MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulpqnq Structured version   Visualization version   GIF version

Theorem mulpqnq 10824
Description: Multiplication of positive fractions in terms of positive integers. (Contributed by NM, 28-Aug-1995.) (Revised by Mario Carneiro, 26-Dec-2014.) (New usage is discouraged.)
Assertion
Ref Expression
mulpqnq ((𝐴Q𝐵Q) → (𝐴 ·Q 𝐵) = ([Q]‘(𝐴 ·pQ 𝐵)))

Proof of Theorem mulpqnq
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-mq 10798 . . . . 5 ·Q = (([Q] ∘ ·pQ ) ↾ (Q × Q))
21fveq1i 6818 . . . 4 ( ·Q ‘⟨𝐴, 𝐵⟩) = ((([Q] ∘ ·pQ ) ↾ (Q × Q))‘⟨𝐴, 𝐵⟩)
32a1i 11 . . 3 ((𝐴Q𝐵Q) → ( ·Q ‘⟨𝐴, 𝐵⟩) = ((([Q] ∘ ·pQ ) ↾ (Q × Q))‘⟨𝐴, 𝐵⟩))
4 opelxpi 5651 . . . 4 ((𝐴Q𝐵Q) → ⟨𝐴, 𝐵⟩ ∈ (Q × Q))
54fvresd 6837 . . 3 ((𝐴Q𝐵Q) → ((([Q] ∘ ·pQ ) ↾ (Q × Q))‘⟨𝐴, 𝐵⟩) = (([Q] ∘ ·pQ )‘⟨𝐴, 𝐵⟩))
6 df-mpq 10792 . . . . 5 ·pQ = (𝑥 ∈ (N × N), 𝑦 ∈ (N × N) ↦ ⟨((1st𝑥) ·N (1st𝑦)), ((2nd𝑥) ·N (2nd𝑦))⟩)
7 opex 5402 . . . . 5 ⟨((1st𝑥) ·N (1st𝑦)), ((2nd𝑥) ·N (2nd𝑦))⟩ ∈ V
86, 7fnmpoi 7997 . . . 4 ·pQ Fn ((N × N) × (N × N))
9 elpqn 10808 . . . . 5 (𝐴Q𝐴 ∈ (N × N))
10 elpqn 10808 . . . . 5 (𝐵Q𝐵 ∈ (N × N))
11 opelxpi 5651 . . . . 5 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → ⟨𝐴, 𝐵⟩ ∈ ((N × N) × (N × N)))
129, 10, 11syl2an 596 . . . 4 ((𝐴Q𝐵Q) → ⟨𝐴, 𝐵⟩ ∈ ((N × N) × (N × N)))
13 fvco2 6914 . . . 4 (( ·pQ Fn ((N × N) × (N × N)) ∧ ⟨𝐴, 𝐵⟩ ∈ ((N × N) × (N × N))) → (([Q] ∘ ·pQ )‘⟨𝐴, 𝐵⟩) = ([Q]‘( ·pQ ‘⟨𝐴, 𝐵⟩)))
148, 12, 13sylancr 587 . . 3 ((𝐴Q𝐵Q) → (([Q] ∘ ·pQ )‘⟨𝐴, 𝐵⟩) = ([Q]‘( ·pQ ‘⟨𝐴, 𝐵⟩)))
153, 5, 143eqtrd 2769 . 2 ((𝐴Q𝐵Q) → ( ·Q ‘⟨𝐴, 𝐵⟩) = ([Q]‘( ·pQ ‘⟨𝐴, 𝐵⟩)))
16 df-ov 7344 . 2 (𝐴 ·Q 𝐵) = ( ·Q ‘⟨𝐴, 𝐵⟩)
17 df-ov 7344 . . 3 (𝐴 ·pQ 𝐵) = ( ·pQ ‘⟨𝐴, 𝐵⟩)
1817fveq2i 6820 . 2 ([Q]‘(𝐴 ·pQ 𝐵)) = ([Q]‘( ·pQ ‘⟨𝐴, 𝐵⟩))
1915, 16, 183eqtr4g 2790 1 ((𝐴Q𝐵Q) → (𝐴 ·Q 𝐵) = ([Q]‘(𝐴 ·pQ 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2110  cop 4580   × cxp 5612  cres 5616  ccom 5618   Fn wfn 6472  cfv 6477  (class class class)co 7341  1st c1st 7914  2nd c2nd 7915  Ncnpi 10727   ·N cmi 10729   ·pQ cmpq 10732  Qcnq 10735  [Q]cerq 10737   ·Q cmq 10739
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702  ax-sep 5232  ax-nul 5242  ax-pr 5368  ax-un 7663
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3394  df-v 3436  df-sbc 3740  df-csb 3849  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-nul 4282  df-if 4474  df-sn 4575  df-pr 4577  df-op 4581  df-uni 4858  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6433  df-fun 6479  df-fn 6480  df-f 6481  df-fv 6485  df-ov 7344  df-oprab 7345  df-mpo 7346  df-1st 7916  df-2nd 7917  df-mpq 10792  df-nq 10795  df-mq 10798
This theorem is referenced by:  mulclnq  10830  mulcomnq  10836  mulerpq  10840  mulassnq  10842  distrnq  10844  mulidnq  10846  ltmnq  10855
  Copyright terms: Public domain W3C validator