MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulpqnq Structured version   Visualization version   GIF version

Theorem mulpqnq 10854
Description: Multiplication of positive fractions in terms of positive integers. (Contributed by NM, 28-Aug-1995.) (Revised by Mario Carneiro, 26-Dec-2014.) (New usage is discouraged.)
Assertion
Ref Expression
mulpqnq ((𝐴Q𝐵Q) → (𝐴 ·Q 𝐵) = ([Q]‘(𝐴 ·pQ 𝐵)))

Proof of Theorem mulpqnq
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-mq 10828 . . . . 5 ·Q = (([Q] ∘ ·pQ ) ↾ (Q × Q))
21fveq1i 6827 . . . 4 ( ·Q ‘⟨𝐴, 𝐵⟩) = ((([Q] ∘ ·pQ ) ↾ (Q × Q))‘⟨𝐴, 𝐵⟩)
32a1i 11 . . 3 ((𝐴Q𝐵Q) → ( ·Q ‘⟨𝐴, 𝐵⟩) = ((([Q] ∘ ·pQ ) ↾ (Q × Q))‘⟨𝐴, 𝐵⟩))
4 opelxpi 5660 . . . 4 ((𝐴Q𝐵Q) → ⟨𝐴, 𝐵⟩ ∈ (Q × Q))
54fvresd 6846 . . 3 ((𝐴Q𝐵Q) → ((([Q] ∘ ·pQ ) ↾ (Q × Q))‘⟨𝐴, 𝐵⟩) = (([Q] ∘ ·pQ )‘⟨𝐴, 𝐵⟩))
6 df-mpq 10822 . . . . 5 ·pQ = (𝑥 ∈ (N × N), 𝑦 ∈ (N × N) ↦ ⟨((1st𝑥) ·N (1st𝑦)), ((2nd𝑥) ·N (2nd𝑦))⟩)
7 opex 5411 . . . . 5 ⟨((1st𝑥) ·N (1st𝑦)), ((2nd𝑥) ·N (2nd𝑦))⟩ ∈ V
86, 7fnmpoi 8012 . . . 4 ·pQ Fn ((N × N) × (N × N))
9 elpqn 10838 . . . . 5 (𝐴Q𝐴 ∈ (N × N))
10 elpqn 10838 . . . . 5 (𝐵Q𝐵 ∈ (N × N))
11 opelxpi 5660 . . . . 5 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → ⟨𝐴, 𝐵⟩ ∈ ((N × N) × (N × N)))
129, 10, 11syl2an 596 . . . 4 ((𝐴Q𝐵Q) → ⟨𝐴, 𝐵⟩ ∈ ((N × N) × (N × N)))
13 fvco2 6924 . . . 4 (( ·pQ Fn ((N × N) × (N × N)) ∧ ⟨𝐴, 𝐵⟩ ∈ ((N × N) × (N × N))) → (([Q] ∘ ·pQ )‘⟨𝐴, 𝐵⟩) = ([Q]‘( ·pQ ‘⟨𝐴, 𝐵⟩)))
148, 12, 13sylancr 587 . . 3 ((𝐴Q𝐵Q) → (([Q] ∘ ·pQ )‘⟨𝐴, 𝐵⟩) = ([Q]‘( ·pQ ‘⟨𝐴, 𝐵⟩)))
153, 5, 143eqtrd 2768 . 2 ((𝐴Q𝐵Q) → ( ·Q ‘⟨𝐴, 𝐵⟩) = ([Q]‘( ·pQ ‘⟨𝐴, 𝐵⟩)))
16 df-ov 7356 . 2 (𝐴 ·Q 𝐵) = ( ·Q ‘⟨𝐴, 𝐵⟩)
17 df-ov 7356 . . 3 (𝐴 ·pQ 𝐵) = ( ·pQ ‘⟨𝐴, 𝐵⟩)
1817fveq2i 6829 . 2 ([Q]‘(𝐴 ·pQ 𝐵)) = ([Q]‘( ·pQ ‘⟨𝐴, 𝐵⟩))
1915, 16, 183eqtr4g 2789 1 ((𝐴Q𝐵Q) → (𝐴 ·Q 𝐵) = ([Q]‘(𝐴 ·pQ 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  cop 4585   × cxp 5621  cres 5625  ccom 5627   Fn wfn 6481  cfv 6486  (class class class)co 7353  1st c1st 7929  2nd c2nd 7930  Ncnpi 10757   ·N cmi 10759   ·pQ cmpq 10762  Qcnq 10765  [Q]cerq 10767   ·Q cmq 10769
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-fv 6494  df-ov 7356  df-oprab 7357  df-mpo 7358  df-1st 7931  df-2nd 7932  df-mpq 10822  df-nq 10825  df-mq 10828
This theorem is referenced by:  mulclnq  10860  mulcomnq  10866  mulerpq  10870  mulassnq  10872  distrnq  10874  mulidnq  10876  ltmnq  10885
  Copyright terms: Public domain W3C validator