Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mpaaval Structured version   Visualization version   GIF version

Theorem mpaaval 40490
Description: Value of the minimal polynomial of an algebraic number. (Contributed by Stefan O'Rear, 25-Nov-2014.)
Assertion
Ref Expression
mpaaval (𝐴 ∈ 𝔸 → (minPolyAA‘𝐴) = (𝑝 ∈ (Poly‘ℚ)((deg‘𝑝) = (degAA𝐴) ∧ (𝑝𝐴) = 0 ∧ ((coeff‘𝑝)‘(degAA𝐴)) = 1)))
Distinct variable group:   𝐴,𝑝

Proof of Theorem mpaaval
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 fveq2 6658 . . . . 5 (𝑎 = 𝐴 → (degAA𝑎) = (degAA𝐴))
21eqeq2d 2769 . . . 4 (𝑎 = 𝐴 → ((deg‘𝑝) = (degAA𝑎) ↔ (deg‘𝑝) = (degAA𝐴)))
3 fveqeq2 6667 . . . 4 (𝑎 = 𝐴 → ((𝑝𝑎) = 0 ↔ (𝑝𝐴) = 0))
4 2fveq3 6663 . . . . 5 (𝑎 = 𝐴 → ((coeff‘𝑝)‘(degAA𝑎)) = ((coeff‘𝑝)‘(degAA𝐴)))
54eqeq1d 2760 . . . 4 (𝑎 = 𝐴 → (((coeff‘𝑝)‘(degAA𝑎)) = 1 ↔ ((coeff‘𝑝)‘(degAA𝐴)) = 1))
62, 3, 53anbi123d 1433 . . 3 (𝑎 = 𝐴 → (((deg‘𝑝) = (degAA𝑎) ∧ (𝑝𝑎) = 0 ∧ ((coeff‘𝑝)‘(degAA𝑎)) = 1) ↔ ((deg‘𝑝) = (degAA𝐴) ∧ (𝑝𝐴) = 0 ∧ ((coeff‘𝑝)‘(degAA𝐴)) = 1)))
76riotabidv 7110 . 2 (𝑎 = 𝐴 → (𝑝 ∈ (Poly‘ℚ)((deg‘𝑝) = (degAA𝑎) ∧ (𝑝𝑎) = 0 ∧ ((coeff‘𝑝)‘(degAA𝑎)) = 1)) = (𝑝 ∈ (Poly‘ℚ)((deg‘𝑝) = (degAA𝐴) ∧ (𝑝𝐴) = 0 ∧ ((coeff‘𝑝)‘(degAA𝐴)) = 1)))
8 df-mpaa 40482 . 2 minPolyAA = (𝑎 ∈ 𝔸 ↦ (𝑝 ∈ (Poly‘ℚ)((deg‘𝑝) = (degAA𝑎) ∧ (𝑝𝑎) = 0 ∧ ((coeff‘𝑝)‘(degAA𝑎)) = 1)))
9 riotaex 7112 . 2 (𝑝 ∈ (Poly‘ℚ)((deg‘𝑝) = (degAA𝐴) ∧ (𝑝𝐴) = 0 ∧ ((coeff‘𝑝)‘(degAA𝐴)) = 1)) ∈ V
107, 8, 9fvmpt 6759 1 (𝐴 ∈ 𝔸 → (minPolyAA‘𝐴) = (𝑝 ∈ (Poly‘ℚ)((deg‘𝑝) = (degAA𝐴) ∧ (𝑝𝐴) = 0 ∧ ((coeff‘𝑝)‘(degAA𝐴)) = 1)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1084   = wceq 1538  wcel 2111  cfv 6335  crio 7107  0cc0 10575  1c1 10576  cq 12388  Polycply 24880  coeffccoe 24882  degcdgr 24883  𝔸caa 25009  degAAcdgraa 40479  minPolyAAcmpaa 40480
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-sep 5169  ax-nul 5176  ax-pr 5298
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ral 3075  df-rex 3076  df-v 3411  df-sbc 3697  df-dif 3861  df-un 3863  df-in 3865  df-ss 3875  df-nul 4226  df-if 4421  df-sn 4523  df-pr 4525  df-op 4529  df-uni 4799  df-br 5033  df-opab 5095  df-mpt 5113  df-id 5430  df-xp 5530  df-rel 5531  df-cnv 5532  df-co 5533  df-dm 5534  df-iota 6294  df-fun 6337  df-fv 6343  df-riota 7108  df-mpaa 40482
This theorem is referenced by:  mpaalem  40491
  Copyright terms: Public domain W3C validator