| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mulnqf | Structured version Visualization version GIF version | ||
| Description: Domain of multiplication on positive fractions. (Contributed by NM, 24-Aug-1995.) (Revised by Mario Carneiro, 10-Jul-2014.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| mulnqf | ⊢ ·Q :(Q × Q)⟶Q |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nqerf 10944 | . . . 4 ⊢ [Q]:(N × N)⟶Q | |
| 2 | mulpqf 10960 | . . . 4 ⊢ ·pQ :((N × N) × (N × N))⟶(N × N) | |
| 3 | fco 6730 | . . . 4 ⊢ (([Q]:(N × N)⟶Q ∧ ·pQ :((N × N) × (N × N))⟶(N × N)) → ([Q] ∘ ·pQ ):((N × N) × (N × N))⟶Q) | |
| 4 | 1, 2, 3 | mp2an 692 | . . 3 ⊢ ([Q] ∘ ·pQ ):((N × N) × (N × N))⟶Q |
| 5 | elpqn 10939 | . . . . 5 ⊢ (𝑥 ∈ Q → 𝑥 ∈ (N × N)) | |
| 6 | 5 | ssriv 3962 | . . . 4 ⊢ Q ⊆ (N × N) |
| 7 | xpss12 5669 | . . . 4 ⊢ ((Q ⊆ (N × N) ∧ Q ⊆ (N × N)) → (Q × Q) ⊆ ((N × N) × (N × N))) | |
| 8 | 6, 6, 7 | mp2an 692 | . . 3 ⊢ (Q × Q) ⊆ ((N × N) × (N × N)) |
| 9 | fssres 6744 | . . 3 ⊢ ((([Q] ∘ ·pQ ):((N × N) × (N × N))⟶Q ∧ (Q × Q) ⊆ ((N × N) × (N × N))) → (([Q] ∘ ·pQ ) ↾ (Q × Q)):(Q × Q)⟶Q) | |
| 10 | 4, 8, 9 | mp2an 692 | . 2 ⊢ (([Q] ∘ ·pQ ) ↾ (Q × Q)):(Q × Q)⟶Q |
| 11 | df-mq 10929 | . . 3 ⊢ ·Q = (([Q] ∘ ·pQ ) ↾ (Q × Q)) | |
| 12 | 11 | feq1i 6697 | . 2 ⊢ ( ·Q :(Q × Q)⟶Q ↔ (([Q] ∘ ·pQ ) ↾ (Q × Q)):(Q × Q)⟶Q) |
| 13 | 10, 12 | mpbir 231 | 1 ⊢ ·Q :(Q × Q)⟶Q |
| Colors of variables: wff setvar class |
| Syntax hints: ⊆ wss 3926 × cxp 5652 ↾ cres 5656 ∘ ccom 5658 ⟶wf 6527 Ncnpi 10858 ·pQ cmpq 10863 Qcnq 10866 [Q]cerq 10868 ·Q cmq 10870 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-1st 7988 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-oadd 8484 df-omul 8485 df-er 8719 df-ni 10886 df-mi 10888 df-lti 10889 df-mpq 10923 df-enq 10925 df-nq 10926 df-erq 10927 df-mq 10929 df-1nq 10930 |
| This theorem is referenced by: mulcomnq 10967 mulerpq 10971 mulassnq 10973 distrnq 10975 recmulnq 10978 recclnq 10980 dmrecnq 10982 ltmnq 10986 prlem936 11061 |
| Copyright terms: Public domain | W3C validator |