MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulpqnq Structured version   Visualization version   GIF version

Theorem mulpqnq 10802
Description: Multiplication of positive fractions in terms of positive integers. (Contributed by NM, 28-Aug-1995.) (Revised by Mario Carneiro, 26-Dec-2014.) (New usage is discouraged.)
Assertion
Ref Expression
mulpqnq ((𝐴Q𝐵Q) → (𝐴 ·Q 𝐵) = ([Q]‘(𝐴 ·pQ 𝐵)))

Proof of Theorem mulpqnq
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-mq 10776 . . . . 5 ·Q = (([Q] ∘ ·pQ ) ↾ (Q × Q))
21fveq1i 6830 . . . 4 ( ·Q ‘⟨𝐴, 𝐵⟩) = ((([Q] ∘ ·pQ ) ↾ (Q × Q))‘⟨𝐴, 𝐵⟩)
32a1i 11 . . 3 ((𝐴Q𝐵Q) → ( ·Q ‘⟨𝐴, 𝐵⟩) = ((([Q] ∘ ·pQ ) ↾ (Q × Q))‘⟨𝐴, 𝐵⟩))
4 opelxpi 5661 . . . 4 ((𝐴Q𝐵Q) → ⟨𝐴, 𝐵⟩ ∈ (Q × Q))
54fvresd 6849 . . 3 ((𝐴Q𝐵Q) → ((([Q] ∘ ·pQ ) ↾ (Q × Q))‘⟨𝐴, 𝐵⟩) = (([Q] ∘ ·pQ )‘⟨𝐴, 𝐵⟩))
6 df-mpq 10770 . . . . 5 ·pQ = (𝑥 ∈ (N × N), 𝑦 ∈ (N × N) ↦ ⟨((1st𝑥) ·N (1st𝑦)), ((2nd𝑥) ·N (2nd𝑦))⟩)
7 opex 5413 . . . . 5 ⟨((1st𝑥) ·N (1st𝑦)), ((2nd𝑥) ·N (2nd𝑦))⟩ ∈ V
86, 7fnmpoi 7982 . . . 4 ·pQ Fn ((N × N) × (N × N))
9 elpqn 10786 . . . . 5 (𝐴Q𝐴 ∈ (N × N))
10 elpqn 10786 . . . . 5 (𝐵Q𝐵 ∈ (N × N))
11 opelxpi 5661 . . . . 5 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → ⟨𝐴, 𝐵⟩ ∈ ((N × N) × (N × N)))
129, 10, 11syl2an 597 . . . 4 ((𝐴Q𝐵Q) → ⟨𝐴, 𝐵⟩ ∈ ((N × N) × (N × N)))
13 fvco2 6925 . . . 4 (( ·pQ Fn ((N × N) × (N × N)) ∧ ⟨𝐴, 𝐵⟩ ∈ ((N × N) × (N × N))) → (([Q] ∘ ·pQ )‘⟨𝐴, 𝐵⟩) = ([Q]‘( ·pQ ‘⟨𝐴, 𝐵⟩)))
148, 12, 13sylancr 588 . . 3 ((𝐴Q𝐵Q) → (([Q] ∘ ·pQ )‘⟨𝐴, 𝐵⟩) = ([Q]‘( ·pQ ‘⟨𝐴, 𝐵⟩)))
153, 5, 143eqtrd 2781 . 2 ((𝐴Q𝐵Q) → ( ·Q ‘⟨𝐴, 𝐵⟩) = ([Q]‘( ·pQ ‘⟨𝐴, 𝐵⟩)))
16 df-ov 7344 . 2 (𝐴 ·Q 𝐵) = ( ·Q ‘⟨𝐴, 𝐵⟩)
17 df-ov 7344 . . 3 (𝐴 ·pQ 𝐵) = ( ·pQ ‘⟨𝐴, 𝐵⟩)
1817fveq2i 6832 . 2 ([Q]‘(𝐴 ·pQ 𝐵)) = ([Q]‘( ·pQ ‘⟨𝐴, 𝐵⟩))
1915, 16, 183eqtr4g 2802 1 ((𝐴Q𝐵Q) → (𝐴 ·Q 𝐵) = ([Q]‘(𝐴 ·pQ 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397   = wceq 1541  wcel 2106  cop 4583   × cxp 5622  cres 5626  ccom 5628   Fn wfn 6478  cfv 6483  (class class class)co 7341  1st c1st 7901  2nd c2nd 7902  Ncnpi 10705   ·N cmi 10707   ·pQ cmpq 10710  Qcnq 10713  [Q]cerq 10715   ·Q cmq 10717
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2708  ax-sep 5247  ax-nul 5254  ax-pr 5376  ax-un 7654
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-ral 3063  df-rex 3072  df-rab 3405  df-v 3444  df-sbc 3731  df-csb 3847  df-dif 3904  df-un 3906  df-in 3908  df-ss 3918  df-nul 4274  df-if 4478  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4857  df-iun 4947  df-br 5097  df-opab 5159  df-mpt 5180  df-id 5522  df-xp 5630  df-rel 5631  df-cnv 5632  df-co 5633  df-dm 5634  df-rn 5635  df-res 5636  df-ima 5637  df-iota 6435  df-fun 6485  df-fn 6486  df-f 6487  df-fv 6491  df-ov 7344  df-oprab 7345  df-mpo 7346  df-1st 7903  df-2nd 7904  df-mpq 10770  df-nq 10773  df-mq 10776
This theorem is referenced by:  mulclnq  10808  mulcomnq  10814  mulerpq  10818  mulassnq  10820  distrnq  10822  mulidnq  10824  ltmnq  10833
  Copyright terms: Public domain W3C validator