MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulnqf Structured version   Visualization version   GIF version

Theorem mulnqf 10563
Description: Domain of multiplication on positive fractions. (Contributed by NM, 24-Aug-1995.) (Revised by Mario Carneiro, 10-Jul-2014.) (New usage is discouraged.)
Assertion
Ref Expression
mulnqf ·Q :(Q × Q)⟶Q

Proof of Theorem mulnqf
StepHypRef Expression
1 nqerf 10544 . . . 4 [Q]:(N × N)⟶Q
2 mulpqf 10560 . . . 4 ·pQ :((N × N) × (N × N))⟶(N × N)
3 fco 6569 . . . 4 (([Q]:(N × N)⟶Q ∧ ·pQ :((N × N) × (N × N))⟶(N × N)) → ([Q] ∘ ·pQ ):((N × N) × (N × N))⟶Q)
41, 2, 3mp2an 692 . . 3 ([Q] ∘ ·pQ ):((N × N) × (N × N))⟶Q
5 elpqn 10539 . . . . 5 (𝑥Q𝑥 ∈ (N × N))
65ssriv 3905 . . . 4 Q ⊆ (N × N)
7 xpss12 5566 . . . 4 ((Q ⊆ (N × N) ∧ Q ⊆ (N × N)) → (Q × Q) ⊆ ((N × N) × (N × N)))
86, 6, 7mp2an 692 . . 3 (Q × Q) ⊆ ((N × N) × (N × N))
9 fssres 6585 . . 3 ((([Q] ∘ ·pQ ):((N × N) × (N × N))⟶Q ∧ (Q × Q) ⊆ ((N × N) × (N × N))) → (([Q] ∘ ·pQ ) ↾ (Q × Q)):(Q × Q)⟶Q)
104, 8, 9mp2an 692 . 2 (([Q] ∘ ·pQ ) ↾ (Q × Q)):(Q × Q)⟶Q
11 df-mq 10529 . . 3 ·Q = (([Q] ∘ ·pQ ) ↾ (Q × Q))
1211feq1i 6536 . 2 ( ·Q :(Q × Q)⟶Q ↔ (([Q] ∘ ·pQ ) ↾ (Q × Q)):(Q × Q)⟶Q)
1310, 12mpbir 234 1 ·Q :(Q × Q)⟶Q
Colors of variables: wff setvar class
Syntax hints:  wss 3866   × cxp 5549  cres 5553  ccom 5555  wf 6376  Ncnpi 10458   ·pQ cmpq 10463  Qcnq 10466  [Q]cerq 10468   ·Q cmq 10470
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-sep 5192  ax-nul 5199  ax-pr 5322  ax-un 7523
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-pss 3885  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-tp 4546  df-op 4548  df-uni 4820  df-iun 4906  df-br 5054  df-opab 5116  df-mpt 5136  df-tr 5162  df-id 5455  df-eprel 5460  df-po 5468  df-so 5469  df-fr 5509  df-we 5511  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-pred 6160  df-ord 6216  df-on 6217  df-lim 6218  df-suc 6219  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-ov 7216  df-oprab 7217  df-mpo 7218  df-om 7645  df-1st 7761  df-2nd 7762  df-wrecs 8047  df-recs 8108  df-rdg 8146  df-1o 8202  df-oadd 8206  df-omul 8207  df-er 8391  df-ni 10486  df-mi 10488  df-lti 10489  df-mpq 10523  df-enq 10525  df-nq 10526  df-erq 10527  df-mq 10529  df-1nq 10530
This theorem is referenced by:  mulcomnq  10567  mulerpq  10571  mulassnq  10573  distrnq  10575  recmulnq  10578  recclnq  10580  dmrecnq  10582  ltmnq  10586  prlem936  10661
  Copyright terms: Public domain W3C validator