Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > mpaaval | Structured version Visualization version GIF version |
Description: Value of the minimal polynomial of an algebraic number. (Contributed by Stefan O'Rear, 25-Nov-2014.) |
Ref | Expression |
---|---|
mpaaval | ⊢ (𝐴 ∈ 𝔸 → (minPolyAA‘𝐴) = (℩𝑝 ∈ (Poly‘ℚ)((deg‘𝑝) = (degAA‘𝐴) ∧ (𝑝‘𝐴) = 0 ∧ ((coeff‘𝑝)‘(degAA‘𝐴)) = 1))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6658 | . . . . 5 ⊢ (𝑎 = 𝐴 → (degAA‘𝑎) = (degAA‘𝐴)) | |
2 | 1 | eqeq2d 2769 | . . . 4 ⊢ (𝑎 = 𝐴 → ((deg‘𝑝) = (degAA‘𝑎) ↔ (deg‘𝑝) = (degAA‘𝐴))) |
3 | fveqeq2 6667 | . . . 4 ⊢ (𝑎 = 𝐴 → ((𝑝‘𝑎) = 0 ↔ (𝑝‘𝐴) = 0)) | |
4 | 2fveq3 6663 | . . . . 5 ⊢ (𝑎 = 𝐴 → ((coeff‘𝑝)‘(degAA‘𝑎)) = ((coeff‘𝑝)‘(degAA‘𝐴))) | |
5 | 4 | eqeq1d 2760 | . . . 4 ⊢ (𝑎 = 𝐴 → (((coeff‘𝑝)‘(degAA‘𝑎)) = 1 ↔ ((coeff‘𝑝)‘(degAA‘𝐴)) = 1)) |
6 | 2, 3, 5 | 3anbi123d 1433 | . . 3 ⊢ (𝑎 = 𝐴 → (((deg‘𝑝) = (degAA‘𝑎) ∧ (𝑝‘𝑎) = 0 ∧ ((coeff‘𝑝)‘(degAA‘𝑎)) = 1) ↔ ((deg‘𝑝) = (degAA‘𝐴) ∧ (𝑝‘𝐴) = 0 ∧ ((coeff‘𝑝)‘(degAA‘𝐴)) = 1))) |
7 | 6 | riotabidv 7110 | . 2 ⊢ (𝑎 = 𝐴 → (℩𝑝 ∈ (Poly‘ℚ)((deg‘𝑝) = (degAA‘𝑎) ∧ (𝑝‘𝑎) = 0 ∧ ((coeff‘𝑝)‘(degAA‘𝑎)) = 1)) = (℩𝑝 ∈ (Poly‘ℚ)((deg‘𝑝) = (degAA‘𝐴) ∧ (𝑝‘𝐴) = 0 ∧ ((coeff‘𝑝)‘(degAA‘𝐴)) = 1))) |
8 | df-mpaa 40482 | . 2 ⊢ minPolyAA = (𝑎 ∈ 𝔸 ↦ (℩𝑝 ∈ (Poly‘ℚ)((deg‘𝑝) = (degAA‘𝑎) ∧ (𝑝‘𝑎) = 0 ∧ ((coeff‘𝑝)‘(degAA‘𝑎)) = 1))) | |
9 | riotaex 7112 | . 2 ⊢ (℩𝑝 ∈ (Poly‘ℚ)((deg‘𝑝) = (degAA‘𝐴) ∧ (𝑝‘𝐴) = 0 ∧ ((coeff‘𝑝)‘(degAA‘𝐴)) = 1)) ∈ V | |
10 | 7, 8, 9 | fvmpt 6759 | 1 ⊢ (𝐴 ∈ 𝔸 → (minPolyAA‘𝐴) = (℩𝑝 ∈ (Poly‘ℚ)((deg‘𝑝) = (degAA‘𝐴) ∧ (𝑝‘𝐴) = 0 ∧ ((coeff‘𝑝)‘(degAA‘𝐴)) = 1))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1084 = wceq 1538 ∈ wcel 2111 ‘cfv 6335 ℩crio 7107 0cc0 10575 1c1 10576 ℚcq 12388 Polycply 24880 coeffccoe 24882 degcdgr 24883 𝔸caa 25009 degAAcdgraa 40479 minPolyAAcmpaa 40480 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-sep 5169 ax-nul 5176 ax-pr 5298 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ral 3075 df-rex 3076 df-v 3411 df-sbc 3697 df-dif 3861 df-un 3863 df-in 3865 df-ss 3875 df-nul 4226 df-if 4421 df-sn 4523 df-pr 4525 df-op 4529 df-uni 4799 df-br 5033 df-opab 5095 df-mpt 5113 df-id 5430 df-xp 5530 df-rel 5531 df-cnv 5532 df-co 5533 df-dm 5534 df-iota 6294 df-fun 6337 df-fv 6343 df-riota 7108 df-mpaa 40482 |
This theorem is referenced by: mpaalem 40491 |
Copyright terms: Public domain | W3C validator |