![]() |
Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > mpaaval | Structured version Visualization version GIF version |
Description: Value of the minimal polynomial of an algebraic number. (Contributed by Stefan O'Rear, 25-Nov-2014.) |
Ref | Expression |
---|---|
mpaaval | ⊢ (𝐴 ∈ 𝔸 → (minPolyAA‘𝐴) = (℩𝑝 ∈ (Poly‘ℚ)((deg‘𝑝) = (degAA‘𝐴) ∧ (𝑝‘𝐴) = 0 ∧ ((coeff‘𝑝)‘(degAA‘𝐴)) = 1))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6920 | . . . . 5 ⊢ (𝑎 = 𝐴 → (degAA‘𝑎) = (degAA‘𝐴)) | |
2 | 1 | eqeq2d 2751 | . . . 4 ⊢ (𝑎 = 𝐴 → ((deg‘𝑝) = (degAA‘𝑎) ↔ (deg‘𝑝) = (degAA‘𝐴))) |
3 | fveqeq2 6929 | . . . 4 ⊢ (𝑎 = 𝐴 → ((𝑝‘𝑎) = 0 ↔ (𝑝‘𝐴) = 0)) | |
4 | 2fveq3 6925 | . . . . 5 ⊢ (𝑎 = 𝐴 → ((coeff‘𝑝)‘(degAA‘𝑎)) = ((coeff‘𝑝)‘(degAA‘𝐴))) | |
5 | 4 | eqeq1d 2742 | . . . 4 ⊢ (𝑎 = 𝐴 → (((coeff‘𝑝)‘(degAA‘𝑎)) = 1 ↔ ((coeff‘𝑝)‘(degAA‘𝐴)) = 1)) |
6 | 2, 3, 5 | 3anbi123d 1436 | . . 3 ⊢ (𝑎 = 𝐴 → (((deg‘𝑝) = (degAA‘𝑎) ∧ (𝑝‘𝑎) = 0 ∧ ((coeff‘𝑝)‘(degAA‘𝑎)) = 1) ↔ ((deg‘𝑝) = (degAA‘𝐴) ∧ (𝑝‘𝐴) = 0 ∧ ((coeff‘𝑝)‘(degAA‘𝐴)) = 1))) |
7 | 6 | riotabidv 7406 | . 2 ⊢ (𝑎 = 𝐴 → (℩𝑝 ∈ (Poly‘ℚ)((deg‘𝑝) = (degAA‘𝑎) ∧ (𝑝‘𝑎) = 0 ∧ ((coeff‘𝑝)‘(degAA‘𝑎)) = 1)) = (℩𝑝 ∈ (Poly‘ℚ)((deg‘𝑝) = (degAA‘𝐴) ∧ (𝑝‘𝐴) = 0 ∧ ((coeff‘𝑝)‘(degAA‘𝐴)) = 1))) |
8 | df-mpaa 43100 | . 2 ⊢ minPolyAA = (𝑎 ∈ 𝔸 ↦ (℩𝑝 ∈ (Poly‘ℚ)((deg‘𝑝) = (degAA‘𝑎) ∧ (𝑝‘𝑎) = 0 ∧ ((coeff‘𝑝)‘(degAA‘𝑎)) = 1))) | |
9 | riotaex 7408 | . 2 ⊢ (℩𝑝 ∈ (Poly‘ℚ)((deg‘𝑝) = (degAA‘𝐴) ∧ (𝑝‘𝐴) = 0 ∧ ((coeff‘𝑝)‘(degAA‘𝐴)) = 1)) ∈ V | |
10 | 7, 8, 9 | fvmpt 7029 | 1 ⊢ (𝐴 ∈ 𝔸 → (minPolyAA‘𝐴) = (℩𝑝 ∈ (Poly‘ℚ)((deg‘𝑝) = (degAA‘𝐴) ∧ (𝑝‘𝐴) = 0 ∧ ((coeff‘𝑝)‘(degAA‘𝐴)) = 1))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 ‘cfv 6573 ℩crio 7403 0cc0 11184 1c1 11185 ℚcq 13013 Polycply 26243 coeffccoe 26245 degcdgr 26246 𝔸caa 26374 degAAcdgraa 43097 minPolyAAcmpaa 43098 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-iota 6525 df-fun 6575 df-fv 6581 df-riota 7404 df-mpaa 43100 |
This theorem is referenced by: mpaalem 43109 |
Copyright terms: Public domain | W3C validator |