MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  monfval Structured version   Visualization version   GIF version

Theorem monfval 17675
Description: Definition of a monomorphism in a category. (Contributed by Mario Carneiro, 3-Jan-2017.)
Hypotheses
Ref Expression
ismon.b 𝐡 = (Baseβ€˜πΆ)
ismon.h 𝐻 = (Hom β€˜πΆ)
ismon.o Β· = (compβ€˜πΆ)
ismon.s 𝑀 = (Monoβ€˜πΆ)
ismon.c (πœ‘ β†’ 𝐢 ∈ Cat)
Assertion
Ref Expression
monfval (πœ‘ β†’ 𝑀 = (π‘₯ ∈ 𝐡, 𝑦 ∈ 𝐡 ↦ {𝑓 ∈ (π‘₯𝐻𝑦) ∣ βˆ€π‘§ ∈ 𝐡 Fun β—‘(𝑔 ∈ (𝑧𝐻π‘₯) ↦ (𝑓(βŸ¨π‘§, π‘₯⟩ Β· 𝑦)𝑔))}))
Distinct variable groups:   𝑓,𝑔,π‘₯,𝑦,𝑧,𝐡   πœ‘,𝑓,𝑔,π‘₯,𝑦,𝑧   𝐢,𝑓,𝑔,π‘₯,𝑦,𝑧   𝑓,𝐻,𝑔,π‘₯,𝑦,𝑧   Β· ,𝑓,𝑔,π‘₯,𝑦,𝑧   𝑓,𝑀
Allowed substitution hints:   𝑀(π‘₯,𝑦,𝑧,𝑔)

Proof of Theorem monfval
Dummy variables 𝑏 𝑐 β„Ž are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ismon.s . 2 𝑀 = (Monoβ€˜πΆ)
2 ismon.c . . 3 (πœ‘ β†’ 𝐢 ∈ Cat)
3 fvexd 6903 . . . . 5 (𝑐 = 𝐢 β†’ (Baseβ€˜π‘) ∈ V)
4 fveq2 6888 . . . . . 6 (𝑐 = 𝐢 β†’ (Baseβ€˜π‘) = (Baseβ€˜πΆ))
5 ismon.b . . . . . 6 𝐡 = (Baseβ€˜πΆ)
64, 5eqtr4di 2790 . . . . 5 (𝑐 = 𝐢 β†’ (Baseβ€˜π‘) = 𝐡)
7 fvexd 6903 . . . . . 6 ((𝑐 = 𝐢 ∧ 𝑏 = 𝐡) β†’ (Hom β€˜π‘) ∈ V)
8 simpl 483 . . . . . . . 8 ((𝑐 = 𝐢 ∧ 𝑏 = 𝐡) β†’ 𝑐 = 𝐢)
98fveq2d 6892 . . . . . . 7 ((𝑐 = 𝐢 ∧ 𝑏 = 𝐡) β†’ (Hom β€˜π‘) = (Hom β€˜πΆ))
10 ismon.h . . . . . . 7 𝐻 = (Hom β€˜πΆ)
119, 10eqtr4di 2790 . . . . . 6 ((𝑐 = 𝐢 ∧ 𝑏 = 𝐡) β†’ (Hom β€˜π‘) = 𝐻)
12 simplr 767 . . . . . . 7 (((𝑐 = 𝐢 ∧ 𝑏 = 𝐡) ∧ β„Ž = 𝐻) β†’ 𝑏 = 𝐡)
13 simpr 485 . . . . . . . . 9 (((𝑐 = 𝐢 ∧ 𝑏 = 𝐡) ∧ β„Ž = 𝐻) β†’ β„Ž = 𝐻)
1413oveqd 7422 . . . . . . . 8 (((𝑐 = 𝐢 ∧ 𝑏 = 𝐡) ∧ β„Ž = 𝐻) β†’ (π‘₯β„Žπ‘¦) = (π‘₯𝐻𝑦))
1513oveqd 7422 . . . . . . . . . . . 12 (((𝑐 = 𝐢 ∧ 𝑏 = 𝐡) ∧ β„Ž = 𝐻) β†’ (π‘§β„Žπ‘₯) = (𝑧𝐻π‘₯))
16 simpll 765 . . . . . . . . . . . . . . . 16 (((𝑐 = 𝐢 ∧ 𝑏 = 𝐡) ∧ β„Ž = 𝐻) β†’ 𝑐 = 𝐢)
1716fveq2d 6892 . . . . . . . . . . . . . . 15 (((𝑐 = 𝐢 ∧ 𝑏 = 𝐡) ∧ β„Ž = 𝐻) β†’ (compβ€˜π‘) = (compβ€˜πΆ))
18 ismon.o . . . . . . . . . . . . . . 15 Β· = (compβ€˜πΆ)
1917, 18eqtr4di 2790 . . . . . . . . . . . . . 14 (((𝑐 = 𝐢 ∧ 𝑏 = 𝐡) ∧ β„Ž = 𝐻) β†’ (compβ€˜π‘) = Β· )
2019oveqd 7422 . . . . . . . . . . . . 13 (((𝑐 = 𝐢 ∧ 𝑏 = 𝐡) ∧ β„Ž = 𝐻) β†’ (βŸ¨π‘§, π‘₯⟩(compβ€˜π‘)𝑦) = (βŸ¨π‘§, π‘₯⟩ Β· 𝑦))
2120oveqd 7422 . . . . . . . . . . . 12 (((𝑐 = 𝐢 ∧ 𝑏 = 𝐡) ∧ β„Ž = 𝐻) β†’ (𝑓(βŸ¨π‘§, π‘₯⟩(compβ€˜π‘)𝑦)𝑔) = (𝑓(βŸ¨π‘§, π‘₯⟩ Β· 𝑦)𝑔))
2215, 21mpteq12dv 5238 . . . . . . . . . . 11 (((𝑐 = 𝐢 ∧ 𝑏 = 𝐡) ∧ β„Ž = 𝐻) β†’ (𝑔 ∈ (π‘§β„Žπ‘₯) ↦ (𝑓(βŸ¨π‘§, π‘₯⟩(compβ€˜π‘)𝑦)𝑔)) = (𝑔 ∈ (𝑧𝐻π‘₯) ↦ (𝑓(βŸ¨π‘§, π‘₯⟩ Β· 𝑦)𝑔)))
2322cnveqd 5873 . . . . . . . . . 10 (((𝑐 = 𝐢 ∧ 𝑏 = 𝐡) ∧ β„Ž = 𝐻) β†’ β—‘(𝑔 ∈ (π‘§β„Žπ‘₯) ↦ (𝑓(βŸ¨π‘§, π‘₯⟩(compβ€˜π‘)𝑦)𝑔)) = β—‘(𝑔 ∈ (𝑧𝐻π‘₯) ↦ (𝑓(βŸ¨π‘§, π‘₯⟩ Β· 𝑦)𝑔)))
2423funeqd 6567 . . . . . . . . 9 (((𝑐 = 𝐢 ∧ 𝑏 = 𝐡) ∧ β„Ž = 𝐻) β†’ (Fun β—‘(𝑔 ∈ (π‘§β„Žπ‘₯) ↦ (𝑓(βŸ¨π‘§, π‘₯⟩(compβ€˜π‘)𝑦)𝑔)) ↔ Fun β—‘(𝑔 ∈ (𝑧𝐻π‘₯) ↦ (𝑓(βŸ¨π‘§, π‘₯⟩ Β· 𝑦)𝑔))))
2512, 24raleqbidv 3342 . . . . . . . 8 (((𝑐 = 𝐢 ∧ 𝑏 = 𝐡) ∧ β„Ž = 𝐻) β†’ (βˆ€π‘§ ∈ 𝑏 Fun β—‘(𝑔 ∈ (π‘§β„Žπ‘₯) ↦ (𝑓(βŸ¨π‘§, π‘₯⟩(compβ€˜π‘)𝑦)𝑔)) ↔ βˆ€π‘§ ∈ 𝐡 Fun β—‘(𝑔 ∈ (𝑧𝐻π‘₯) ↦ (𝑓(βŸ¨π‘§, π‘₯⟩ Β· 𝑦)𝑔))))
2614, 25rabeqbidv 3449 . . . . . . 7 (((𝑐 = 𝐢 ∧ 𝑏 = 𝐡) ∧ β„Ž = 𝐻) β†’ {𝑓 ∈ (π‘₯β„Žπ‘¦) ∣ βˆ€π‘§ ∈ 𝑏 Fun β—‘(𝑔 ∈ (π‘§β„Žπ‘₯) ↦ (𝑓(βŸ¨π‘§, π‘₯⟩(compβ€˜π‘)𝑦)𝑔))} = {𝑓 ∈ (π‘₯𝐻𝑦) ∣ βˆ€π‘§ ∈ 𝐡 Fun β—‘(𝑔 ∈ (𝑧𝐻π‘₯) ↦ (𝑓(βŸ¨π‘§, π‘₯⟩ Β· 𝑦)𝑔))})
2712, 12, 26mpoeq123dv 7480 . . . . . 6 (((𝑐 = 𝐢 ∧ 𝑏 = 𝐡) ∧ β„Ž = 𝐻) β†’ (π‘₯ ∈ 𝑏, 𝑦 ∈ 𝑏 ↦ {𝑓 ∈ (π‘₯β„Žπ‘¦) ∣ βˆ€π‘§ ∈ 𝑏 Fun β—‘(𝑔 ∈ (π‘§β„Žπ‘₯) ↦ (𝑓(βŸ¨π‘§, π‘₯⟩(compβ€˜π‘)𝑦)𝑔))}) = (π‘₯ ∈ 𝐡, 𝑦 ∈ 𝐡 ↦ {𝑓 ∈ (π‘₯𝐻𝑦) ∣ βˆ€π‘§ ∈ 𝐡 Fun β—‘(𝑔 ∈ (𝑧𝐻π‘₯) ↦ (𝑓(βŸ¨π‘§, π‘₯⟩ Β· 𝑦)𝑔))}))
287, 11, 27csbied2 3932 . . . . 5 ((𝑐 = 𝐢 ∧ 𝑏 = 𝐡) β†’ ⦋(Hom β€˜π‘) / β„Žβ¦Œ(π‘₯ ∈ 𝑏, 𝑦 ∈ 𝑏 ↦ {𝑓 ∈ (π‘₯β„Žπ‘¦) ∣ βˆ€π‘§ ∈ 𝑏 Fun β—‘(𝑔 ∈ (π‘§β„Žπ‘₯) ↦ (𝑓(βŸ¨π‘§, π‘₯⟩(compβ€˜π‘)𝑦)𝑔))}) = (π‘₯ ∈ 𝐡, 𝑦 ∈ 𝐡 ↦ {𝑓 ∈ (π‘₯𝐻𝑦) ∣ βˆ€π‘§ ∈ 𝐡 Fun β—‘(𝑔 ∈ (𝑧𝐻π‘₯) ↦ (𝑓(βŸ¨π‘§, π‘₯⟩ Β· 𝑦)𝑔))}))
293, 6, 28csbied2 3932 . . . 4 (𝑐 = 𝐢 β†’ ⦋(Baseβ€˜π‘) / π‘β¦Œβ¦‹(Hom β€˜π‘) / β„Žβ¦Œ(π‘₯ ∈ 𝑏, 𝑦 ∈ 𝑏 ↦ {𝑓 ∈ (π‘₯β„Žπ‘¦) ∣ βˆ€π‘§ ∈ 𝑏 Fun β—‘(𝑔 ∈ (π‘§β„Žπ‘₯) ↦ (𝑓(βŸ¨π‘§, π‘₯⟩(compβ€˜π‘)𝑦)𝑔))}) = (π‘₯ ∈ 𝐡, 𝑦 ∈ 𝐡 ↦ {𝑓 ∈ (π‘₯𝐻𝑦) ∣ βˆ€π‘§ ∈ 𝐡 Fun β—‘(𝑔 ∈ (𝑧𝐻π‘₯) ↦ (𝑓(βŸ¨π‘§, π‘₯⟩ Β· 𝑦)𝑔))}))
30 df-mon 17673 . . . 4 Mono = (𝑐 ∈ Cat ↦ ⦋(Baseβ€˜π‘) / π‘β¦Œβ¦‹(Hom β€˜π‘) / β„Žβ¦Œ(π‘₯ ∈ 𝑏, 𝑦 ∈ 𝑏 ↦ {𝑓 ∈ (π‘₯β„Žπ‘¦) ∣ βˆ€π‘§ ∈ 𝑏 Fun β—‘(𝑔 ∈ (π‘§β„Žπ‘₯) ↦ (𝑓(βŸ¨π‘§, π‘₯⟩(compβ€˜π‘)𝑦)𝑔))}))
315fvexi 6902 . . . . 5 𝐡 ∈ V
3231, 31mpoex 8062 . . . 4 (π‘₯ ∈ 𝐡, 𝑦 ∈ 𝐡 ↦ {𝑓 ∈ (π‘₯𝐻𝑦) ∣ βˆ€π‘§ ∈ 𝐡 Fun β—‘(𝑔 ∈ (𝑧𝐻π‘₯) ↦ (𝑓(βŸ¨π‘§, π‘₯⟩ Β· 𝑦)𝑔))}) ∈ V
3329, 30, 32fvmpt 6995 . . 3 (𝐢 ∈ Cat β†’ (Monoβ€˜πΆ) = (π‘₯ ∈ 𝐡, 𝑦 ∈ 𝐡 ↦ {𝑓 ∈ (π‘₯𝐻𝑦) ∣ βˆ€π‘§ ∈ 𝐡 Fun β—‘(𝑔 ∈ (𝑧𝐻π‘₯) ↦ (𝑓(βŸ¨π‘§, π‘₯⟩ Β· 𝑦)𝑔))}))
342, 33syl 17 . 2 (πœ‘ β†’ (Monoβ€˜πΆ) = (π‘₯ ∈ 𝐡, 𝑦 ∈ 𝐡 ↦ {𝑓 ∈ (π‘₯𝐻𝑦) ∣ βˆ€π‘§ ∈ 𝐡 Fun β—‘(𝑔 ∈ (𝑧𝐻π‘₯) ↦ (𝑓(βŸ¨π‘§, π‘₯⟩ Β· 𝑦)𝑔))}))
351, 34eqtrid 2784 1 (πœ‘ β†’ 𝑀 = (π‘₯ ∈ 𝐡, 𝑦 ∈ 𝐡 ↦ {𝑓 ∈ (π‘₯𝐻𝑦) ∣ βˆ€π‘§ ∈ 𝐡 Fun β—‘(𝑔 ∈ (𝑧𝐻π‘₯) ↦ (𝑓(βŸ¨π‘§, π‘₯⟩ Β· 𝑦)𝑔))}))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 396   = wceq 1541   ∈ wcel 2106  βˆ€wral 3061  {crab 3432  Vcvv 3474  β¦‹csb 3892  βŸ¨cop 4633   ↦ cmpt 5230  β—‘ccnv 5674  Fun wfun 6534  β€˜cfv 6540  (class class class)co 7405   ∈ cmpo 7407  Basecbs 17140  Hom chom 17204  compcco 17205  Catccat 17604  Monocmon 17671
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-ov 7408  df-oprab 7409  df-mpo 7410  df-1st 7971  df-2nd 7972  df-mon 17673
This theorem is referenced by:  ismon  17676  monpropd  17680
  Copyright terms: Public domain W3C validator