝑧, 𝑥· 𝑦)𝑔))
2215, 21mpteq12dv 5257 . . . . . . . . . . 11 (((𝑐 = 𝐶𝑏 = 𝐵) ∧ = 𝐻) → (𝑔 ∈ (𝑧𝑥) ↦ (𝑓(⟨𝑧, 𝑥⟩(comp‘𝑐)𝑦)𝑔)) = (𝑔 ∈ (𝑧𝐻𝑥) ↦ (𝑓(⟨𝑧, 𝑥· 𝑦)𝑔)))
2322cnveqd 5900 . . . . . . . . . 10 (((𝑐 = 𝐶𝑏 = 𝐵) ∧ = 𝐻) → (𝑔 ∈ (𝑧𝑥) ↦ (𝑓(⟨𝑧, 𝑥⟩(comp‘𝑐)𝑦)𝑔)) = (𝑔 ∈ (𝑧𝐻𝑥) ↦ (𝑓(⟨𝑧, 𝑥· 𝑦)𝑔)))
2423funeqd 6600 . . . . . . . . 9 (((𝑐 = 𝐶𝑏 = 𝐵) ∧ = 𝐻) → (Fun (𝑔 ∈ (𝑧𝑥) ↦ (𝑓(⟨𝑧, 𝑥⟩(comp‘𝑐)𝑦)𝑔)) ↔ Fun (𝑔 ∈ (𝑧𝐻𝑥) ↦ (𝑓(⟨𝑧, 𝑥· 𝑦)𝑔))))
2512, 24raleqbidv 3354 . . . . . . . 8 (((𝑐 = 𝐶𝑏 = 𝐵) ∧ = 𝐻) → (∀𝑧𝑏 Fun (𝑔 ∈ (𝑧𝑥) ↦ (𝑓(⟨𝑧, 𝑥⟩(comp‘𝑐)𝑦)𝑔)) ↔ ∀𝑧𝐵 Fun (𝑔 ∈ (𝑧𝐻𝑥) ↦ (𝑓(⟨𝑧, 𝑥· 𝑦)𝑔))))
2614, 25rabeqbidv 3462 . . . . . . 7 (((𝑐 = 𝐶𝑏 = 𝐵) ∧ = 𝐻) → {𝑓 ∈ (𝑥𝑦) ∣ ∀𝑧𝑏 Fun (𝑔 ∈ (𝑧𝑥) ↦ (𝑓(⟨𝑧, 𝑥⟩(comp‘𝑐)𝑦)𝑔))} = {𝑓 ∈ (𝑥𝐻𝑦) ∣ ∀𝑧𝐵 Fun (𝑔 ∈ (𝑧𝐻𝑥) ↦ (𝑓(⟨𝑧, 𝑥· 𝑦)𝑔))})
2712, 12, 26mpoeq123dv 7525 . . . . . 6 (((𝑐 = 𝐶𝑏 = 𝐵) ∧ = 𝐻) → (𝑥𝑏, 𝑦𝑏 ↦ {𝑓 ∈ (𝑥𝑦) ∣ ∀𝑧𝑏 Fun (𝑔 ∈ (𝑧𝑥) ↦ (𝑓(⟨𝑧, 𝑥⟩(comp‘𝑐)𝑦)𝑔))}) = (𝑥𝐵, 𝑦𝐵 ↦ {𝑓 ∈ (𝑥𝐻𝑦) ∣ ∀𝑧𝐵 Fun (𝑔 ∈ (𝑧𝐻𝑥) ↦ (𝑓(⟨𝑧, 𝑥· 𝑦)𝑔))}))
287, 11, 27csbied2 3961 . . . . 5 ((𝑐 = 𝐶𝑏 = 𝐵) → (Hom ‘𝑐) / (𝑥𝑏, 𝑦𝑏 ↦ {𝑓 ∈ (𝑥𝑦) ∣ ∀𝑧𝑏 Fun (𝑔 ∈ (𝑧𝑥) ↦ (𝑓(⟨𝑧, 𝑥⟩(comp‘𝑐)𝑦)𝑔))}) = (𝑥𝐵, 𝑦𝐵 ↦ {𝑓 ∈ (𝑥𝐻𝑦) ∣ ∀𝑧𝐵 Fun (𝑔 ∈ (𝑧𝐻𝑥) ↦ (𝑓(⟨𝑧, 𝑥· 𝑦)𝑔))}))
293, 6, 28csbied2 3961 . . . 4 (𝑐 = 𝐶(Base‘𝑐) / 𝑏(Hom ‘𝑐) / (𝑥𝑏, 𝑦𝑏 ↦ {𝑓 ∈ (𝑥𝑦) ∣ ∀𝑧𝑏 Fun (𝑔 ∈ (𝑧𝑥) ↦ (𝑓(⟨𝑧, 𝑥⟩(comp‘𝑐)𝑦)𝑔))}) = (𝑥𝐵, 𝑦𝐵 ↦ {𝑓 ∈ (𝑥𝐻𝑦) ∣ ∀𝑧𝐵 Fun (𝑔 ∈ (𝑧𝐻𝑥) ↦ (𝑓(⟨𝑧, 𝑥· 𝑦)𝑔))}))
30 df-mon 17791 . . . 4 Mono = (𝑐 ∈ Cat ↦ (Base‘𝑐) / 𝑏(Hom ‘𝑐) / (𝑥𝑏, 𝑦𝑏 ↦ {𝑓 ∈ (𝑥𝑦) ∣ ∀𝑧𝑏 Fun (𝑔 ∈ (𝑧𝑥) ↦ (𝑓(⟨𝑧, 𝑥⟩(comp‘𝑐)𝑦)𝑔))}))
315fvexi 6934 . . . . 5 𝐵 ∈ V
3231, 31mpoex 8120 . . . 4 (𝑥𝐵, 𝑦𝐵 ↦ {𝑓 ∈ (𝑥𝐻𝑦) ∣ ∀𝑧𝐵 Fun (𝑔 ∈ (𝑧𝐻𝑥) ↦ (𝑓(⟨𝑧, 𝑥· 𝑦)𝑔))}) ∈ V
3329, 30, 32fvmpt 7029 . . 3 (𝐶 ∈ Cat → (Mono‘𝐶) = (𝑥𝐵, 𝑦𝐵 ↦ {𝑓 ∈ (𝑥𝐻𝑦) ∣ ∀𝑧𝐵 Fun (𝑔 ∈ (𝑧𝐻𝑥) ↦ (𝑓(⟨𝑧, 𝑥· 𝑦)𝑔))}))
342, 33syl 17 . 2 (𝜑 → (Mono‘𝐶) = (𝑥𝐵, 𝑦𝐵 ↦ {𝑓 ∈ (𝑥𝐻𝑦) ∣ ∀𝑧𝐵 Fun (𝑔 ∈ (𝑧𝐻𝑥) ↦ (𝑓(⟨𝑧, 𝑥· 𝑦)𝑔))}))
351, 34eqtrid 2792 1 (𝜑𝑀 = (𝑥𝐵, 𝑦𝐵 ↦ {𝑓 ∈ (𝑥𝐻𝑦) ∣ ∀𝑧𝐵 Fun (𝑔 ∈ (𝑧𝐻𝑥) ↦ (𝑓(⟨𝑧, 𝑥· 𝑦)𝑔))}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  wral 3067  {crab 3443  Vcvv 3488  csb 3921  cop 4654  cmpt 5249  ccnv 5699  Fun wfun 6567  cfv 6573  (class class class)co 7448  cmpo 7450  Basecbs 17258  Hom chom 17322  compcco 17323  Catccat 17722  Monocmon 17789
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-1st 8030  df-2nd 8031  df-mon 17791
This theorem is referenced by:  ismon  17794  monpropd  17798
  Copyright terms: Public domain W3C validator