![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mulnqf | Structured version Visualization version GIF version |
Description: Domain of multiplication on positive fractions. (Contributed by NM, 24-Aug-1995.) (Revised by Mario Carneiro, 10-Jul-2014.) (New usage is discouraged.) |
Ref | Expression |
---|---|
mulnqf | ⊢ ·Q :(Q × Q)⟶Q |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nqerf 10925 | . . . 4 ⊢ [Q]:(N × N)⟶Q | |
2 | mulpqf 10941 | . . . 4 ⊢ ·pQ :((N × N) × (N × N))⟶(N × N) | |
3 | fco 6742 | . . . 4 ⊢ (([Q]:(N × N)⟶Q ∧ ·pQ :((N × N) × (N × N))⟶(N × N)) → ([Q] ∘ ·pQ ):((N × N) × (N × N))⟶Q) | |
4 | 1, 2, 3 | mp2an 691 | . . 3 ⊢ ([Q] ∘ ·pQ ):((N × N) × (N × N))⟶Q |
5 | elpqn 10920 | . . . . 5 ⊢ (𝑥 ∈ Q → 𝑥 ∈ (N × N)) | |
6 | 5 | ssriv 3987 | . . . 4 ⊢ Q ⊆ (N × N) |
7 | xpss12 5692 | . . . 4 ⊢ ((Q ⊆ (N × N) ∧ Q ⊆ (N × N)) → (Q × Q) ⊆ ((N × N) × (N × N))) | |
8 | 6, 6, 7 | mp2an 691 | . . 3 ⊢ (Q × Q) ⊆ ((N × N) × (N × N)) |
9 | fssres 6758 | . . 3 ⊢ ((([Q] ∘ ·pQ ):((N × N) × (N × N))⟶Q ∧ (Q × Q) ⊆ ((N × N) × (N × N))) → (([Q] ∘ ·pQ ) ↾ (Q × Q)):(Q × Q)⟶Q) | |
10 | 4, 8, 9 | mp2an 691 | . 2 ⊢ (([Q] ∘ ·pQ ) ↾ (Q × Q)):(Q × Q)⟶Q |
11 | df-mq 10910 | . . 3 ⊢ ·Q = (([Q] ∘ ·pQ ) ↾ (Q × Q)) | |
12 | 11 | feq1i 6709 | . 2 ⊢ ( ·Q :(Q × Q)⟶Q ↔ (([Q] ∘ ·pQ ) ↾ (Q × Q)):(Q × Q)⟶Q) |
13 | 10, 12 | mpbir 230 | 1 ⊢ ·Q :(Q × Q)⟶Q |
Colors of variables: wff setvar class |
Syntax hints: ⊆ wss 3949 × cxp 5675 ↾ cres 5679 ∘ ccom 5681 ⟶wf 6540 Ncnpi 10839 ·pQ cmpq 10844 Qcnq 10847 [Q]cerq 10849 ·Q cmq 10851 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pr 5428 ax-un 7725 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-rmo 3377 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-ov 7412 df-oprab 7413 df-mpo 7414 df-om 7856 df-1st 7975 df-2nd 7976 df-frecs 8266 df-wrecs 8297 df-recs 8371 df-rdg 8410 df-1o 8466 df-oadd 8470 df-omul 8471 df-er 8703 df-ni 10867 df-mi 10869 df-lti 10870 df-mpq 10904 df-enq 10906 df-nq 10907 df-erq 10908 df-mq 10910 df-1nq 10911 |
This theorem is referenced by: mulcomnq 10948 mulerpq 10952 mulassnq 10954 distrnq 10956 recmulnq 10959 recclnq 10961 dmrecnq 10963 ltmnq 10967 prlem936 11042 |
Copyright terms: Public domain | W3C validator |