Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mpaaval Structured version   Visualization version   GIF version

Theorem mpaaval 43268
Description: Value of the minimal polynomial of an algebraic number. (Contributed by Stefan O'Rear, 25-Nov-2014.)
Assertion
Ref Expression
mpaaval (𝐴 ∈ 𝔸 → (minPolyAA‘𝐴) = (𝑝 ∈ (Poly‘ℚ)((deg‘𝑝) = (degAA𝐴) ∧ (𝑝𝐴) = 0 ∧ ((coeff‘𝑝)‘(degAA𝐴)) = 1)))
Distinct variable group:   𝐴,𝑝

Proof of Theorem mpaaval
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 fveq2 6828 . . . . 5 (𝑎 = 𝐴 → (degAA𝑎) = (degAA𝐴))
21eqeq2d 2744 . . . 4 (𝑎 = 𝐴 → ((deg‘𝑝) = (degAA𝑎) ↔ (deg‘𝑝) = (degAA𝐴)))
3 fveqeq2 6837 . . . 4 (𝑎 = 𝐴 → ((𝑝𝑎) = 0 ↔ (𝑝𝐴) = 0))
4 2fveq3 6833 . . . . 5 (𝑎 = 𝐴 → ((coeff‘𝑝)‘(degAA𝑎)) = ((coeff‘𝑝)‘(degAA𝐴)))
54eqeq1d 2735 . . . 4 (𝑎 = 𝐴 → (((coeff‘𝑝)‘(degAA𝑎)) = 1 ↔ ((coeff‘𝑝)‘(degAA𝐴)) = 1))
62, 3, 53anbi123d 1438 . . 3 (𝑎 = 𝐴 → (((deg‘𝑝) = (degAA𝑎) ∧ (𝑝𝑎) = 0 ∧ ((coeff‘𝑝)‘(degAA𝑎)) = 1) ↔ ((deg‘𝑝) = (degAA𝐴) ∧ (𝑝𝐴) = 0 ∧ ((coeff‘𝑝)‘(degAA𝐴)) = 1)))
76riotabidv 7311 . 2 (𝑎 = 𝐴 → (𝑝 ∈ (Poly‘ℚ)((deg‘𝑝) = (degAA𝑎) ∧ (𝑝𝑎) = 0 ∧ ((coeff‘𝑝)‘(degAA𝑎)) = 1)) = (𝑝 ∈ (Poly‘ℚ)((deg‘𝑝) = (degAA𝐴) ∧ (𝑝𝐴) = 0 ∧ ((coeff‘𝑝)‘(degAA𝐴)) = 1)))
8 df-mpaa 43260 . 2 minPolyAA = (𝑎 ∈ 𝔸 ↦ (𝑝 ∈ (Poly‘ℚ)((deg‘𝑝) = (degAA𝑎) ∧ (𝑝𝑎) = 0 ∧ ((coeff‘𝑝)‘(degAA𝑎)) = 1)))
9 riotaex 7313 . 2 (𝑝 ∈ (Poly‘ℚ)((deg‘𝑝) = (degAA𝐴) ∧ (𝑝𝐴) = 0 ∧ ((coeff‘𝑝)‘(degAA𝐴)) = 1)) ∈ V
107, 8, 9fvmpt 6935 1 (𝐴 ∈ 𝔸 → (minPolyAA‘𝐴) = (𝑝 ∈ (Poly‘ℚ)((deg‘𝑝) = (degAA𝐴) ∧ (𝑝𝐴) = 0 ∧ ((coeff‘𝑝)‘(degAA𝐴)) = 1)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1541  wcel 2113  cfv 6486  crio 7308  0cc0 11013  1c1 11014  cq 12848  Polycply 26117  coeffccoe 26119  degcdgr 26120  𝔸caa 26250  degAAcdgraa 43257  minPolyAAcmpaa 43258
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pr 5372
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-ss 3915  df-nul 4283  df-if 4475  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-br 5094  df-opab 5156  df-mpt 5175  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-iota 6442  df-fun 6488  df-fv 6494  df-riota 7309  df-mpaa 43260
This theorem is referenced by:  mpaalem  43269
  Copyright terms: Public domain W3C validator