| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mulpqnq | Structured version Visualization version GIF version | ||
| Description: Multiplication of positive fractions in terms of positive integers. (Contributed by NM, 28-Aug-1995.) (Revised by Mario Carneiro, 26-Dec-2014.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| mulpqnq | ⊢ ((𝐴 ∈ Q ∧ 𝐵 ∈ Q) → (𝐴 ·Q 𝐵) = ([Q]‘(𝐴 ·pQ 𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-mq 10828 | . . . . 5 ⊢ ·Q = (([Q] ∘ ·pQ ) ↾ (Q × Q)) | |
| 2 | 1 | fveq1i 6827 | . . . 4 ⊢ ( ·Q ‘〈𝐴, 𝐵〉) = ((([Q] ∘ ·pQ ) ↾ (Q × Q))‘〈𝐴, 𝐵〉) |
| 3 | 2 | a1i 11 | . . 3 ⊢ ((𝐴 ∈ Q ∧ 𝐵 ∈ Q) → ( ·Q ‘〈𝐴, 𝐵〉) = ((([Q] ∘ ·pQ ) ↾ (Q × Q))‘〈𝐴, 𝐵〉)) |
| 4 | opelxpi 5660 | . . . 4 ⊢ ((𝐴 ∈ Q ∧ 𝐵 ∈ Q) → 〈𝐴, 𝐵〉 ∈ (Q × Q)) | |
| 5 | 4 | fvresd 6846 | . . 3 ⊢ ((𝐴 ∈ Q ∧ 𝐵 ∈ Q) → ((([Q] ∘ ·pQ ) ↾ (Q × Q))‘〈𝐴, 𝐵〉) = (([Q] ∘ ·pQ )‘〈𝐴, 𝐵〉)) |
| 6 | df-mpq 10822 | . . . . 5 ⊢ ·pQ = (𝑥 ∈ (N × N), 𝑦 ∈ (N × N) ↦ 〈((1st ‘𝑥) ·N (1st ‘𝑦)), ((2nd ‘𝑥) ·N (2nd ‘𝑦))〉) | |
| 7 | opex 5411 | . . . . 5 ⊢ 〈((1st ‘𝑥) ·N (1st ‘𝑦)), ((2nd ‘𝑥) ·N (2nd ‘𝑦))〉 ∈ V | |
| 8 | 6, 7 | fnmpoi 8012 | . . . 4 ⊢ ·pQ Fn ((N × N) × (N × N)) |
| 9 | elpqn 10838 | . . . . 5 ⊢ (𝐴 ∈ Q → 𝐴 ∈ (N × N)) | |
| 10 | elpqn 10838 | . . . . 5 ⊢ (𝐵 ∈ Q → 𝐵 ∈ (N × N)) | |
| 11 | opelxpi 5660 | . . . . 5 ⊢ ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → 〈𝐴, 𝐵〉 ∈ ((N × N) × (N × N))) | |
| 12 | 9, 10, 11 | syl2an 596 | . . . 4 ⊢ ((𝐴 ∈ Q ∧ 𝐵 ∈ Q) → 〈𝐴, 𝐵〉 ∈ ((N × N) × (N × N))) |
| 13 | fvco2 6924 | . . . 4 ⊢ (( ·pQ Fn ((N × N) × (N × N)) ∧ 〈𝐴, 𝐵〉 ∈ ((N × N) × (N × N))) → (([Q] ∘ ·pQ )‘〈𝐴, 𝐵〉) = ([Q]‘( ·pQ ‘〈𝐴, 𝐵〉))) | |
| 14 | 8, 12, 13 | sylancr 587 | . . 3 ⊢ ((𝐴 ∈ Q ∧ 𝐵 ∈ Q) → (([Q] ∘ ·pQ )‘〈𝐴, 𝐵〉) = ([Q]‘( ·pQ ‘〈𝐴, 𝐵〉))) |
| 15 | 3, 5, 14 | 3eqtrd 2768 | . 2 ⊢ ((𝐴 ∈ Q ∧ 𝐵 ∈ Q) → ( ·Q ‘〈𝐴, 𝐵〉) = ([Q]‘( ·pQ ‘〈𝐴, 𝐵〉))) |
| 16 | df-ov 7356 | . 2 ⊢ (𝐴 ·Q 𝐵) = ( ·Q ‘〈𝐴, 𝐵〉) | |
| 17 | df-ov 7356 | . . 3 ⊢ (𝐴 ·pQ 𝐵) = ( ·pQ ‘〈𝐴, 𝐵〉) | |
| 18 | 17 | fveq2i 6829 | . 2 ⊢ ([Q]‘(𝐴 ·pQ 𝐵)) = ([Q]‘( ·pQ ‘〈𝐴, 𝐵〉)) |
| 19 | 15, 16, 18 | 3eqtr4g 2789 | 1 ⊢ ((𝐴 ∈ Q ∧ 𝐵 ∈ Q) → (𝐴 ·Q 𝐵) = ([Q]‘(𝐴 ·pQ 𝐵))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 〈cop 4585 × cxp 5621 ↾ cres 5625 ∘ ccom 5627 Fn wfn 6481 ‘cfv 6486 (class class class)co 7353 1st c1st 7929 2nd c2nd 7930 Ncnpi 10757 ·N cmi 10759 ·pQ cmpq 10762 Qcnq 10765 [Q]cerq 10767 ·Q cmq 10769 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 ax-un 7675 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-fv 6494 df-ov 7356 df-oprab 7357 df-mpo 7358 df-1st 7931 df-2nd 7932 df-mpq 10822 df-nq 10825 df-mq 10828 |
| This theorem is referenced by: mulclnq 10860 mulcomnq 10866 mulerpq 10870 mulassnq 10872 distrnq 10874 mulidnq 10876 ltmnq 10885 |
| Copyright terms: Public domain | W3C validator |