![]() |
Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > mpaaval | Structured version Visualization version GIF version |
Description: Value of the minimal polynomial of an algebraic number. (Contributed by Stefan O'Rear, 25-Nov-2014.) |
Ref | Expression |
---|---|
mpaaval | ⊢ (𝐴 ∈ 𝔸 → (minPolyAA‘𝐴) = (℩𝑝 ∈ (Poly‘ℚ)((deg‘𝑝) = (degAA‘𝐴) ∧ (𝑝‘𝐴) = 0 ∧ ((coeff‘𝑝)‘(degAA‘𝐴)) = 1))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6878 | . . . . 5 ⊢ (𝑎 = 𝐴 → (degAA‘𝑎) = (degAA‘𝐴)) | |
2 | 1 | eqeq2d 2742 | . . . 4 ⊢ (𝑎 = 𝐴 → ((deg‘𝑝) = (degAA‘𝑎) ↔ (deg‘𝑝) = (degAA‘𝐴))) |
3 | fveqeq2 6887 | . . . 4 ⊢ (𝑎 = 𝐴 → ((𝑝‘𝑎) = 0 ↔ (𝑝‘𝐴) = 0)) | |
4 | 2fveq3 6883 | . . . . 5 ⊢ (𝑎 = 𝐴 → ((coeff‘𝑝)‘(degAA‘𝑎)) = ((coeff‘𝑝)‘(degAA‘𝐴))) | |
5 | 4 | eqeq1d 2733 | . . . 4 ⊢ (𝑎 = 𝐴 → (((coeff‘𝑝)‘(degAA‘𝑎)) = 1 ↔ ((coeff‘𝑝)‘(degAA‘𝐴)) = 1)) |
6 | 2, 3, 5 | 3anbi123d 1436 | . . 3 ⊢ (𝑎 = 𝐴 → (((deg‘𝑝) = (degAA‘𝑎) ∧ (𝑝‘𝑎) = 0 ∧ ((coeff‘𝑝)‘(degAA‘𝑎)) = 1) ↔ ((deg‘𝑝) = (degAA‘𝐴) ∧ (𝑝‘𝐴) = 0 ∧ ((coeff‘𝑝)‘(degAA‘𝐴)) = 1))) |
7 | 6 | riotabidv 7351 | . 2 ⊢ (𝑎 = 𝐴 → (℩𝑝 ∈ (Poly‘ℚ)((deg‘𝑝) = (degAA‘𝑎) ∧ (𝑝‘𝑎) = 0 ∧ ((coeff‘𝑝)‘(degAA‘𝑎)) = 1)) = (℩𝑝 ∈ (Poly‘ℚ)((deg‘𝑝) = (degAA‘𝐴) ∧ (𝑝‘𝐴) = 0 ∧ ((coeff‘𝑝)‘(degAA‘𝐴)) = 1))) |
8 | df-mpaa 41656 | . 2 ⊢ minPolyAA = (𝑎 ∈ 𝔸 ↦ (℩𝑝 ∈ (Poly‘ℚ)((deg‘𝑝) = (degAA‘𝑎) ∧ (𝑝‘𝑎) = 0 ∧ ((coeff‘𝑝)‘(degAA‘𝑎)) = 1))) | |
9 | riotaex 7353 | . 2 ⊢ (℩𝑝 ∈ (Poly‘ℚ)((deg‘𝑝) = (degAA‘𝐴) ∧ (𝑝‘𝐴) = 0 ∧ ((coeff‘𝑝)‘(degAA‘𝐴)) = 1)) ∈ V | |
10 | 7, 8, 9 | fvmpt 6984 | 1 ⊢ (𝐴 ∈ 𝔸 → (minPolyAA‘𝐴) = (℩𝑝 ∈ (Poly‘ℚ)((deg‘𝑝) = (degAA‘𝐴) ∧ (𝑝‘𝐴) = 0 ∧ ((coeff‘𝑝)‘(degAA‘𝐴)) = 1))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1087 = wceq 1541 ∈ wcel 2106 ‘cfv 6532 ℩crio 7348 0cc0 11092 1c1 11093 ℚcq 12914 Polycply 25627 coeffccoe 25629 degcdgr 25630 𝔸caa 25756 degAAcdgraa 41653 minPolyAAcmpaa 41654 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2702 ax-sep 5292 ax-nul 5299 ax-pr 5420 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-rab 3432 df-v 3475 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4319 df-if 4523 df-sn 4623 df-pr 4625 df-op 4629 df-uni 4902 df-br 5142 df-opab 5204 df-mpt 5225 df-id 5567 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-iota 6484 df-fun 6534 df-fv 6540 df-riota 7349 df-mpaa 41656 |
This theorem is referenced by: mpaalem 41665 |
Copyright terms: Public domain | W3C validator |