| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mulpqnq | Structured version Visualization version GIF version | ||
| Description: Multiplication of positive fractions in terms of positive integers. (Contributed by NM, 28-Aug-1995.) (Revised by Mario Carneiro, 26-Dec-2014.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| mulpqnq | ⊢ ((𝐴 ∈ Q ∧ 𝐵 ∈ Q) → (𝐴 ·Q 𝐵) = ([Q]‘(𝐴 ·pQ 𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-mq 10875 | . . . . 5 ⊢ ·Q = (([Q] ∘ ·pQ ) ↾ (Q × Q)) | |
| 2 | 1 | fveq1i 6862 | . . . 4 ⊢ ( ·Q ‘〈𝐴, 𝐵〉) = ((([Q] ∘ ·pQ ) ↾ (Q × Q))‘〈𝐴, 𝐵〉) |
| 3 | 2 | a1i 11 | . . 3 ⊢ ((𝐴 ∈ Q ∧ 𝐵 ∈ Q) → ( ·Q ‘〈𝐴, 𝐵〉) = ((([Q] ∘ ·pQ ) ↾ (Q × Q))‘〈𝐴, 𝐵〉)) |
| 4 | opelxpi 5678 | . . . 4 ⊢ ((𝐴 ∈ Q ∧ 𝐵 ∈ Q) → 〈𝐴, 𝐵〉 ∈ (Q × Q)) | |
| 5 | 4 | fvresd 6881 | . . 3 ⊢ ((𝐴 ∈ Q ∧ 𝐵 ∈ Q) → ((([Q] ∘ ·pQ ) ↾ (Q × Q))‘〈𝐴, 𝐵〉) = (([Q] ∘ ·pQ )‘〈𝐴, 𝐵〉)) |
| 6 | df-mpq 10869 | . . . . 5 ⊢ ·pQ = (𝑥 ∈ (N × N), 𝑦 ∈ (N × N) ↦ 〈((1st ‘𝑥) ·N (1st ‘𝑦)), ((2nd ‘𝑥) ·N (2nd ‘𝑦))〉) | |
| 7 | opex 5427 | . . . . 5 ⊢ 〈((1st ‘𝑥) ·N (1st ‘𝑦)), ((2nd ‘𝑥) ·N (2nd ‘𝑦))〉 ∈ V | |
| 8 | 6, 7 | fnmpoi 8052 | . . . 4 ⊢ ·pQ Fn ((N × N) × (N × N)) |
| 9 | elpqn 10885 | . . . . 5 ⊢ (𝐴 ∈ Q → 𝐴 ∈ (N × N)) | |
| 10 | elpqn 10885 | . . . . 5 ⊢ (𝐵 ∈ Q → 𝐵 ∈ (N × N)) | |
| 11 | opelxpi 5678 | . . . . 5 ⊢ ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → 〈𝐴, 𝐵〉 ∈ ((N × N) × (N × N))) | |
| 12 | 9, 10, 11 | syl2an 596 | . . . 4 ⊢ ((𝐴 ∈ Q ∧ 𝐵 ∈ Q) → 〈𝐴, 𝐵〉 ∈ ((N × N) × (N × N))) |
| 13 | fvco2 6961 | . . . 4 ⊢ (( ·pQ Fn ((N × N) × (N × N)) ∧ 〈𝐴, 𝐵〉 ∈ ((N × N) × (N × N))) → (([Q] ∘ ·pQ )‘〈𝐴, 𝐵〉) = ([Q]‘( ·pQ ‘〈𝐴, 𝐵〉))) | |
| 14 | 8, 12, 13 | sylancr 587 | . . 3 ⊢ ((𝐴 ∈ Q ∧ 𝐵 ∈ Q) → (([Q] ∘ ·pQ )‘〈𝐴, 𝐵〉) = ([Q]‘( ·pQ ‘〈𝐴, 𝐵〉))) |
| 15 | 3, 5, 14 | 3eqtrd 2769 | . 2 ⊢ ((𝐴 ∈ Q ∧ 𝐵 ∈ Q) → ( ·Q ‘〈𝐴, 𝐵〉) = ([Q]‘( ·pQ ‘〈𝐴, 𝐵〉))) |
| 16 | df-ov 7393 | . 2 ⊢ (𝐴 ·Q 𝐵) = ( ·Q ‘〈𝐴, 𝐵〉) | |
| 17 | df-ov 7393 | . . 3 ⊢ (𝐴 ·pQ 𝐵) = ( ·pQ ‘〈𝐴, 𝐵〉) | |
| 18 | 17 | fveq2i 6864 | . 2 ⊢ ([Q]‘(𝐴 ·pQ 𝐵)) = ([Q]‘( ·pQ ‘〈𝐴, 𝐵〉)) |
| 19 | 15, 16, 18 | 3eqtr4g 2790 | 1 ⊢ ((𝐴 ∈ Q ∧ 𝐵 ∈ Q) → (𝐴 ·Q 𝐵) = ([Q]‘(𝐴 ·pQ 𝐵))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 〈cop 4598 × cxp 5639 ↾ cres 5643 ∘ ccom 5645 Fn wfn 6509 ‘cfv 6514 (class class class)co 7390 1st c1st 7969 2nd c2nd 7970 Ncnpi 10804 ·N cmi 10806 ·pQ cmpq 10809 Qcnq 10812 [Q]cerq 10814 ·Q cmq 10816 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-fv 6522 df-ov 7393 df-oprab 7394 df-mpo 7395 df-1st 7971 df-2nd 7972 df-mpq 10869 df-nq 10872 df-mq 10875 |
| This theorem is referenced by: mulclnq 10907 mulcomnq 10913 mulerpq 10917 mulassnq 10919 distrnq 10921 mulidnq 10923 ltmnq 10932 |
| Copyright terms: Public domain | W3C validator |