Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mpaaval Structured version   Visualization version   GIF version

Theorem mpaaval 42847
Description: Value of the minimal polynomial of an algebraic number. (Contributed by Stefan O'Rear, 25-Nov-2014.)
Assertion
Ref Expression
mpaaval (𝐴 ∈ 𝔸 → (minPolyAA‘𝐴) = (𝑝 ∈ (Poly‘ℚ)((deg‘𝑝) = (degAA𝐴) ∧ (𝑝𝐴) = 0 ∧ ((coeff‘𝑝)‘(degAA𝐴)) = 1)))
Distinct variable group:   𝐴,𝑝

Proof of Theorem mpaaval
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 fveq2 6891 . . . . 5 (𝑎 = 𝐴 → (degAA𝑎) = (degAA𝐴))
21eqeq2d 2737 . . . 4 (𝑎 = 𝐴 → ((deg‘𝑝) = (degAA𝑎) ↔ (deg‘𝑝) = (degAA𝐴)))
3 fveqeq2 6900 . . . 4 (𝑎 = 𝐴 → ((𝑝𝑎) = 0 ↔ (𝑝𝐴) = 0))
4 2fveq3 6896 . . . . 5 (𝑎 = 𝐴 → ((coeff‘𝑝)‘(degAA𝑎)) = ((coeff‘𝑝)‘(degAA𝐴)))
54eqeq1d 2728 . . . 4 (𝑎 = 𝐴 → (((coeff‘𝑝)‘(degAA𝑎)) = 1 ↔ ((coeff‘𝑝)‘(degAA𝐴)) = 1))
62, 3, 53anbi123d 1433 . . 3 (𝑎 = 𝐴 → (((deg‘𝑝) = (degAA𝑎) ∧ (𝑝𝑎) = 0 ∧ ((coeff‘𝑝)‘(degAA𝑎)) = 1) ↔ ((deg‘𝑝) = (degAA𝐴) ∧ (𝑝𝐴) = 0 ∧ ((coeff‘𝑝)‘(degAA𝐴)) = 1)))
76riotabidv 7372 . 2 (𝑎 = 𝐴 → (𝑝 ∈ (Poly‘ℚ)((deg‘𝑝) = (degAA𝑎) ∧ (𝑝𝑎) = 0 ∧ ((coeff‘𝑝)‘(degAA𝑎)) = 1)) = (𝑝 ∈ (Poly‘ℚ)((deg‘𝑝) = (degAA𝐴) ∧ (𝑝𝐴) = 0 ∧ ((coeff‘𝑝)‘(degAA𝐴)) = 1)))
8 df-mpaa 42839 . 2 minPolyAA = (𝑎 ∈ 𝔸 ↦ (𝑝 ∈ (Poly‘ℚ)((deg‘𝑝) = (degAA𝑎) ∧ (𝑝𝑎) = 0 ∧ ((coeff‘𝑝)‘(degAA𝑎)) = 1)))
9 riotaex 7374 . 2 (𝑝 ∈ (Poly‘ℚ)((deg‘𝑝) = (degAA𝐴) ∧ (𝑝𝐴) = 0 ∧ ((coeff‘𝑝)‘(degAA𝐴)) = 1)) ∈ V
107, 8, 9fvmpt 6999 1 (𝐴 ∈ 𝔸 → (minPolyAA‘𝐴) = (𝑝 ∈ (Poly‘ℚ)((deg‘𝑝) = (degAA𝐴) ∧ (𝑝𝐴) = 0 ∧ ((coeff‘𝑝)‘(degAA𝐴)) = 1)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1084   = wceq 1534  wcel 2099  cfv 6544  crio 7369  0cc0 11147  1c1 11148  cq 12976  Polycply 26206  coeffccoe 26208  degcdgr 26209  𝔸caa 26337  degAAcdgraa 42836  minPolyAAcmpaa 42837
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-sep 5295  ax-nul 5302  ax-pr 5424
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-ral 3052  df-rex 3061  df-rab 3421  df-v 3465  df-dif 3950  df-un 3952  df-ss 3964  df-nul 4324  df-if 4525  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4907  df-br 5145  df-opab 5207  df-mpt 5228  df-id 5571  df-xp 5679  df-rel 5680  df-cnv 5681  df-co 5682  df-dm 5683  df-iota 6496  df-fun 6546  df-fv 6552  df-riota 7370  df-mpaa 42839
This theorem is referenced by:  mpaalem  42848
  Copyright terms: Public domain W3C validator