MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-mq Structured version   Visualization version   GIF version

Definition df-mq 10602
Description: Define multiplication on positive fractions. This is a "temporary" set used in the construction of complex numbers df-c 10808, and is intended to be used only by the construction. From Proposition 9-2.4 of [Gleason] p. 119. (Contributed by NM, 24-Aug-1995.) (New usage is discouraged.)
Assertion
Ref Expression
df-mq ·Q = (([Q] ∘ ·pQ ) ↾ (Q × Q))

Detailed syntax breakdown of Definition df-mq
StepHypRef Expression
1 cmq 10543 . 2 class ·Q
2 cerq 10541 . . . 4 class [Q]
3 cmpq 10536 . . . 4 class ·pQ
42, 3ccom 5584 . . 3 class ([Q] ∘ ·pQ )
5 cnq 10539 . . . 4 class Q
65, 5cxp 5578 . . 3 class (Q × Q)
74, 6cres 5582 . 2 class (([Q] ∘ ·pQ ) ↾ (Q × Q))
81, 7wceq 1539 1 wff ·Q = (([Q] ∘ ·pQ ) ↾ (Q × Q))
Colors of variables: wff setvar class
This definition is referenced by:  mulpqnq  10628  mulnqf  10636
  Copyright terms: Public domain W3C validator