Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mpaaval Structured version   Visualization version   GIF version

Theorem mpaaval 43147
Description: Value of the minimal polynomial of an algebraic number. (Contributed by Stefan O'Rear, 25-Nov-2014.)
Assertion
Ref Expression
mpaaval (𝐴 ∈ 𝔸 → (minPolyAA‘𝐴) = (𝑝 ∈ (Poly‘ℚ)((deg‘𝑝) = (degAA𝐴) ∧ (𝑝𝐴) = 0 ∧ ((coeff‘𝑝)‘(degAA𝐴)) = 1)))
Distinct variable group:   𝐴,𝑝

Proof of Theorem mpaaval
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 fveq2 6861 . . . . 5 (𝑎 = 𝐴 → (degAA𝑎) = (degAA𝐴))
21eqeq2d 2741 . . . 4 (𝑎 = 𝐴 → ((deg‘𝑝) = (degAA𝑎) ↔ (deg‘𝑝) = (degAA𝐴)))
3 fveqeq2 6870 . . . 4 (𝑎 = 𝐴 → ((𝑝𝑎) = 0 ↔ (𝑝𝐴) = 0))
4 2fveq3 6866 . . . . 5 (𝑎 = 𝐴 → ((coeff‘𝑝)‘(degAA𝑎)) = ((coeff‘𝑝)‘(degAA𝐴)))
54eqeq1d 2732 . . . 4 (𝑎 = 𝐴 → (((coeff‘𝑝)‘(degAA𝑎)) = 1 ↔ ((coeff‘𝑝)‘(degAA𝐴)) = 1))
62, 3, 53anbi123d 1438 . . 3 (𝑎 = 𝐴 → (((deg‘𝑝) = (degAA𝑎) ∧ (𝑝𝑎) = 0 ∧ ((coeff‘𝑝)‘(degAA𝑎)) = 1) ↔ ((deg‘𝑝) = (degAA𝐴) ∧ (𝑝𝐴) = 0 ∧ ((coeff‘𝑝)‘(degAA𝐴)) = 1)))
76riotabidv 7349 . 2 (𝑎 = 𝐴 → (𝑝 ∈ (Poly‘ℚ)((deg‘𝑝) = (degAA𝑎) ∧ (𝑝𝑎) = 0 ∧ ((coeff‘𝑝)‘(degAA𝑎)) = 1)) = (𝑝 ∈ (Poly‘ℚ)((deg‘𝑝) = (degAA𝐴) ∧ (𝑝𝐴) = 0 ∧ ((coeff‘𝑝)‘(degAA𝐴)) = 1)))
8 df-mpaa 43139 . 2 minPolyAA = (𝑎 ∈ 𝔸 ↦ (𝑝 ∈ (Poly‘ℚ)((deg‘𝑝) = (degAA𝑎) ∧ (𝑝𝑎) = 0 ∧ ((coeff‘𝑝)‘(degAA𝑎)) = 1)))
9 riotaex 7351 . 2 (𝑝 ∈ (Poly‘ℚ)((deg‘𝑝) = (degAA𝐴) ∧ (𝑝𝐴) = 0 ∧ ((coeff‘𝑝)‘(degAA𝐴)) = 1)) ∈ V
107, 8, 9fvmpt 6971 1 (𝐴 ∈ 𝔸 → (minPolyAA‘𝐴) = (𝑝 ∈ (Poly‘ℚ)((deg‘𝑝) = (degAA𝐴) ∧ (𝑝𝐴) = 0 ∧ ((coeff‘𝑝)‘(degAA𝐴)) = 1)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1540  wcel 2109  cfv 6514  crio 7346  0cc0 11075  1c1 11076  cq 12914  Polycply 26096  coeffccoe 26098  degcdgr 26099  𝔸caa 26229  degAAcdgraa 43136  minPolyAAcmpaa 43137
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-iota 6467  df-fun 6516  df-fv 6522  df-riota 7347  df-mpaa 43139
This theorem is referenced by:  mpaalem  43148
  Copyright terms: Public domain W3C validator