Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > mpaaval | Structured version Visualization version GIF version |
Description: Value of the minimal polynomial of an algebraic number. (Contributed by Stefan O'Rear, 25-Nov-2014.) |
Ref | Expression |
---|---|
mpaaval | ⊢ (𝐴 ∈ 𝔸 → (minPolyAA‘𝐴) = (℩𝑝 ∈ (Poly‘ℚ)((deg‘𝑝) = (degAA‘𝐴) ∧ (𝑝‘𝐴) = 0 ∧ ((coeff‘𝑝)‘(degAA‘𝐴)) = 1))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6774 | . . . . 5 ⊢ (𝑎 = 𝐴 → (degAA‘𝑎) = (degAA‘𝐴)) | |
2 | 1 | eqeq2d 2749 | . . . 4 ⊢ (𝑎 = 𝐴 → ((deg‘𝑝) = (degAA‘𝑎) ↔ (deg‘𝑝) = (degAA‘𝐴))) |
3 | fveqeq2 6783 | . . . 4 ⊢ (𝑎 = 𝐴 → ((𝑝‘𝑎) = 0 ↔ (𝑝‘𝐴) = 0)) | |
4 | 2fveq3 6779 | . . . . 5 ⊢ (𝑎 = 𝐴 → ((coeff‘𝑝)‘(degAA‘𝑎)) = ((coeff‘𝑝)‘(degAA‘𝐴))) | |
5 | 4 | eqeq1d 2740 | . . . 4 ⊢ (𝑎 = 𝐴 → (((coeff‘𝑝)‘(degAA‘𝑎)) = 1 ↔ ((coeff‘𝑝)‘(degAA‘𝐴)) = 1)) |
6 | 2, 3, 5 | 3anbi123d 1435 | . . 3 ⊢ (𝑎 = 𝐴 → (((deg‘𝑝) = (degAA‘𝑎) ∧ (𝑝‘𝑎) = 0 ∧ ((coeff‘𝑝)‘(degAA‘𝑎)) = 1) ↔ ((deg‘𝑝) = (degAA‘𝐴) ∧ (𝑝‘𝐴) = 0 ∧ ((coeff‘𝑝)‘(degAA‘𝐴)) = 1))) |
7 | 6 | riotabidv 7234 | . 2 ⊢ (𝑎 = 𝐴 → (℩𝑝 ∈ (Poly‘ℚ)((deg‘𝑝) = (degAA‘𝑎) ∧ (𝑝‘𝑎) = 0 ∧ ((coeff‘𝑝)‘(degAA‘𝑎)) = 1)) = (℩𝑝 ∈ (Poly‘ℚ)((deg‘𝑝) = (degAA‘𝐴) ∧ (𝑝‘𝐴) = 0 ∧ ((coeff‘𝑝)‘(degAA‘𝐴)) = 1))) |
8 | df-mpaa 40968 | . 2 ⊢ minPolyAA = (𝑎 ∈ 𝔸 ↦ (℩𝑝 ∈ (Poly‘ℚ)((deg‘𝑝) = (degAA‘𝑎) ∧ (𝑝‘𝑎) = 0 ∧ ((coeff‘𝑝)‘(degAA‘𝑎)) = 1))) | |
9 | riotaex 7236 | . 2 ⊢ (℩𝑝 ∈ (Poly‘ℚ)((deg‘𝑝) = (degAA‘𝐴) ∧ (𝑝‘𝐴) = 0 ∧ ((coeff‘𝑝)‘(degAA‘𝐴)) = 1)) ∈ V | |
10 | 7, 8, 9 | fvmpt 6875 | 1 ⊢ (𝐴 ∈ 𝔸 → (minPolyAA‘𝐴) = (℩𝑝 ∈ (Poly‘ℚ)((deg‘𝑝) = (degAA‘𝐴) ∧ (𝑝‘𝐴) = 0 ∧ ((coeff‘𝑝)‘(degAA‘𝐴)) = 1))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1539 ∈ wcel 2106 ‘cfv 6433 ℩crio 7231 0cc0 10871 1c1 10872 ℚcq 12688 Polycply 25345 coeffccoe 25347 degcdgr 25348 𝔸caa 25474 degAAcdgraa 40965 minPolyAAcmpaa 40966 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-iota 6391 df-fun 6435 df-fv 6441 df-riota 7232 df-mpaa 40968 |
This theorem is referenced by: mpaalem 40977 |
Copyright terms: Public domain | W3C validator |