|   | Mathbox for Stefan O'Rear | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > mpaaval | Structured version Visualization version GIF version | ||
| Description: Value of the minimal polynomial of an algebraic number. (Contributed by Stefan O'Rear, 25-Nov-2014.) | 
| Ref | Expression | 
|---|---|
| mpaaval | ⊢ (𝐴 ∈ 𝔸 → (minPolyAA‘𝐴) = (℩𝑝 ∈ (Poly‘ℚ)((deg‘𝑝) = (degAA‘𝐴) ∧ (𝑝‘𝐴) = 0 ∧ ((coeff‘𝑝)‘(degAA‘𝐴)) = 1))) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | fveq2 6906 | . . . . 5 ⊢ (𝑎 = 𝐴 → (degAA‘𝑎) = (degAA‘𝐴)) | |
| 2 | 1 | eqeq2d 2748 | . . . 4 ⊢ (𝑎 = 𝐴 → ((deg‘𝑝) = (degAA‘𝑎) ↔ (deg‘𝑝) = (degAA‘𝐴))) | 
| 3 | fveqeq2 6915 | . . . 4 ⊢ (𝑎 = 𝐴 → ((𝑝‘𝑎) = 0 ↔ (𝑝‘𝐴) = 0)) | |
| 4 | 2fveq3 6911 | . . . . 5 ⊢ (𝑎 = 𝐴 → ((coeff‘𝑝)‘(degAA‘𝑎)) = ((coeff‘𝑝)‘(degAA‘𝐴))) | |
| 5 | 4 | eqeq1d 2739 | . . . 4 ⊢ (𝑎 = 𝐴 → (((coeff‘𝑝)‘(degAA‘𝑎)) = 1 ↔ ((coeff‘𝑝)‘(degAA‘𝐴)) = 1)) | 
| 6 | 2, 3, 5 | 3anbi123d 1438 | . . 3 ⊢ (𝑎 = 𝐴 → (((deg‘𝑝) = (degAA‘𝑎) ∧ (𝑝‘𝑎) = 0 ∧ ((coeff‘𝑝)‘(degAA‘𝑎)) = 1) ↔ ((deg‘𝑝) = (degAA‘𝐴) ∧ (𝑝‘𝐴) = 0 ∧ ((coeff‘𝑝)‘(degAA‘𝐴)) = 1))) | 
| 7 | 6 | riotabidv 7390 | . 2 ⊢ (𝑎 = 𝐴 → (℩𝑝 ∈ (Poly‘ℚ)((deg‘𝑝) = (degAA‘𝑎) ∧ (𝑝‘𝑎) = 0 ∧ ((coeff‘𝑝)‘(degAA‘𝑎)) = 1)) = (℩𝑝 ∈ (Poly‘ℚ)((deg‘𝑝) = (degAA‘𝐴) ∧ (𝑝‘𝐴) = 0 ∧ ((coeff‘𝑝)‘(degAA‘𝐴)) = 1))) | 
| 8 | df-mpaa 43155 | . 2 ⊢ minPolyAA = (𝑎 ∈ 𝔸 ↦ (℩𝑝 ∈ (Poly‘ℚ)((deg‘𝑝) = (degAA‘𝑎) ∧ (𝑝‘𝑎) = 0 ∧ ((coeff‘𝑝)‘(degAA‘𝑎)) = 1))) | |
| 9 | riotaex 7392 | . 2 ⊢ (℩𝑝 ∈ (Poly‘ℚ)((deg‘𝑝) = (degAA‘𝐴) ∧ (𝑝‘𝐴) = 0 ∧ ((coeff‘𝑝)‘(degAA‘𝐴)) = 1)) ∈ V | |
| 10 | 7, 8, 9 | fvmpt 7016 | 1 ⊢ (𝐴 ∈ 𝔸 → (minPolyAA‘𝐴) = (℩𝑝 ∈ (Poly‘ℚ)((deg‘𝑝) = (degAA‘𝐴) ∧ (𝑝‘𝐴) = 0 ∧ ((coeff‘𝑝)‘(degAA‘𝐴)) = 1))) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∧ w3a 1087 = wceq 1540 ∈ wcel 2108 ‘cfv 6561 ℩crio 7387 0cc0 11155 1c1 11156 ℚcq 12990 Polycply 26223 coeffccoe 26225 degcdgr 26226 𝔸caa 26356 degAAcdgraa 43152 minPolyAAcmpaa 43153 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pr 5432 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3482 df-dif 3954 df-un 3956 df-ss 3968 df-nul 4334 df-if 4526 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-br 5144 df-opab 5206 df-mpt 5226 df-id 5578 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-iota 6514 df-fun 6563 df-fv 6569 df-riota 7388 df-mpaa 43155 | 
| This theorem is referenced by: mpaalem 43164 | 
| Copyright terms: Public domain | W3C validator |