![]() |
Metamath
Proof Explorer Theorem List (p. 239 of 479) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-30159) |
![]() (30160-31682) |
![]() (31683-47806) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | ucnextcn 23801 | Extension by continuity. Theorem 2 of [BourbakiTop1] p. II.20. Given an uniform space on a set π, a subset π΄ dense in π, and a function πΉ uniformly continuous from π΄ to π, that function can be extended by continuity to the whole π, and its extension is uniformly continuous. (Contributed by Thierry Arnoux, 25-Jan-2018.) |
β’ π = (Baseβπ) & β’ π = (Baseβπ) & β’ π½ = (TopOpenβπ) & β’ πΎ = (TopOpenβπ) & β’ π = (UnifStβπ) & β’ π = (UnifStβ(π βΎs π΄)) & β’ π = (UnifStβπ) & β’ (π β π β TopSp) & β’ (π β π β UnifSp) & β’ (π β π β TopSp) & β’ (π β π β CUnifSp) & β’ (π β πΎ β Haus) & β’ (π β π΄ β π) & β’ (π β πΉ β (π Cnuπ)) & β’ (π β ((clsβπ½)βπ΄) = π) β β’ (π β ((π½CnExtπΎ)βπΉ) β (π½ Cn πΎ)) | ||
Theorem | ispsmet 23802* | Express the predicate "π· is a pseudometric." (Contributed by Thierry Arnoux, 7-Feb-2018.) |
β’ (π β π β (π· β (PsMetβπ) β (π·:(π Γ π)βΆβ* β§ βπ₯ β π ((π₯π·π₯) = 0 β§ βπ¦ β π βπ§ β π (π₯π·π¦) β€ ((π§π·π₯) +π (π§π·π¦)))))) | ||
Theorem | psmetdmdm 23803 | Recover the base set from a pseudometric. (Contributed by Thierry Arnoux, 7-Feb-2018.) |
β’ (π· β (PsMetβπ) β π = dom dom π·) | ||
Theorem | psmetf 23804 | The distance function of a pseudometric as a function. (Contributed by Thierry Arnoux, 7-Feb-2018.) |
β’ (π· β (PsMetβπ) β π·:(π Γ π)βΆβ*) | ||
Theorem | psmetcl 23805 | Closure of the distance function of a pseudometric space. (Contributed by Thierry Arnoux, 7-Feb-2018.) |
β’ ((π· β (PsMetβπ) β§ π΄ β π β§ π΅ β π) β (π΄π·π΅) β β*) | ||
Theorem | psmet0 23806 | The distance function of a pseudometric space is zero if its arguments are equal. (Contributed by Thierry Arnoux, 7-Feb-2018.) |
β’ ((π· β (PsMetβπ) β§ π΄ β π) β (π΄π·π΄) = 0) | ||
Theorem | psmettri2 23807 | Triangle inequality for the distance function of a pseudometric. (Contributed by Thierry Arnoux, 11-Feb-2018.) |
β’ ((π· β (PsMetβπ) β§ (πΆ β π β§ π΄ β π β§ π΅ β π)) β (π΄π·π΅) β€ ((πΆπ·π΄) +π (πΆπ·π΅))) | ||
Theorem | psmetsym 23808 | The distance function of a pseudometric is symmetrical. (Contributed by Thierry Arnoux, 7-Feb-2018.) |
β’ ((π· β (PsMetβπ) β§ π΄ β π β§ π΅ β π) β (π΄π·π΅) = (π΅π·π΄)) | ||
Theorem | psmettri 23809 | Triangle inequality for the distance function of a pseudometric space. (Contributed by Thierry Arnoux, 11-Feb-2018.) |
β’ ((π· β (PsMetβπ) β§ (π΄ β π β§ π΅ β π β§ πΆ β π)) β (π΄π·π΅) β€ ((π΄π·πΆ) +π (πΆπ·π΅))) | ||
Theorem | psmetge0 23810 | The distance function of a pseudometric space is nonnegative. (Contributed by Thierry Arnoux, 7-Feb-2018.) |
β’ ((π· β (PsMetβπ) β§ π΄ β π β§ π΅ β π) β 0 β€ (π΄π·π΅)) | ||
Theorem | psmetxrge0 23811 | The distance function of a pseudometric space is a function into the nonnegative extended real numbers. (Contributed by Thierry Arnoux, 24-Feb-2018.) |
β’ (π· β (PsMetβπ) β π·:(π Γ π)βΆ(0[,]+β)) | ||
Theorem | psmetres2 23812 | Restriction of a pseudometric. (Contributed by Thierry Arnoux, 11-Feb-2018.) |
β’ ((π· β (PsMetβπ) β§ π β π) β (π· βΎ (π Γ π )) β (PsMetβπ )) | ||
Theorem | psmetlecl 23813 | Real closure of an extended metric value that is upper bounded by a real. (Contributed by Thierry Arnoux, 11-Mar-2018.) |
β’ ((π· β (PsMetβπ) β§ (π΄ β π β§ π΅ β π) β§ (πΆ β β β§ (π΄π·π΅) β€ πΆ)) β (π΄π·π΅) β β) | ||
Theorem | distspace 23814 | A set π together with a (distance) function π· which is a pseudometric is a distance space (according to E. Deza, M.M. Deza: "Dictionary of Distances", Elsevier, 2006), i.e. a (base) set π equipped with a distance π·, which is a mapping of two elements of the base set to the (extended) reals and which is nonnegative, symmetric and equal to 0 if the two elements are equal. (Contributed by AV, 15-Oct-2021.) (Revised by AV, 5-Jul-2022.) |
β’ ((π· β (PsMetβπ) β§ π΄ β π β§ π΅ β π) β ((π·:(π Γ π)βΆβ* β§ (π΄π·π΄) = 0) β§ (0 β€ (π΄π·π΅) β§ (π΄π·π΅) = (π΅π·π΄)))) | ||
Syntax | cxms 23815 | Extend class notation with the class of extended metric spaces. |
class βMetSp | ||
Syntax | cms 23816 | Extend class notation with the class of metric spaces. |
class MetSp | ||
Syntax | ctms 23817 | Extend class notation with the function mapping a metric to the metric space it defines. |
class toMetSp | ||
Definition | df-xms 23818 | Define the (proper) class of extended metric spaces. (Contributed by Mario Carneiro, 2-Sep-2015.) |
β’ βMetSp = {π β TopSp β£ (TopOpenβπ) = (MetOpenβ((distβπ) βΎ ((Baseβπ) Γ (Baseβπ))))} | ||
Definition | df-ms 23819 | Define the (proper) class of metric spaces. (Contributed by NM, 27-Aug-2006.) |
β’ MetSp = {π β βMetSp β£ ((distβπ) βΎ ((Baseβπ) Γ (Baseβπ))) β (Metβ(Baseβπ))} | ||
Definition | df-tms 23820 | Define the function mapping a metric to the metric space which it defines. (Contributed by Mario Carneiro, 2-Sep-2015.) |
β’ toMetSp = (π β βͺ ran βMet β¦ ({β¨(Baseβndx), dom dom πβ©, β¨(distβndx), πβ©} sSet β¨(TopSetβndx), (MetOpenβπ)β©)) | ||
Theorem | ismet 23821* | Express the predicate "π· is a metric." (Contributed by NM, 25-Aug-2006.) (Revised by Mario Carneiro, 14-Aug-2015.) |
β’ (π β π΄ β (π· β (Metβπ) β (π·:(π Γ π)βΆβ β§ βπ₯ β π βπ¦ β π (((π₯π·π¦) = 0 β π₯ = π¦) β§ βπ§ β π (π₯π·π¦) β€ ((π§π·π₯) + (π§π·π¦)))))) | ||
Theorem | isxmet 23822* | Express the predicate "π· is an extended metric." (Contributed by Mario Carneiro, 20-Aug-2015.) |
β’ (π β π΄ β (π· β (βMetβπ) β (π·:(π Γ π)βΆβ* β§ βπ₯ β π βπ¦ β π (((π₯π·π¦) = 0 β π₯ = π¦) β§ βπ§ β π (π₯π·π¦) β€ ((π§π·π₯) +π (π§π·π¦)))))) | ||
Theorem | ismeti 23823* | Properties that determine a metric. (Contributed by NM, 17-Nov-2006.) (Revised by Mario Carneiro, 14-Aug-2015.) |
β’ π β V & β’ π·:(π Γ π)βΆβ & β’ ((π₯ β π β§ π¦ β π) β ((π₯π·π¦) = 0 β π₯ = π¦)) & β’ ((π₯ β π β§ π¦ β π β§ π§ β π) β (π₯π·π¦) β€ ((π§π·π₯) + (π§π·π¦))) β β’ π· β (Metβπ) | ||
Theorem | isxmetd 23824* | Properties that determine an extended metric. (Contributed by Mario Carneiro, 20-Aug-2015.) (Revised by AV, 9-Apr-2024.) |
β’ (π β π β π) & β’ (π β π·:(π Γ π)βΆβ*) & β’ ((π β§ (π₯ β π β§ π¦ β π)) β ((π₯π·π¦) = 0 β π₯ = π¦)) & β’ ((π β§ (π₯ β π β§ π¦ β π β§ π§ β π)) β (π₯π·π¦) β€ ((π§π·π₯) +π (π§π·π¦))) β β’ (π β π· β (βMetβπ)) | ||
Theorem | isxmet2d 23825* | It is safe to only require the triangle inequality when the values are real (so that we can use the standard addition over the reals), but in this case the nonnegativity constraint cannot be deduced and must be provided separately. (Counterexample: π·(π₯, π¦) = if(π₯ = π¦, 0, -β) satisfies all hypotheses except nonnegativity.) (Contributed by Mario Carneiro, 20-Aug-2015.) |
β’ (π β π β π) & β’ (π β π·:(π Γ π)βΆβ*) & β’ ((π β§ (π₯ β π β§ π¦ β π)) β 0 β€ (π₯π·π¦)) & β’ ((π β§ (π₯ β π β§ π¦ β π)) β ((π₯π·π¦) β€ 0 β π₯ = π¦)) & β’ ((π β§ (π₯ β π β§ π¦ β π β§ π§ β π) β§ ((π§π·π₯) β β β§ (π§π·π¦) β β)) β (π₯π·π¦) β€ ((π§π·π₯) + (π§π·π¦))) β β’ (π β π· β (βMetβπ)) | ||
Theorem | metflem 23826* | Lemma for metf 23828 and others. (Contributed by NM, 30-Aug-2006.) (Revised by Mario Carneiro, 14-Aug-2015.) |
β’ (π· β (Metβπ) β (π·:(π Γ π)βΆβ β§ βπ₯ β π βπ¦ β π (((π₯π·π¦) = 0 β π₯ = π¦) β§ βπ§ β π (π₯π·π¦) β€ ((π§π·π₯) + (π§π·π¦))))) | ||
Theorem | xmetf 23827 | Mapping of the distance function of an extended metric. (Contributed by Mario Carneiro, 20-Aug-2015.) |
β’ (π· β (βMetβπ) β π·:(π Γ π)βΆβ*) | ||
Theorem | metf 23828 | Mapping of the distance function of a metric space. (Contributed by NM, 30-Aug-2006.) |
β’ (π· β (Metβπ) β π·:(π Γ π)βΆβ) | ||
Theorem | xmetcl 23829 | Closure of the distance function of a metric space. Part of Property M1 of [Kreyszig] p. 3. (Contributed by NM, 30-Aug-2006.) |
β’ ((π· β (βMetβπ) β§ π΄ β π β§ π΅ β π) β (π΄π·π΅) β β*) | ||
Theorem | metcl 23830 | Closure of the distance function of a metric space. Part of Property M1 of [Kreyszig] p. 3. (Contributed by NM, 30-Aug-2006.) |
β’ ((π· β (Metβπ) β§ π΄ β π β§ π΅ β π) β (π΄π·π΅) β β) | ||
Theorem | ismet2 23831 | An extended metric is a metric exactly when it takes real values for all values of the arguments. (Contributed by Mario Carneiro, 20-Aug-2015.) |
β’ (π· β (Metβπ) β (π· β (βMetβπ) β§ π·:(π Γ π)βΆβ)) | ||
Theorem | metxmet 23832 | A metric is an extended metric. (Contributed by Mario Carneiro, 20-Aug-2015.) |
β’ (π· β (Metβπ) β π· β (βMetβπ)) | ||
Theorem | xmetdmdm 23833 | Recover the base set from an extended metric. (Contributed by Mario Carneiro, 23-Aug-2015.) |
β’ (π· β (βMetβπ) β π = dom dom π·) | ||
Theorem | metdmdm 23834 | Recover the base set from a metric. (Contributed by Mario Carneiro, 23-Aug-2015.) |
β’ (π· β (Metβπ) β π = dom dom π·) | ||
Theorem | xmetunirn 23835 | Two ways to express an extended metric on an unspecified base. (Contributed by Mario Carneiro, 13-Oct-2015.) |
β’ (π· β βͺ ran βMet β π· β (βMetβdom dom π·)) | ||
Theorem | xmeteq0 23836 | The value of an extended metric is zero iff its arguments are equal. (Contributed by Mario Carneiro, 20-Aug-2015.) |
β’ ((π· β (βMetβπ) β§ π΄ β π β§ π΅ β π) β ((π΄π·π΅) = 0 β π΄ = π΅)) | ||
Theorem | meteq0 23837 | The value of a metric is zero iff its arguments are equal. Property M2 of [Kreyszig] p. 4. (Contributed by NM, 30-Aug-2006.) |
β’ ((π· β (Metβπ) β§ π΄ β π β§ π΅ β π) β ((π΄π·π΅) = 0 β π΄ = π΅)) | ||
Theorem | xmettri2 23838 | Triangle inequality for the distance function of an extended metric. (Contributed by Mario Carneiro, 20-Aug-2015.) |
β’ ((π· β (βMetβπ) β§ (πΆ β π β§ π΄ β π β§ π΅ β π)) β (π΄π·π΅) β€ ((πΆπ·π΄) +π (πΆπ·π΅))) | ||
Theorem | mettri2 23839 | Triangle inequality for the distance function of a metric space. (Contributed by NM, 30-Aug-2006.) (Revised by Mario Carneiro, 20-Aug-2015.) |
β’ ((π· β (Metβπ) β§ (πΆ β π β§ π΄ β π β§ π΅ β π)) β (π΄π·π΅) β€ ((πΆπ·π΄) + (πΆπ·π΅))) | ||
Theorem | xmet0 23840 | The distance function of a metric space is zero if its arguments are equal. Definition 14-1.1(a) of [Gleason] p. 223. (Contributed by Mario Carneiro, 20-Aug-2015.) |
β’ ((π· β (βMetβπ) β§ π΄ β π) β (π΄π·π΄) = 0) | ||
Theorem | met0 23841 | The distance function of a metric space is zero if its arguments are equal. Definition 14-1.1(a) of [Gleason] p. 223. (Contributed by NM, 30-Aug-2006.) |
β’ ((π· β (Metβπ) β§ π΄ β π) β (π΄π·π΄) = 0) | ||
Theorem | xmetge0 23842 | The distance function of a metric space is nonnegative. (Contributed by Mario Carneiro, 20-Aug-2015.) |
β’ ((π· β (βMetβπ) β§ π΄ β π β§ π΅ β π) β 0 β€ (π΄π·π΅)) | ||
Theorem | metge0 23843 | The distance function of a metric space is nonnegative. (Contributed by NM, 27-Aug-2006.) (Revised by Mario Carneiro, 14-Aug-2015.) |
β’ ((π· β (Metβπ) β§ π΄ β π β§ π΅ β π) β 0 β€ (π΄π·π΅)) | ||
Theorem | xmetlecl 23844 | Real closure of an extended metric value that is upper bounded by a real. (Contributed by Mario Carneiro, 20-Aug-2015.) |
β’ ((π· β (βMetβπ) β§ (π΄ β π β§ π΅ β π) β§ (πΆ β β β§ (π΄π·π΅) β€ πΆ)) β (π΄π·π΅) β β) | ||
Theorem | xmetsym 23845 | The distance function of an extended metric space is symmetric. (Contributed by Mario Carneiro, 20-Aug-2015.) |
β’ ((π· β (βMetβπ) β§ π΄ β π β§ π΅ β π) β (π΄π·π΅) = (π΅π·π΄)) | ||
Theorem | xmetpsmet 23846 | An extended metric is a pseudometric. (Contributed by Thierry Arnoux, 7-Feb-2018.) |
β’ (π· β (βMetβπ) β π· β (PsMetβπ)) | ||
Theorem | xmettpos 23847 | The distance function of an extended metric space is symmetric. (Contributed by Mario Carneiro, 20-Aug-2015.) |
β’ (π· β (βMetβπ) β tpos π· = π·) | ||
Theorem | metsym 23848 | The distance function of a metric space is symmetric. Definition 14-1.1(c) of [Gleason] p. 223. (Contributed by NM, 27-Aug-2006.) (Revised by Mario Carneiro, 20-Aug-2015.) |
β’ ((π· β (Metβπ) β§ π΄ β π β§ π΅ β π) β (π΄π·π΅) = (π΅π·π΄)) | ||
Theorem | xmettri 23849 | Triangle inequality for the distance function of a metric space. Definition 14-1.1(d) of [Gleason] p. 223. (Contributed by Mario Carneiro, 20-Aug-2015.) |
β’ ((π· β (βMetβπ) β§ (π΄ β π β§ π΅ β π β§ πΆ β π)) β (π΄π·π΅) β€ ((π΄π·πΆ) +π (πΆπ·π΅))) | ||
Theorem | mettri 23850 | Triangle inequality for the distance function of a metric space. Definition 14-1.1(d) of [Gleason] p. 223. (Contributed by NM, 27-Aug-2006.) |
β’ ((π· β (Metβπ) β§ (π΄ β π β§ π΅ β π β§ πΆ β π)) β (π΄π·π΅) β€ ((π΄π·πΆ) + (πΆπ·π΅))) | ||
Theorem | xmettri3 23851 | Triangle inequality for the distance function of an extended metric. (Contributed by Mario Carneiro, 20-Aug-2015.) |
β’ ((π· β (βMetβπ) β§ (π΄ β π β§ π΅ β π β§ πΆ β π)) β (π΄π·π΅) β€ ((π΄π·πΆ) +π (π΅π·πΆ))) | ||
Theorem | mettri3 23852 | Triangle inequality for the distance function of a metric space. (Contributed by NM, 13-Mar-2007.) |
β’ ((π· β (Metβπ) β§ (π΄ β π β§ π΅ β π β§ πΆ β π)) β (π΄π·π΅) β€ ((π΄π·πΆ) + (π΅π·πΆ))) | ||
Theorem | xmetrtri 23853 | One half of the reverse triangle inequality for the distance function of an extended metric. (Contributed by Mario Carneiro, 4-Sep-2015.) |
β’ ((π· β (βMetβπ) β§ (π΄ β π β§ π΅ β π β§ πΆ β π)) β ((π΄π·πΆ) +π -π(π΅π·πΆ)) β€ (π΄π·π΅)) | ||
Theorem | xmetrtri2 23854 | The reverse triangle inequality for the distance function of an extended metric. In order to express the "extended absolute value function", we use the distance function xrsdsval 20982 defined on the extended real structure. (Contributed by Mario Carneiro, 4-Sep-2015.) |
β’ πΎ = (distββ*π ) β β’ ((π· β (βMetβπ) β§ (π΄ β π β§ π΅ β π β§ πΆ β π)) β ((π΄π·πΆ)πΎ(π΅π·πΆ)) β€ (π΄π·π΅)) | ||
Theorem | metrtri 23855 | Reverse triangle inequality for the distance function of a metric space. (Contributed by Mario Carneiro, 5-May-2014.) |
β’ ((π· β (Metβπ) β§ (π΄ β π β§ π΅ β π β§ πΆ β π)) β (absβ((π΄π·πΆ) β (π΅π·πΆ))) β€ (π΄π·π΅)) | ||
Theorem | xmetgt0 23856 | The distance function of an extended metric space is positive for unequal points. (Contributed by Mario Carneiro, 20-Aug-2015.) |
β’ ((π· β (βMetβπ) β§ π΄ β π β§ π΅ β π) β (π΄ β π΅ β 0 < (π΄π·π΅))) | ||
Theorem | metgt0 23857 | The distance function of a metric space is positive for unequal points. Definition 14-1.1(b) of [Gleason] p. 223 and its converse. (Contributed by NM, 27-Aug-2006.) |
β’ ((π· β (Metβπ) β§ π΄ β π β§ π΅ β π) β (π΄ β π΅ β 0 < (π΄π·π΅))) | ||
Theorem | metn0 23858 | A metric space is nonempty iff its base set is nonempty. (Contributed by NM, 4-Oct-2007.) (Revised by Mario Carneiro, 14-Aug-2015.) |
β’ (π· β (Metβπ) β (π· β β β π β β )) | ||
Theorem | xmetres2 23859 | Restriction of an extended metric. (Contributed by Mario Carneiro, 20-Aug-2015.) |
β’ ((π· β (βMetβπ) β§ π β π) β (π· βΎ (π Γ π )) β (βMetβπ )) | ||
Theorem | metreslem 23860 | Lemma for metres 23863. (Contributed by Mario Carneiro, 24-Aug-2015.) |
β’ (dom π· = (π Γ π) β (π· βΎ (π Γ π )) = (π· βΎ ((π β© π ) Γ (π β© π )))) | ||
Theorem | metres2 23861 | Lemma for metres 23863. (Contributed by FL, 12-Oct-2006.) (Proof shortened by Mario Carneiro, 14-Aug-2015.) |
β’ ((π· β (Metβπ) β§ π β π) β (π· βΎ (π Γ π )) β (Metβπ )) | ||
Theorem | xmetres 23862 | A restriction of an extended metric is an extended metric. (Contributed by Mario Carneiro, 24-Aug-2015.) |
β’ (π· β (βMetβπ) β (π· βΎ (π Γ π )) β (βMetβ(π β© π ))) | ||
Theorem | metres 23863 | A restriction of a metric is a metric. (Contributed by NM, 26-Aug-2007.) (Revised by Mario Carneiro, 14-Aug-2015.) |
β’ (π· β (Metβπ) β (π· βΎ (π Γ π )) β (Metβ(π β© π ))) | ||
Theorem | 0met 23864 | The empty metric. (Contributed by NM, 30-Aug-2006.) (Revised by Mario Carneiro, 14-Aug-2015.) |
β’ β β (Metββ ) | ||
Theorem | prdsdsf 23865* | The product metric is a function into the nonnegative extended reals. In general this means that it is not a metric but rather an *extended* metric (even when all the factors are metrics), but it will be a metric when restricted to regions where it does not take infinite values. (Contributed by Mario Carneiro, 20-Aug-2015.) |
β’ π = (πXs(π₯ β πΌ β¦ π )) & β’ π΅ = (Baseβπ) & β’ π = (Baseβπ ) & β’ πΈ = ((distβπ ) βΎ (π Γ π)) & β’ π· = (distβπ) & β’ (π β π β π) & β’ (π β πΌ β π) & β’ ((π β§ π₯ β πΌ) β π β π) & β’ ((π β§ π₯ β πΌ) β πΈ β (βMetβπ)) β β’ (π β π·:(π΅ Γ π΅)βΆ(0[,]+β)) | ||
Theorem | prdsxmetlem 23866* | The product metric is an extended metric. (Contributed by Mario Carneiro, 20-Aug-2015.) |
β’ π = (πXs(π₯ β πΌ β¦ π )) & β’ π΅ = (Baseβπ) & β’ π = (Baseβπ ) & β’ πΈ = ((distβπ ) βΎ (π Γ π)) & β’ π· = (distβπ) & β’ (π β π β π) & β’ (π β πΌ β π) & β’ ((π β§ π₯ β πΌ) β π β π) & β’ ((π β§ π₯ β πΌ) β πΈ β (βMetβπ)) β β’ (π β π· β (βMetβπ΅)) | ||
Theorem | prdsxmet 23867* | The product metric is an extended metric. Eliminate disjoint variable conditions from prdsxmetlem 23866. (Contributed by Mario Carneiro, 26-Sep-2015.) |
β’ π = (πXs(π₯ β πΌ β¦ π )) & β’ π΅ = (Baseβπ) & β’ π = (Baseβπ ) & β’ πΈ = ((distβπ ) βΎ (π Γ π)) & β’ π· = (distβπ) & β’ (π β π β π) & β’ (π β πΌ β π) & β’ ((π β§ π₯ β πΌ) β π β π) & β’ ((π β§ π₯ β πΌ) β πΈ β (βMetβπ)) β β’ (π β π· β (βMetβπ΅)) | ||
Theorem | prdsmet 23868* | The product metric is a metric when the index set is finite. (Contributed by Mario Carneiro, 20-Aug-2015.) |
β’ π = (πXs(π₯ β πΌ β¦ π )) & β’ π΅ = (Baseβπ) & β’ π = (Baseβπ ) & β’ πΈ = ((distβπ ) βΎ (π Γ π)) & β’ π· = (distβπ) & β’ (π β π β π) & β’ (π β πΌ β Fin) & β’ ((π β§ π₯ β πΌ) β π β π) & β’ ((π β§ π₯ β πΌ) β πΈ β (Metβπ)) β β’ (π β π· β (Metβπ΅)) | ||
Theorem | ressprdsds 23869* | Restriction of a product metric. (Contributed by Mario Carneiro, 16-Sep-2015.) |
β’ (π β π = (πXs(π₯ β πΌ β¦ π ))) & β’ (π β π» = (πXs(π₯ β πΌ β¦ (π βΎs π΄)))) & β’ π΅ = (Baseβπ») & β’ π· = (distβπ) & β’ πΈ = (distβπ») & β’ (π β π β π) & β’ (π β π β π) & β’ (π β πΌ β π) & β’ ((π β§ π₯ β πΌ) β π β π) & β’ ((π β§ π₯ β πΌ) β π΄ β π) β β’ (π β πΈ = (π· βΎ (π΅ Γ π΅))) | ||
Theorem | resspwsds 23870 | Restriction of a power metric. (Contributed by Mario Carneiro, 16-Sep-2015.) |
β’ (π β π = (π βs πΌ)) & β’ (π β π» = ((π βΎs π΄) βs πΌ)) & β’ π΅ = (Baseβπ») & β’ π· = (distβπ) & β’ πΈ = (distβπ») & β’ (π β πΌ β π) & β’ (π β π β π) & β’ (π β π΄ β π) β β’ (π β πΈ = (π· βΎ (π΅ Γ π΅))) | ||
Theorem | imasdsf1olem 23871* | Lemma for imasdsf1o 23872. (Contributed by Mario Carneiro, 21-Aug-2015.) (Proof shortened by AV, 6-Oct-2020.) |
β’ (π β π = (πΉ βs π )) & β’ (π β π = (Baseβπ )) & β’ (π β πΉ:πβ1-1-ontoβπ΅) & β’ (π β π β π) & β’ πΈ = ((distβπ ) βΎ (π Γ π)) & β’ π· = (distβπ) & β’ (π β πΈ β (βMetβπ)) & β’ (π β π β π) & β’ (π β π β π) & β’ π = (β*π βΎs (β* β {-β})) & β’ π = {β β ((π Γ π) βm (1...π)) β£ ((πΉβ(1st β(ββ1))) = (πΉβπ) β§ (πΉβ(2nd β(ββπ))) = (πΉβπ) β§ βπ β (1...(π β 1))(πΉβ(2nd β(ββπ))) = (πΉβ(1st β(ββ(π + 1)))))} & β’ π = βͺ π β β ran (π β π β¦ (β*π Ξ£g (πΈ β π))) β β’ (π β ((πΉβπ)π·(πΉβπ)) = (ππΈπ)) | ||
Theorem | imasdsf1o 23872 | The distance function is transferred across an image structure under a bijection. (Contributed by Mario Carneiro, 20-Aug-2015.) |
β’ (π β π = (πΉ βs π )) & β’ (π β π = (Baseβπ )) & β’ (π β πΉ:πβ1-1-ontoβπ΅) & β’ (π β π β π) & β’ πΈ = ((distβπ ) βΎ (π Γ π)) & β’ π· = (distβπ) & β’ (π β πΈ β (βMetβπ)) & β’ (π β π β π) & β’ (π β π β π) β β’ (π β ((πΉβπ)π·(πΉβπ)) = (ππΈπ)) | ||
Theorem | imasf1oxmet 23873 | The image of an extended metric is an extended metric. (Contributed by Mario Carneiro, 20-Aug-2015.) |
β’ (π β π = (πΉ βs π )) & β’ (π β π = (Baseβπ )) & β’ (π β πΉ:πβ1-1-ontoβπ΅) & β’ (π β π β π) & β’ πΈ = ((distβπ ) βΎ (π Γ π)) & β’ π· = (distβπ) & β’ (π β πΈ β (βMetβπ)) β β’ (π β π· β (βMetβπ΅)) | ||
Theorem | imasf1omet 23874 | The image of a metric is a metric. (Contributed by Mario Carneiro, 21-Aug-2015.) |
β’ (π β π = (πΉ βs π )) & β’ (π β π = (Baseβπ )) & β’ (π β πΉ:πβ1-1-ontoβπ΅) & β’ (π β π β π) & β’ πΈ = ((distβπ ) βΎ (π Γ π)) & β’ π· = (distβπ) & β’ (π β πΈ β (Metβπ)) β β’ (π β π· β (Metβπ΅)) | ||
Theorem | xpsdsfn 23875 | Closure of the metric in a binary structure product. (Contributed by Mario Carneiro, 20-Aug-2015.) |
β’ π = (π Γs π) & β’ π = (Baseβπ ) & β’ π = (Baseβπ) & β’ (π β π β π) & β’ (π β π β π) & β’ π = (distβπ) β β’ (π β π Fn ((π Γ π) Γ (π Γ π))) | ||
Theorem | xpsdsfn2 23876 | Closure of the metric in a binary structure product. (Contributed by Mario Carneiro, 20-Aug-2015.) |
β’ π = (π Γs π) & β’ π = (Baseβπ ) & β’ π = (Baseβπ) & β’ (π β π β π) & β’ (π β π β π) & β’ π = (distβπ) β β’ (π β π Fn ((Baseβπ) Γ (Baseβπ))) | ||
Theorem | xpsxmetlem 23877* | Lemma for xpsxmet 23878. (Contributed by Mario Carneiro, 21-Aug-2015.) |
β’ π = (π Γs π) & β’ π = (Baseβπ ) & β’ π = (Baseβπ) & β’ (π β π β π) & β’ (π β π β π) & β’ π = (distβπ) & β’ π = ((distβπ ) βΎ (π Γ π)) & β’ π = ((distβπ) βΎ (π Γ π)) & β’ (π β π β (βMetβπ)) & β’ (π β π β (βMetβπ)) β β’ (π β (distβ((Scalarβπ )Xs{β¨β , π β©, β¨1o, πβ©})) β (βMetβran (π₯ β π, π¦ β π β¦ {β¨β , π₯β©, β¨1o, π¦β©}))) | ||
Theorem | xpsxmet 23878 | A product metric of extended metrics is an extended metric. (Contributed by Mario Carneiro, 21-Aug-2015.) |
β’ π = (π Γs π) & β’ π = (Baseβπ ) & β’ π = (Baseβπ) & β’ (π β π β π) & β’ (π β π β π) & β’ π = (distβπ) & β’ π = ((distβπ ) βΎ (π Γ π)) & β’ π = ((distβπ) βΎ (π Γ π)) & β’ (π β π β (βMetβπ)) & β’ (π β π β (βMetβπ)) β β’ (π β π β (βMetβ(π Γ π))) | ||
Theorem | xpsdsval 23879 | Value of the metric in a binary structure product. (Contributed by Mario Carneiro, 20-Aug-2015.) |
β’ π = (π Γs π) & β’ π = (Baseβπ ) & β’ π = (Baseβπ) & β’ (π β π β π) & β’ (π β π β π) & β’ π = (distβπ) & β’ π = ((distβπ ) βΎ (π Γ π)) & β’ π = ((distβπ) βΎ (π Γ π)) & β’ (π β π β (βMetβπ)) & β’ (π β π β (βMetβπ)) & β’ (π β π΄ β π) & β’ (π β π΅ β π) & β’ (π β πΆ β π) & β’ (π β π· β π) β β’ (π β (β¨π΄, π΅β©πβ¨πΆ, π·β©) = sup({(π΄ππΆ), (π΅ππ·)}, β*, < )) | ||
Theorem | xpsmet 23880 | The direct product of two metric spaces. Definition 14-1.5 of [Gleason] p. 225. (Contributed by NM, 20-Jun-2007.) (Revised by Mario Carneiro, 20-Aug-2015.) |
β’ π = (π Γs π) & β’ π = (Baseβπ ) & β’ π = (Baseβπ) & β’ (π β π β π) & β’ (π β π β π) & β’ π = (distβπ) & β’ π = ((distβπ ) βΎ (π Γ π)) & β’ π = ((distβπ) βΎ (π Γ π)) & β’ (π β π β (Metβπ)) & β’ (π β π β (Metβπ)) β β’ (π β π β (Metβ(π Γ π))) | ||
Theorem | blfvalps 23881* | The value of the ball function. (Contributed by NM, 30-Aug-2006.) (Revised by Mario Carneiro, 11-Nov-2013.) (Revised by Thierry Arnoux, 11-Feb-2018.) |
β’ (π· β (PsMetβπ) β (ballβπ·) = (π₯ β π, π β β* β¦ {π¦ β π β£ (π₯π·π¦) < π})) | ||
Theorem | blfval 23882* | The value of the ball function. (Contributed by NM, 30-Aug-2006.) (Revised by Mario Carneiro, 11-Nov-2013.) (Proof shortened by Thierry Arnoux, 11-Feb-2018.) |
β’ (π· β (βMetβπ) β (ballβπ·) = (π₯ β π, π β β* β¦ {π¦ β π β£ (π₯π·π¦) < π})) | ||
Theorem | blvalps 23883* | The ball around a point π is the set of all points whose distance from π is less than the ball's radius π . (Contributed by NM, 31-Aug-2006.) (Revised by Mario Carneiro, 11-Nov-2013.) (Revised by Thierry Arnoux, 11-Mar-2018.) |
β’ ((π· β (PsMetβπ) β§ π β π β§ π β β*) β (π(ballβπ·)π ) = {π₯ β π β£ (ππ·π₯) < π }) | ||
Theorem | blval 23884* | The ball around a point π is the set of all points whose distance from π is less than the ball's radius π . (Contributed by NM, 31-Aug-2006.) (Revised by Mario Carneiro, 11-Nov-2013.) |
β’ ((π· β (βMetβπ) β§ π β π β§ π β β*) β (π(ballβπ·)π ) = {π₯ β π β£ (ππ·π₯) < π }) | ||
Theorem | elblps 23885 | Membership in a ball. (Contributed by NM, 2-Sep-2006.) (Revised by Mario Carneiro, 11-Nov-2013.) (Revised by Thierry Arnoux, 11-Mar-2018.) |
β’ ((π· β (PsMetβπ) β§ π β π β§ π β β*) β (π΄ β (π(ballβπ·)π ) β (π΄ β π β§ (ππ·π΄) < π ))) | ||
Theorem | elbl 23886 | Membership in a ball. (Contributed by NM, 2-Sep-2006.) (Revised by Mario Carneiro, 11-Nov-2013.) |
β’ ((π· β (βMetβπ) β§ π β π β§ π β β*) β (π΄ β (π(ballβπ·)π ) β (π΄ β π β§ (ππ·π΄) < π ))) | ||
Theorem | elbl2ps 23887 | Membership in a ball. (Contributed by NM, 9-Mar-2007.) (Revised by Thierry Arnoux, 11-Mar-2018.) |
β’ (((π· β (PsMetβπ) β§ π β β*) β§ (π β π β§ π΄ β π)) β (π΄ β (π(ballβπ·)π ) β (ππ·π΄) < π )) | ||
Theorem | elbl2 23888 | Membership in a ball. (Contributed by NM, 9-Mar-2007.) |
β’ (((π· β (βMetβπ) β§ π β β*) β§ (π β π β§ π΄ β π)) β (π΄ β (π(ballβπ·)π ) β (ππ·π΄) < π )) | ||
Theorem | elbl3ps 23889 | Membership in a ball, with reversed distance function arguments. (Contributed by NM, 10-Nov-2007.) |
β’ (((π· β (PsMetβπ) β§ π β β*) β§ (π β π β§ π΄ β π)) β (π΄ β (π(ballβπ·)π ) β (π΄π·π) < π )) | ||
Theorem | elbl3 23890 | Membership in a ball, with reversed distance function arguments. (Contributed by NM, 10-Nov-2007.) |
β’ (((π· β (βMetβπ) β§ π β β*) β§ (π β π β§ π΄ β π)) β (π΄ β (π(ballβπ·)π ) β (π΄π·π) < π )) | ||
Theorem | blcomps 23891 | Commute the arguments to the ball function. (Contributed by Mario Carneiro, 22-Jan-2014.) (Revised by Thierry Arnoux, 11-Mar-2018.) |
β’ (((π· β (PsMetβπ) β§ π β β*) β§ (π β π β§ π΄ β π)) β (π΄ β (π(ballβπ·)π ) β π β (π΄(ballβπ·)π ))) | ||
Theorem | blcom 23892 | Commute the arguments to the ball function. (Contributed by Mario Carneiro, 22-Jan-2014.) |
β’ (((π· β (βMetβπ) β§ π β β*) β§ (π β π β§ π΄ β π)) β (π΄ β (π(ballβπ·)π ) β π β (π΄(ballβπ·)π ))) | ||
Theorem | xblpnfps 23893 | The infinity ball in an extended metric is the set of all points that are a finite distance from the center. (Contributed by Mario Carneiro, 23-Aug-2015.) (Revised by Thierry Arnoux, 11-Mar-2018.) |
β’ ((π· β (PsMetβπ) β§ π β π) β (π΄ β (π(ballβπ·)+β) β (π΄ β π β§ (ππ·π΄) β β))) | ||
Theorem | xblpnf 23894 | The infinity ball in an extended metric is the set of all points that are a finite distance from the center. (Contributed by Mario Carneiro, 23-Aug-2015.) |
β’ ((π· β (βMetβπ) β§ π β π) β (π΄ β (π(ballβπ·)+β) β (π΄ β π β§ (ππ·π΄) β β))) | ||
Theorem | blpnf 23895 | The infinity ball in a standard metric is just the whole space. (Contributed by Mario Carneiro, 23-Aug-2015.) |
β’ ((π· β (Metβπ) β§ π β π) β (π(ballβπ·)+β) = π) | ||
Theorem | bldisj 23896 | Two balls are disjoint if the center-to-center distance is more than the sum of the radii. (Contributed by Mario Carneiro, 30-Dec-2013.) |
β’ (((π· β (βMetβπ) β§ π β π β§ π β π) β§ (π β β* β§ π β β* β§ (π +π π) β€ (ππ·π))) β ((π(ballβπ·)π ) β© (π(ballβπ·)π)) = β ) | ||
Theorem | blgt0 23897 | A nonempty ball implies that the radius is positive. (Contributed by NM, 11-Mar-2007.) (Revised by Mario Carneiro, 23-Aug-2015.) |
β’ (((π· β (βMetβπ) β§ π β π β§ π β β*) β§ π΄ β (π(ballβπ·)π )) β 0 < π ) | ||
Theorem | bl2in 23898 | Two balls are disjoint if they don't overlap. (Contributed by NM, 11-Mar-2007.) (Revised by Mario Carneiro, 23-Aug-2015.) |
β’ (((π· β (Metβπ) β§ π β π β§ π β π) β§ (π β β β§ π β€ ((ππ·π) / 2))) β ((π(ballβπ·)π ) β© (π(ballβπ·)π )) = β ) | ||
Theorem | xblss2ps 23899 | One ball is contained in another if the center-to-center distance is less than the difference of the radii. In this version of blss2 23902 for extended metrics, we have to assume the balls are a finite distance apart, or else π will not even be in the infinity ball around π. (Contributed by Mario Carneiro, 23-Aug-2015.) (Revised by Thierry Arnoux, 11-Mar-2018.) |
β’ (π β π· β (PsMetβπ)) & β’ (π β π β π) & β’ (π β π β π) & β’ (π β π β β*) & β’ (π β π β β*) & β’ (π β (ππ·π) β β) & β’ (π β (ππ·π) β€ (π +π -ππ )) β β’ (π β (π(ballβπ·)π ) β (π(ballβπ·)π)) | ||
Theorem | xblss2 23900 | One ball is contained in another if the center-to-center distance is less than the difference of the radii. In this version of blss2 23902 for extended metrics, we have to assume the balls are a finite distance apart, or else π will not even be in the infinity ball around π. (Contributed by Mario Carneiro, 23-Aug-2015.) |
β’ (π β π· β (βMetβπ)) & β’ (π β π β π) & β’ (π β π β π) & β’ (π β π β β*) & β’ (π β π β β*) & β’ (π β (ππ·π) β β) & β’ (π β (ππ·π) β€ (π +π -ππ )) β β’ (π β (π(ballβπ·)π ) β (π(ballβπ·)π)) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |