Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mpaaval Structured version   Visualization version   GIF version

Theorem mpaaval 43140
Description: Value of the minimal polynomial of an algebraic number. (Contributed by Stefan O'Rear, 25-Nov-2014.)
Assertion
Ref Expression
mpaaval (𝐴 ∈ 𝔸 → (minPolyAA‘𝐴) = (𝑝 ∈ (Poly‘ℚ)((deg‘𝑝) = (degAA𝐴) ∧ (𝑝𝐴) = 0 ∧ ((coeff‘𝑝)‘(degAA𝐴)) = 1)))
Distinct variable group:   𝐴,𝑝

Proof of Theorem mpaaval
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 fveq2 6858 . . . . 5 (𝑎 = 𝐴 → (degAA𝑎) = (degAA𝐴))
21eqeq2d 2740 . . . 4 (𝑎 = 𝐴 → ((deg‘𝑝) = (degAA𝑎) ↔ (deg‘𝑝) = (degAA𝐴)))
3 fveqeq2 6867 . . . 4 (𝑎 = 𝐴 → ((𝑝𝑎) = 0 ↔ (𝑝𝐴) = 0))
4 2fveq3 6863 . . . . 5 (𝑎 = 𝐴 → ((coeff‘𝑝)‘(degAA𝑎)) = ((coeff‘𝑝)‘(degAA𝐴)))
54eqeq1d 2731 . . . 4 (𝑎 = 𝐴 → (((coeff‘𝑝)‘(degAA𝑎)) = 1 ↔ ((coeff‘𝑝)‘(degAA𝐴)) = 1))
62, 3, 53anbi123d 1438 . . 3 (𝑎 = 𝐴 → (((deg‘𝑝) = (degAA𝑎) ∧ (𝑝𝑎) = 0 ∧ ((coeff‘𝑝)‘(degAA𝑎)) = 1) ↔ ((deg‘𝑝) = (degAA𝐴) ∧ (𝑝𝐴) = 0 ∧ ((coeff‘𝑝)‘(degAA𝐴)) = 1)))
76riotabidv 7346 . 2 (𝑎 = 𝐴 → (𝑝 ∈ (Poly‘ℚ)((deg‘𝑝) = (degAA𝑎) ∧ (𝑝𝑎) = 0 ∧ ((coeff‘𝑝)‘(degAA𝑎)) = 1)) = (𝑝 ∈ (Poly‘ℚ)((deg‘𝑝) = (degAA𝐴) ∧ (𝑝𝐴) = 0 ∧ ((coeff‘𝑝)‘(degAA𝐴)) = 1)))
8 df-mpaa 43132 . 2 minPolyAA = (𝑎 ∈ 𝔸 ↦ (𝑝 ∈ (Poly‘ℚ)((deg‘𝑝) = (degAA𝑎) ∧ (𝑝𝑎) = 0 ∧ ((coeff‘𝑝)‘(degAA𝑎)) = 1)))
9 riotaex 7348 . 2 (𝑝 ∈ (Poly‘ℚ)((deg‘𝑝) = (degAA𝐴) ∧ (𝑝𝐴) = 0 ∧ ((coeff‘𝑝)‘(degAA𝐴)) = 1)) ∈ V
107, 8, 9fvmpt 6968 1 (𝐴 ∈ 𝔸 → (minPolyAA‘𝐴) = (𝑝 ∈ (Poly‘ℚ)((deg‘𝑝) = (degAA𝐴) ∧ (𝑝𝐴) = 0 ∧ ((coeff‘𝑝)‘(degAA𝐴)) = 1)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1540  wcel 2109  cfv 6511  crio 7343  0cc0 11068  1c1 11069  cq 12907  Polycply 26089  coeffccoe 26091  degcdgr 26092  𝔸caa 26222  degAAcdgraa 43129  minPolyAAcmpaa 43130
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-iota 6464  df-fun 6513  df-fv 6519  df-riota 7344  df-mpaa 43132
This theorem is referenced by:  mpaalem  43141
  Copyright terms: Public domain W3C validator