Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mpaaval Structured version   Visualization version   GIF version

Theorem mpaaval 41521
Description: Value of the minimal polynomial of an algebraic number. (Contributed by Stefan O'Rear, 25-Nov-2014.)
Assertion
Ref Expression
mpaaval (𝐴 ∈ 𝔸 β†’ (minPolyAAβ€˜π΄) = (℩𝑝 ∈ (Polyβ€˜β„š)((degβ€˜π‘) = (degAAβ€˜π΄) ∧ (π‘β€˜π΄) = 0 ∧ ((coeffβ€˜π‘)β€˜(degAAβ€˜π΄)) = 1)))
Distinct variable group:   𝐴,𝑝

Proof of Theorem mpaaval
Dummy variable π‘Ž is distinct from all other variables.
StepHypRef Expression
1 fveq2 6843 . . . . 5 (π‘Ž = 𝐴 β†’ (degAAβ€˜π‘Ž) = (degAAβ€˜π΄))
21eqeq2d 2744 . . . 4 (π‘Ž = 𝐴 β†’ ((degβ€˜π‘) = (degAAβ€˜π‘Ž) ↔ (degβ€˜π‘) = (degAAβ€˜π΄)))
3 fveqeq2 6852 . . . 4 (π‘Ž = 𝐴 β†’ ((π‘β€˜π‘Ž) = 0 ↔ (π‘β€˜π΄) = 0))
4 2fveq3 6848 . . . . 5 (π‘Ž = 𝐴 β†’ ((coeffβ€˜π‘)β€˜(degAAβ€˜π‘Ž)) = ((coeffβ€˜π‘)β€˜(degAAβ€˜π΄)))
54eqeq1d 2735 . . . 4 (π‘Ž = 𝐴 β†’ (((coeffβ€˜π‘)β€˜(degAAβ€˜π‘Ž)) = 1 ↔ ((coeffβ€˜π‘)β€˜(degAAβ€˜π΄)) = 1))
62, 3, 53anbi123d 1437 . . 3 (π‘Ž = 𝐴 β†’ (((degβ€˜π‘) = (degAAβ€˜π‘Ž) ∧ (π‘β€˜π‘Ž) = 0 ∧ ((coeffβ€˜π‘)β€˜(degAAβ€˜π‘Ž)) = 1) ↔ ((degβ€˜π‘) = (degAAβ€˜π΄) ∧ (π‘β€˜π΄) = 0 ∧ ((coeffβ€˜π‘)β€˜(degAAβ€˜π΄)) = 1)))
76riotabidv 7316 . 2 (π‘Ž = 𝐴 β†’ (℩𝑝 ∈ (Polyβ€˜β„š)((degβ€˜π‘) = (degAAβ€˜π‘Ž) ∧ (π‘β€˜π‘Ž) = 0 ∧ ((coeffβ€˜π‘)β€˜(degAAβ€˜π‘Ž)) = 1)) = (℩𝑝 ∈ (Polyβ€˜β„š)((degβ€˜π‘) = (degAAβ€˜π΄) ∧ (π‘β€˜π΄) = 0 ∧ ((coeffβ€˜π‘)β€˜(degAAβ€˜π΄)) = 1)))
8 df-mpaa 41513 . 2 minPolyAA = (π‘Ž ∈ 𝔸 ↦ (℩𝑝 ∈ (Polyβ€˜β„š)((degβ€˜π‘) = (degAAβ€˜π‘Ž) ∧ (π‘β€˜π‘Ž) = 0 ∧ ((coeffβ€˜π‘)β€˜(degAAβ€˜π‘Ž)) = 1)))
9 riotaex 7318 . 2 (℩𝑝 ∈ (Polyβ€˜β„š)((degβ€˜π‘) = (degAAβ€˜π΄) ∧ (π‘β€˜π΄) = 0 ∧ ((coeffβ€˜π‘)β€˜(degAAβ€˜π΄)) = 1)) ∈ V
107, 8, 9fvmpt 6949 1 (𝐴 ∈ 𝔸 β†’ (minPolyAAβ€˜π΄) = (℩𝑝 ∈ (Polyβ€˜β„š)((degβ€˜π‘) = (degAAβ€˜π΄) ∧ (π‘β€˜π΄) = 0 ∧ ((coeffβ€˜π‘)β€˜(degAAβ€˜π΄)) = 1)))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ w3a 1088   = wceq 1542   ∈ wcel 2107  β€˜cfv 6497  β„©crio 7313  0cc0 11056  1c1 11057  β„šcq 12878  Polycply 25561  coeffccoe 25563  degcdgr 25564  π”Έcaa 25690  degAAcdgraa 41510  minPolyAAcmpaa 41511
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5257  ax-nul 5264  ax-pr 5385
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3407  df-v 3446  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4284  df-if 4488  df-sn 4588  df-pr 4590  df-op 4594  df-uni 4867  df-br 5107  df-opab 5169  df-mpt 5190  df-id 5532  df-xp 5640  df-rel 5641  df-cnv 5642  df-co 5643  df-dm 5644  df-iota 6449  df-fun 6499  df-fv 6505  df-riota 7314  df-mpaa 41513
This theorem is referenced by:  mpaalem  41522
  Copyright terms: Public domain W3C validator