Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-mq Structured version   Visualization version   GIF version

Definition df-mq 10335
 Description: Define multiplication on positive fractions. This is a "temporary" set used in the construction of complex numbers df-c 10541, and is intended to be used only by the construction. From Proposition 9-2.4 of [Gleason] p. 119. (Contributed by NM, 24-Aug-1995.) (New usage is discouraged.)
Assertion
Ref Expression
df-mq ·Q = (([Q] ∘ ·pQ ) ↾ (Q × Q))

Detailed syntax breakdown of Definition df-mq
StepHypRef Expression
1 cmq 10276 . 2 class ·Q
2 cerq 10274 . . . 4 class [Q]
3 cmpq 10269 . . . 4 class ·pQ
42, 3ccom 5546 . . 3 class ([Q] ∘ ·pQ )
5 cnq 10272 . . . 4 class Q
65, 5cxp 5540 . . 3 class (Q × Q)
74, 6cres 5544 . 2 class (([Q] ∘ ·pQ ) ↾ (Q × Q))
81, 7wceq 1538 1 wff ·Q = (([Q] ∘ ·pQ ) ↾ (Q × Q))
 Colors of variables: wff setvar class This definition is referenced by:  mulpqnq  10361  mulnqf  10369
 Copyright terms: Public domain W3C validator