MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulnqf Structured version   Visualization version   GIF version

Theorem mulnqf 10973
Description: Domain of multiplication on positive fractions. (Contributed by NM, 24-Aug-1995.) (Revised by Mario Carneiro, 10-Jul-2014.) (New usage is discouraged.)
Assertion
Ref Expression
mulnqf ·Q :(Q × Q)⟶Q

Proof of Theorem mulnqf
StepHypRef Expression
1 nqerf 10954 . . . 4 [Q]:(N × N)⟶Q
2 mulpqf 10970 . . . 4 ·pQ :((N × N) × (N × N))⟶(N × N)
3 fco 6747 . . . 4 (([Q]:(N × N)⟶Q ∧ ·pQ :((N × N) × (N × N))⟶(N × N)) → ([Q] ∘ ·pQ ):((N × N) × (N × N))⟶Q)
41, 2, 3mp2an 691 . . 3 ([Q] ∘ ·pQ ):((N × N) × (N × N))⟶Q
5 elpqn 10949 . . . . 5 (𝑥Q𝑥 ∈ (N × N))
65ssriv 3984 . . . 4 Q ⊆ (N × N)
7 xpss12 5693 . . . 4 ((Q ⊆ (N × N) ∧ Q ⊆ (N × N)) → (Q × Q) ⊆ ((N × N) × (N × N)))
86, 6, 7mp2an 691 . . 3 (Q × Q) ⊆ ((N × N) × (N × N))
9 fssres 6763 . . 3 ((([Q] ∘ ·pQ ):((N × N) × (N × N))⟶Q ∧ (Q × Q) ⊆ ((N × N) × (N × N))) → (([Q] ∘ ·pQ ) ↾ (Q × Q)):(Q × Q)⟶Q)
104, 8, 9mp2an 691 . 2 (([Q] ∘ ·pQ ) ↾ (Q × Q)):(Q × Q)⟶Q
11 df-mq 10939 . . 3 ·Q = (([Q] ∘ ·pQ ) ↾ (Q × Q))
1211feq1i 6713 . 2 ( ·Q :(Q × Q)⟶Q ↔ (([Q] ∘ ·pQ ) ↾ (Q × Q)):(Q × Q)⟶Q)
1310, 12mpbir 230 1 ·Q :(Q × Q)⟶Q
Colors of variables: wff setvar class
Syntax hints:  wss 3947   × cxp 5676  cres 5680  ccom 5682  wf 6544  Ncnpi 10868   ·pQ cmpq 10873  Qcnq 10876  [Q]cerq 10878   ·Q cmq 10880
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-sep 5299  ax-nul 5306  ax-pr 5429  ax-un 7740
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-ral 3059  df-rex 3068  df-rmo 3373  df-reu 3374  df-rab 3430  df-v 3473  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4909  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6305  df-ord 6372  df-on 6373  df-lim 6374  df-suc 6375  df-iota 6500  df-fun 6550  df-fn 6551  df-f 6552  df-f1 6553  df-fo 6554  df-f1o 6555  df-fv 6556  df-ov 7423  df-oprab 7424  df-mpo 7425  df-om 7871  df-1st 7993  df-2nd 7994  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-1o 8487  df-oadd 8491  df-omul 8492  df-er 8725  df-ni 10896  df-mi 10898  df-lti 10899  df-mpq 10933  df-enq 10935  df-nq 10936  df-erq 10937  df-mq 10939  df-1nq 10940
This theorem is referenced by:  mulcomnq  10977  mulerpq  10981  mulassnq  10983  distrnq  10985  recmulnq  10988  recclnq  10990  dmrecnq  10992  ltmnq  10996  prlem936  11071
  Copyright terms: Public domain W3C validator