![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mulpqnq | Structured version Visualization version GIF version |
Description: Multiplication of positive fractions in terms of positive integers. (Contributed by NM, 28-Aug-1995.) (Revised by Mario Carneiro, 26-Dec-2014.) (New usage is discouraged.) |
Ref | Expression |
---|---|
mulpqnq | ⊢ ((𝐴 ∈ Q ∧ 𝐵 ∈ Q) → (𝐴 ·Q 𝐵) = ([Q]‘(𝐴 ·pQ 𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-mq 10135 | . . . . 5 ⊢ ·Q = (([Q] ∘ ·pQ ) ↾ (Q × Q)) | |
2 | 1 | fveq1i 6500 | . . . 4 ⊢ ( ·Q ‘〈𝐴, 𝐵〉) = ((([Q] ∘ ·pQ ) ↾ (Q × Q))‘〈𝐴, 𝐵〉) |
3 | 2 | a1i 11 | . . 3 ⊢ ((𝐴 ∈ Q ∧ 𝐵 ∈ Q) → ( ·Q ‘〈𝐴, 𝐵〉) = ((([Q] ∘ ·pQ ) ↾ (Q × Q))‘〈𝐴, 𝐵〉)) |
4 | opelxpi 5444 | . . . 4 ⊢ ((𝐴 ∈ Q ∧ 𝐵 ∈ Q) → 〈𝐴, 𝐵〉 ∈ (Q × Q)) | |
5 | 4 | fvresd 6519 | . . 3 ⊢ ((𝐴 ∈ Q ∧ 𝐵 ∈ Q) → ((([Q] ∘ ·pQ ) ↾ (Q × Q))‘〈𝐴, 𝐵〉) = (([Q] ∘ ·pQ )‘〈𝐴, 𝐵〉)) |
6 | df-mpq 10129 | . . . . 5 ⊢ ·pQ = (𝑥 ∈ (N × N), 𝑦 ∈ (N × N) ↦ 〈((1st ‘𝑥) ·N (1st ‘𝑦)), ((2nd ‘𝑥) ·N (2nd ‘𝑦))〉) | |
7 | opex 5213 | . . . . 5 ⊢ 〈((1st ‘𝑥) ·N (1st ‘𝑦)), ((2nd ‘𝑥) ·N (2nd ‘𝑦))〉 ∈ V | |
8 | 6, 7 | fnmpoi 7576 | . . . 4 ⊢ ·pQ Fn ((N × N) × (N × N)) |
9 | elpqn 10145 | . . . . 5 ⊢ (𝐴 ∈ Q → 𝐴 ∈ (N × N)) | |
10 | elpqn 10145 | . . . . 5 ⊢ (𝐵 ∈ Q → 𝐵 ∈ (N × N)) | |
11 | opelxpi 5444 | . . . . 5 ⊢ ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → 〈𝐴, 𝐵〉 ∈ ((N × N) × (N × N))) | |
12 | 9, 10, 11 | syl2an 586 | . . . 4 ⊢ ((𝐴 ∈ Q ∧ 𝐵 ∈ Q) → 〈𝐴, 𝐵〉 ∈ ((N × N) × (N × N))) |
13 | fvco2 6586 | . . . 4 ⊢ (( ·pQ Fn ((N × N) × (N × N)) ∧ 〈𝐴, 𝐵〉 ∈ ((N × N) × (N × N))) → (([Q] ∘ ·pQ )‘〈𝐴, 𝐵〉) = ([Q]‘( ·pQ ‘〈𝐴, 𝐵〉))) | |
14 | 8, 12, 13 | sylancr 578 | . . 3 ⊢ ((𝐴 ∈ Q ∧ 𝐵 ∈ Q) → (([Q] ∘ ·pQ )‘〈𝐴, 𝐵〉) = ([Q]‘( ·pQ ‘〈𝐴, 𝐵〉))) |
15 | 3, 5, 14 | 3eqtrd 2818 | . 2 ⊢ ((𝐴 ∈ Q ∧ 𝐵 ∈ Q) → ( ·Q ‘〈𝐴, 𝐵〉) = ([Q]‘( ·pQ ‘〈𝐴, 𝐵〉))) |
16 | df-ov 6979 | . 2 ⊢ (𝐴 ·Q 𝐵) = ( ·Q ‘〈𝐴, 𝐵〉) | |
17 | df-ov 6979 | . . 3 ⊢ (𝐴 ·pQ 𝐵) = ( ·pQ ‘〈𝐴, 𝐵〉) | |
18 | 17 | fveq2i 6502 | . 2 ⊢ ([Q]‘(𝐴 ·pQ 𝐵)) = ([Q]‘( ·pQ ‘〈𝐴, 𝐵〉)) |
19 | 15, 16, 18 | 3eqtr4g 2839 | 1 ⊢ ((𝐴 ∈ Q ∧ 𝐵 ∈ Q) → (𝐴 ·Q 𝐵) = ([Q]‘(𝐴 ·pQ 𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 387 = wceq 1507 ∈ wcel 2050 〈cop 4447 × cxp 5405 ↾ cres 5409 ∘ ccom 5411 Fn wfn 6183 ‘cfv 6188 (class class class)co 6976 1st c1st 7499 2nd c2nd 7500 Ncnpi 10064 ·N cmi 10066 ·pQ cmpq 10069 Qcnq 10072 [Q]cerq 10074 ·Q cmq 10076 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1965 ax-8 2052 ax-9 2059 ax-10 2079 ax-11 2093 ax-12 2106 ax-13 2301 ax-ext 2750 ax-sep 5060 ax-nul 5067 ax-pow 5119 ax-pr 5186 ax-un 7279 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3an 1070 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2016 df-mo 2547 df-eu 2584 df-clab 2759 df-cleq 2771 df-clel 2846 df-nfc 2918 df-ne 2968 df-ral 3093 df-rex 3094 df-rab 3097 df-v 3417 df-sbc 3682 df-csb 3787 df-dif 3832 df-un 3834 df-in 3836 df-ss 3843 df-nul 4179 df-if 4351 df-sn 4442 df-pr 4444 df-op 4448 df-uni 4713 df-iun 4794 df-br 4930 df-opab 4992 df-mpt 5009 df-id 5312 df-xp 5413 df-rel 5414 df-cnv 5415 df-co 5416 df-dm 5417 df-rn 5418 df-res 5419 df-ima 5420 df-iota 6152 df-fun 6190 df-fn 6191 df-f 6192 df-fv 6196 df-ov 6979 df-oprab 6980 df-mpo 6981 df-1st 7501 df-2nd 7502 df-mpq 10129 df-nq 10132 df-mq 10135 |
This theorem is referenced by: mulclnq 10167 mulcomnq 10173 mulerpq 10177 mulassnq 10179 distrnq 10181 mulidnq 10183 ltmnq 10192 |
Copyright terms: Public domain | W3C validator |