| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mulnqf | Structured version Visualization version GIF version | ||
| Description: Domain of multiplication on positive fractions. (Contributed by NM, 24-Aug-1995.) (Revised by Mario Carneiro, 10-Jul-2014.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| mulnqf | ⊢ ·Q :(Q × Q)⟶Q |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nqerf 10890 | . . . 4 ⊢ [Q]:(N × N)⟶Q | |
| 2 | mulpqf 10906 | . . . 4 ⊢ ·pQ :((N × N) × (N × N))⟶(N × N) | |
| 3 | fco 6715 | . . . 4 ⊢ (([Q]:(N × N)⟶Q ∧ ·pQ :((N × N) × (N × N))⟶(N × N)) → ([Q] ∘ ·pQ ):((N × N) × (N × N))⟶Q) | |
| 4 | 1, 2, 3 | mp2an 692 | . . 3 ⊢ ([Q] ∘ ·pQ ):((N × N) × (N × N))⟶Q |
| 5 | elpqn 10885 | . . . . 5 ⊢ (𝑥 ∈ Q → 𝑥 ∈ (N × N)) | |
| 6 | 5 | ssriv 3953 | . . . 4 ⊢ Q ⊆ (N × N) |
| 7 | xpss12 5656 | . . . 4 ⊢ ((Q ⊆ (N × N) ∧ Q ⊆ (N × N)) → (Q × Q) ⊆ ((N × N) × (N × N))) | |
| 8 | 6, 6, 7 | mp2an 692 | . . 3 ⊢ (Q × Q) ⊆ ((N × N) × (N × N)) |
| 9 | fssres 6729 | . . 3 ⊢ ((([Q] ∘ ·pQ ):((N × N) × (N × N))⟶Q ∧ (Q × Q) ⊆ ((N × N) × (N × N))) → (([Q] ∘ ·pQ ) ↾ (Q × Q)):(Q × Q)⟶Q) | |
| 10 | 4, 8, 9 | mp2an 692 | . 2 ⊢ (([Q] ∘ ·pQ ) ↾ (Q × Q)):(Q × Q)⟶Q |
| 11 | df-mq 10875 | . . 3 ⊢ ·Q = (([Q] ∘ ·pQ ) ↾ (Q × Q)) | |
| 12 | 11 | feq1i 6682 | . 2 ⊢ ( ·Q :(Q × Q)⟶Q ↔ (([Q] ∘ ·pQ ) ↾ (Q × Q)):(Q × Q)⟶Q) |
| 13 | 10, 12 | mpbir 231 | 1 ⊢ ·Q :(Q × Q)⟶Q |
| Colors of variables: wff setvar class |
| Syntax hints: ⊆ wss 3917 × cxp 5639 ↾ cres 5643 ∘ ccom 5645 ⟶wf 6510 Ncnpi 10804 ·pQ cmpq 10809 Qcnq 10812 [Q]cerq 10814 ·Q cmq 10816 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-oadd 8441 df-omul 8442 df-er 8674 df-ni 10832 df-mi 10834 df-lti 10835 df-mpq 10869 df-enq 10871 df-nq 10872 df-erq 10873 df-mq 10875 df-1nq 10876 |
| This theorem is referenced by: mulcomnq 10913 mulerpq 10917 mulassnq 10919 distrnq 10921 recmulnq 10924 recclnq 10926 dmrecnq 10928 ltmnq 10932 prlem936 11007 |
| Copyright terms: Public domain | W3C validator |