![]() |
Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > mpaaval | Structured version Visualization version GIF version |
Description: Value of the minimal polynomial of an algebraic number. (Contributed by Stefan O'Rear, 25-Nov-2014.) |
Ref | Expression |
---|---|
mpaaval | β’ (π΄ β πΈ β (minPolyAAβπ΄) = (β©π β (Polyββ)((degβπ) = (degAAβπ΄) β§ (πβπ΄) = 0 β§ ((coeffβπ)β(degAAβπ΄)) = 1))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6884 | . . . . 5 β’ (π = π΄ β (degAAβπ) = (degAAβπ΄)) | |
2 | 1 | eqeq2d 2737 | . . . 4 β’ (π = π΄ β ((degβπ) = (degAAβπ) β (degβπ) = (degAAβπ΄))) |
3 | fveqeq2 6893 | . . . 4 β’ (π = π΄ β ((πβπ) = 0 β (πβπ΄) = 0)) | |
4 | 2fveq3 6889 | . . . . 5 β’ (π = π΄ β ((coeffβπ)β(degAAβπ)) = ((coeffβπ)β(degAAβπ΄))) | |
5 | 4 | eqeq1d 2728 | . . . 4 β’ (π = π΄ β (((coeffβπ)β(degAAβπ)) = 1 β ((coeffβπ)β(degAAβπ΄)) = 1)) |
6 | 2, 3, 5 | 3anbi123d 1432 | . . 3 β’ (π = π΄ β (((degβπ) = (degAAβπ) β§ (πβπ) = 0 β§ ((coeffβπ)β(degAAβπ)) = 1) β ((degβπ) = (degAAβπ΄) β§ (πβπ΄) = 0 β§ ((coeffβπ)β(degAAβπ΄)) = 1))) |
7 | 6 | riotabidv 7362 | . 2 β’ (π = π΄ β (β©π β (Polyββ)((degβπ) = (degAAβπ) β§ (πβπ) = 0 β§ ((coeffβπ)β(degAAβπ)) = 1)) = (β©π β (Polyββ)((degβπ) = (degAAβπ΄) β§ (πβπ΄) = 0 β§ ((coeffβπ)β(degAAβπ΄)) = 1))) |
8 | df-mpaa 42445 | . 2 β’ minPolyAA = (π β πΈ β¦ (β©π β (Polyββ)((degβπ) = (degAAβπ) β§ (πβπ) = 0 β§ ((coeffβπ)β(degAAβπ)) = 1))) | |
9 | riotaex 7364 | . 2 β’ (β©π β (Polyββ)((degβπ) = (degAAβπ΄) β§ (πβπ΄) = 0 β§ ((coeffβπ)β(degAAβπ΄)) = 1)) β V | |
10 | 7, 8, 9 | fvmpt 6991 | 1 β’ (π΄ β πΈ β (minPolyAAβπ΄) = (β©π β (Polyββ)((degβπ) = (degAAβπ΄) β§ (πβπ΄) = 0 β§ ((coeffβπ)β(degAAβπ΄)) = 1))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ w3a 1084 = wceq 1533 β wcel 2098 βcfv 6536 β©crio 7359 0cc0 11109 1c1 11110 βcq 12933 Polycply 26068 coeffccoe 26070 degcdgr 26071 πΈcaa 26199 degAAcdgraa 42442 minPolyAAcmpaa 42443 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-sep 5292 ax-nul 5299 ax-pr 5420 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-ral 3056 df-rex 3065 df-rab 3427 df-v 3470 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-nul 4318 df-if 4524 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-br 5142 df-opab 5204 df-mpt 5225 df-id 5567 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-iota 6488 df-fun 6538 df-fv 6544 df-riota 7360 df-mpaa 42445 |
This theorem is referenced by: mpaalem 42454 |
Copyright terms: Public domain | W3C validator |