![]() |
Metamath
Proof Explorer Theorem List (p. 239 of 473) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-29860) |
![]() (29861-31383) |
![]() (31384-47242) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | isxms2 23801 | Express the predicate "〈𝑋, 𝐷〉 is an extended metric space" with underlying set 𝑋 and distance function 𝐷. (Contributed by Mario Carneiro, 2-Sep-2015.) |
⊢ 𝐽 = (TopOpen‘𝐾) & ⊢ 𝑋 = (Base‘𝐾) & ⊢ 𝐷 = ((dist‘𝐾) ↾ (𝑋 × 𝑋)) ⇒ ⊢ (𝐾 ∈ ∞MetSp ↔ (𝐷 ∈ (∞Met‘𝑋) ∧ 𝐽 = (MetOpen‘𝐷))) | ||
Theorem | isms 23802 | Express the predicate "〈𝑋, 𝐷〉 is a metric space" with underlying set 𝑋 and distance function 𝐷. (Contributed by NM, 27-Aug-2006.) (Revised by Mario Carneiro, 24-Aug-2015.) |
⊢ 𝐽 = (TopOpen‘𝐾) & ⊢ 𝑋 = (Base‘𝐾) & ⊢ 𝐷 = ((dist‘𝐾) ↾ (𝑋 × 𝑋)) ⇒ ⊢ (𝐾 ∈ MetSp ↔ (𝐾 ∈ ∞MetSp ∧ 𝐷 ∈ (Met‘𝑋))) | ||
Theorem | isms2 23803 | Express the predicate "〈𝑋, 𝐷〉 is a metric space" with underlying set 𝑋 and distance function 𝐷. (Contributed by NM, 27-Aug-2006.) (Revised by Mario Carneiro, 24-Aug-2015.) |
⊢ 𝐽 = (TopOpen‘𝐾) & ⊢ 𝑋 = (Base‘𝐾) & ⊢ 𝐷 = ((dist‘𝐾) ↾ (𝑋 × 𝑋)) ⇒ ⊢ (𝐾 ∈ MetSp ↔ (𝐷 ∈ (Met‘𝑋) ∧ 𝐽 = (MetOpen‘𝐷))) | ||
Theorem | xmstopn 23804 | The topology component of an extended metric space coincides with the topology generated by the metric component. (Contributed by Mario Carneiro, 26-Aug-2015.) |
⊢ 𝐽 = (TopOpen‘𝐾) & ⊢ 𝑋 = (Base‘𝐾) & ⊢ 𝐷 = ((dist‘𝐾) ↾ (𝑋 × 𝑋)) ⇒ ⊢ (𝐾 ∈ ∞MetSp → 𝐽 = (MetOpen‘𝐷)) | ||
Theorem | mstopn 23805 | The topology component of a metric space coincides with the topology generated by the metric component. (Contributed by Mario Carneiro, 26-Aug-2015.) |
⊢ 𝐽 = (TopOpen‘𝐾) & ⊢ 𝑋 = (Base‘𝐾) & ⊢ 𝐷 = ((dist‘𝐾) ↾ (𝑋 × 𝑋)) ⇒ ⊢ (𝐾 ∈ MetSp → 𝐽 = (MetOpen‘𝐷)) | ||
Theorem | xmstps 23806 | An extended metric space is a topological space. (Contributed by Mario Carneiro, 26-Aug-2015.) |
⊢ (𝑀 ∈ ∞MetSp → 𝑀 ∈ TopSp) | ||
Theorem | msxms 23807 | A metric space is an extended metric space. (Contributed by Mario Carneiro, 26-Aug-2015.) |
⊢ (𝑀 ∈ MetSp → 𝑀 ∈ ∞MetSp) | ||
Theorem | mstps 23808 | A metric space is a topological space. (Contributed by Mario Carneiro, 26-Aug-2015.) |
⊢ (𝑀 ∈ MetSp → 𝑀 ∈ TopSp) | ||
Theorem | xmsxmet 23809 | The distance function, suitably truncated, is an extended metric on 𝑋. (Contributed by Mario Carneiro, 2-Sep-2015.) |
⊢ 𝑋 = (Base‘𝑀) & ⊢ 𝐷 = ((dist‘𝑀) ↾ (𝑋 × 𝑋)) ⇒ ⊢ (𝑀 ∈ ∞MetSp → 𝐷 ∈ (∞Met‘𝑋)) | ||
Theorem | msmet 23810 | The distance function, suitably truncated, is a metric on 𝑋. (Contributed by Mario Carneiro, 12-Nov-2013.) |
⊢ 𝑋 = (Base‘𝑀) & ⊢ 𝐷 = ((dist‘𝑀) ↾ (𝑋 × 𝑋)) ⇒ ⊢ (𝑀 ∈ MetSp → 𝐷 ∈ (Met‘𝑋)) | ||
Theorem | msf 23811 | The distance function of a metric space is a function into the real numbers. (Contributed by NM, 30-Aug-2006.) (Revised by Mario Carneiro, 12-Nov-2013.) |
⊢ 𝑋 = (Base‘𝑀) & ⊢ 𝐷 = ((dist‘𝑀) ↾ (𝑋 × 𝑋)) ⇒ ⊢ (𝑀 ∈ MetSp → 𝐷:(𝑋 × 𝑋)⟶ℝ) | ||
Theorem | xmsxmet2 23812 | The distance function, suitably truncated, is an extended metric on 𝑋. (Contributed by Mario Carneiro, 2-Oct-2015.) |
⊢ 𝑋 = (Base‘𝑀) & ⊢ 𝐷 = (dist‘𝑀) ⇒ ⊢ (𝑀 ∈ ∞MetSp → (𝐷 ↾ (𝑋 × 𝑋)) ∈ (∞Met‘𝑋)) | ||
Theorem | msmet2 23813 | The distance function, suitably truncated, is a metric on 𝑋. (Contributed by Mario Carneiro, 2-Oct-2015.) |
⊢ 𝑋 = (Base‘𝑀) & ⊢ 𝐷 = (dist‘𝑀) ⇒ ⊢ (𝑀 ∈ MetSp → (𝐷 ↾ (𝑋 × 𝑋)) ∈ (Met‘𝑋)) | ||
Theorem | mscl 23814 | Closure of the distance function of a metric space. (Contributed by NM, 30-Aug-2006.) (Revised by Mario Carneiro, 2-Oct-2015.) |
⊢ 𝑋 = (Base‘𝑀) & ⊢ 𝐷 = (dist‘𝑀) ⇒ ⊢ ((𝑀 ∈ MetSp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐷𝐵) ∈ ℝ) | ||
Theorem | xmscl 23815 | Closure of the distance function of an extended metric space. (Contributed by Mario Carneiro, 2-Oct-2015.) |
⊢ 𝑋 = (Base‘𝑀) & ⊢ 𝐷 = (dist‘𝑀) ⇒ ⊢ ((𝑀 ∈ ∞MetSp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐷𝐵) ∈ ℝ*) | ||
Theorem | xmsge0 23816 | The distance function in an extended metric space is nonnegative. (Contributed by Mario Carneiro, 4-Oct-2015.) |
⊢ 𝑋 = (Base‘𝑀) & ⊢ 𝐷 = (dist‘𝑀) ⇒ ⊢ ((𝑀 ∈ ∞MetSp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → 0 ≤ (𝐴𝐷𝐵)) | ||
Theorem | xmseq0 23817 | The distance between two points in an extended metric space is zero iff the two points are identical. (Contributed by Mario Carneiro, 2-Oct-2015.) |
⊢ 𝑋 = (Base‘𝑀) & ⊢ 𝐷 = (dist‘𝑀) ⇒ ⊢ ((𝑀 ∈ ∞MetSp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((𝐴𝐷𝐵) = 0 ↔ 𝐴 = 𝐵)) | ||
Theorem | xmssym 23818 | The distance function in an extended metric space is symmetric. (Contributed by Mario Carneiro, 2-Oct-2015.) |
⊢ 𝑋 = (Base‘𝑀) & ⊢ 𝐷 = (dist‘𝑀) ⇒ ⊢ ((𝑀 ∈ ∞MetSp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐷𝐵) = (𝐵𝐷𝐴)) | ||
Theorem | xmstri2 23819 | Triangle inequality for the distance function of an extended metric. (Contributed by Mario Carneiro, 2-Oct-2015.) |
⊢ 𝑋 = (Base‘𝑀) & ⊢ 𝐷 = (dist‘𝑀) ⇒ ⊢ ((𝑀 ∈ ∞MetSp ∧ (𝐶 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → (𝐴𝐷𝐵) ≤ ((𝐶𝐷𝐴) +𝑒 (𝐶𝐷𝐵))) | ||
Theorem | mstri2 23820 | Triangle inequality for the distance function of a metric space. (Contributed by Mario Carneiro, 2-Oct-2015.) |
⊢ 𝑋 = (Base‘𝑀) & ⊢ 𝐷 = (dist‘𝑀) ⇒ ⊢ ((𝑀 ∈ MetSp ∧ (𝐶 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → (𝐴𝐷𝐵) ≤ ((𝐶𝐷𝐴) + (𝐶𝐷𝐵))) | ||
Theorem | xmstri 23821 | Triangle inequality for the distance function of a metric space. Definition 14-1.1(d) of [Gleason] p. 223. (Contributed by Mario Carneiro, 2-Oct-2015.) |
⊢ 𝑋 = (Base‘𝑀) & ⊢ 𝐷 = (dist‘𝑀) ⇒ ⊢ ((𝑀 ∈ ∞MetSp ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → (𝐴𝐷𝐵) ≤ ((𝐴𝐷𝐶) +𝑒 (𝐶𝐷𝐵))) | ||
Theorem | mstri 23822 | Triangle inequality for the distance function of a metric space. Definition 14-1.1(d) of [Gleason] p. 223. (Contributed by Mario Carneiro, 2-Oct-2015.) |
⊢ 𝑋 = (Base‘𝑀) & ⊢ 𝐷 = (dist‘𝑀) ⇒ ⊢ ((𝑀 ∈ MetSp ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → (𝐴𝐷𝐵) ≤ ((𝐴𝐷𝐶) + (𝐶𝐷𝐵))) | ||
Theorem | xmstri3 23823 | Triangle inequality for the distance function of an extended metric. (Contributed by Mario Carneiro, 2-Oct-2015.) |
⊢ 𝑋 = (Base‘𝑀) & ⊢ 𝐷 = (dist‘𝑀) ⇒ ⊢ ((𝑀 ∈ ∞MetSp ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → (𝐴𝐷𝐵) ≤ ((𝐴𝐷𝐶) +𝑒 (𝐵𝐷𝐶))) | ||
Theorem | mstri3 23824 | Triangle inequality for the distance function of a metric space. (Contributed by Mario Carneiro, 2-Oct-2015.) |
⊢ 𝑋 = (Base‘𝑀) & ⊢ 𝐷 = (dist‘𝑀) ⇒ ⊢ ((𝑀 ∈ MetSp ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → (𝐴𝐷𝐵) ≤ ((𝐴𝐷𝐶) + (𝐵𝐷𝐶))) | ||
Theorem | msrtri 23825 | Reverse triangle inequality for the distance function of a metric space. (Contributed by Mario Carneiro, 4-Oct-2015.) |
⊢ 𝑋 = (Base‘𝑀) & ⊢ 𝐷 = (dist‘𝑀) ⇒ ⊢ ((𝑀 ∈ MetSp ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → (abs‘((𝐴𝐷𝐶) − (𝐵𝐷𝐶))) ≤ (𝐴𝐷𝐵)) | ||
Theorem | xmspropd 23826 | Property deduction for an extended metric space. (Contributed by Mario Carneiro, 4-Oct-2015.) |
⊢ (𝜑 → 𝐵 = (Base‘𝐾)) & ⊢ (𝜑 → 𝐵 = (Base‘𝐿)) & ⊢ (𝜑 → ((dist‘𝐾) ↾ (𝐵 × 𝐵)) = ((dist‘𝐿) ↾ (𝐵 × 𝐵))) & ⊢ (𝜑 → (TopOpen‘𝐾) = (TopOpen‘𝐿)) ⇒ ⊢ (𝜑 → (𝐾 ∈ ∞MetSp ↔ 𝐿 ∈ ∞MetSp)) | ||
Theorem | mspropd 23827 | Property deduction for a metric space. (Contributed by Mario Carneiro, 4-Oct-2015.) |
⊢ (𝜑 → 𝐵 = (Base‘𝐾)) & ⊢ (𝜑 → 𝐵 = (Base‘𝐿)) & ⊢ (𝜑 → ((dist‘𝐾) ↾ (𝐵 × 𝐵)) = ((dist‘𝐿) ↾ (𝐵 × 𝐵))) & ⊢ (𝜑 → (TopOpen‘𝐾) = (TopOpen‘𝐿)) ⇒ ⊢ (𝜑 → (𝐾 ∈ MetSp ↔ 𝐿 ∈ MetSp)) | ||
Theorem | setsmsbas 23828 | The base set of a constructed metric space. (Contributed by Mario Carneiro, 28-Aug-2015.) (Proof shortened by AV, 12-Nov-2024.) |
⊢ (𝜑 → 𝑋 = (Base‘𝑀)) & ⊢ (𝜑 → 𝐷 = ((dist‘𝑀) ↾ (𝑋 × 𝑋))) & ⊢ (𝜑 → 𝐾 = (𝑀 sSet 〈(TopSet‘ndx), (MetOpen‘𝐷)〉)) ⇒ ⊢ (𝜑 → 𝑋 = (Base‘𝐾)) | ||
Theorem | setsmsbasOLD 23829 | Obsolete proof of setsmsbas 23828 as of 12-Nov-2024. The base set of a constructed metric space. (Contributed by Mario Carneiro, 28-Aug-2015.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (𝜑 → 𝑋 = (Base‘𝑀)) & ⊢ (𝜑 → 𝐷 = ((dist‘𝑀) ↾ (𝑋 × 𝑋))) & ⊢ (𝜑 → 𝐾 = (𝑀 sSet 〈(TopSet‘ndx), (MetOpen‘𝐷)〉)) ⇒ ⊢ (𝜑 → 𝑋 = (Base‘𝐾)) | ||
Theorem | setsmsds 23830 | The distance function of a constructed metric space. (Contributed by Mario Carneiro, 28-Aug-2015.) (Proof shortened by AV, 11-Nov-2024.) |
⊢ (𝜑 → 𝑋 = (Base‘𝑀)) & ⊢ (𝜑 → 𝐷 = ((dist‘𝑀) ↾ (𝑋 × 𝑋))) & ⊢ (𝜑 → 𝐾 = (𝑀 sSet 〈(TopSet‘ndx), (MetOpen‘𝐷)〉)) ⇒ ⊢ (𝜑 → (dist‘𝑀) = (dist‘𝐾)) | ||
Theorem | setsmsdsOLD 23831 | Obsolete proof of setsmsds 23830 as of 11-Nov-2024. The distance function of a constructed metric space. (Contributed by Mario Carneiro, 28-Aug-2015.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (𝜑 → 𝑋 = (Base‘𝑀)) & ⊢ (𝜑 → 𝐷 = ((dist‘𝑀) ↾ (𝑋 × 𝑋))) & ⊢ (𝜑 → 𝐾 = (𝑀 sSet 〈(TopSet‘ndx), (MetOpen‘𝐷)〉)) ⇒ ⊢ (𝜑 → (dist‘𝑀) = (dist‘𝐾)) | ||
Theorem | setsmstset 23832 | The topology of a constructed metric space. (Contributed by Mario Carneiro, 28-Aug-2015.) |
⊢ (𝜑 → 𝑋 = (Base‘𝑀)) & ⊢ (𝜑 → 𝐷 = ((dist‘𝑀) ↾ (𝑋 × 𝑋))) & ⊢ (𝜑 → 𝐾 = (𝑀 sSet 〈(TopSet‘ndx), (MetOpen‘𝐷)〉)) & ⊢ (𝜑 → 𝑀 ∈ 𝑉) ⇒ ⊢ (𝜑 → (MetOpen‘𝐷) = (TopSet‘𝐾)) | ||
Theorem | setsmstopn 23833 | The topology of a constructed metric space. (Contributed by Mario Carneiro, 28-Aug-2015.) |
⊢ (𝜑 → 𝑋 = (Base‘𝑀)) & ⊢ (𝜑 → 𝐷 = ((dist‘𝑀) ↾ (𝑋 × 𝑋))) & ⊢ (𝜑 → 𝐾 = (𝑀 sSet 〈(TopSet‘ndx), (MetOpen‘𝐷)〉)) & ⊢ (𝜑 → 𝑀 ∈ 𝑉) ⇒ ⊢ (𝜑 → (MetOpen‘𝐷) = (TopOpen‘𝐾)) | ||
Theorem | setsxms 23834 | The constructed metric space is a metric space iff the provided distance function is a metric. (Contributed by Mario Carneiro, 28-Aug-2015.) |
⊢ (𝜑 → 𝑋 = (Base‘𝑀)) & ⊢ (𝜑 → 𝐷 = ((dist‘𝑀) ↾ (𝑋 × 𝑋))) & ⊢ (𝜑 → 𝐾 = (𝑀 sSet 〈(TopSet‘ndx), (MetOpen‘𝐷)〉)) & ⊢ (𝜑 → 𝑀 ∈ 𝑉) ⇒ ⊢ (𝜑 → (𝐾 ∈ ∞MetSp ↔ 𝐷 ∈ (∞Met‘𝑋))) | ||
Theorem | setsms 23835 | The constructed metric space is a metric space iff the provided distance function is a metric. (Contributed by Mario Carneiro, 28-Aug-2015.) |
⊢ (𝜑 → 𝑋 = (Base‘𝑀)) & ⊢ (𝜑 → 𝐷 = ((dist‘𝑀) ↾ (𝑋 × 𝑋))) & ⊢ (𝜑 → 𝐾 = (𝑀 sSet 〈(TopSet‘ndx), (MetOpen‘𝐷)〉)) & ⊢ (𝜑 → 𝑀 ∈ 𝑉) ⇒ ⊢ (𝜑 → (𝐾 ∈ MetSp ↔ 𝐷 ∈ (Met‘𝑋))) | ||
Theorem | tmsval 23836 | For any metric there is an associated metric space. (Contributed by Mario Carneiro, 2-Sep-2015.) |
⊢ 𝑀 = {〈(Base‘ndx), 𝑋〉, 〈(dist‘ndx), 𝐷〉} & ⊢ 𝐾 = (toMetSp‘𝐷) ⇒ ⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝐾 = (𝑀 sSet 〈(TopSet‘ndx), (MetOpen‘𝐷)〉)) | ||
Theorem | tmslem 23837 | Lemma for tmsbas 23839, tmsds 23840, and tmstopn 23841. (Contributed by Mario Carneiro, 2-Sep-2015.) |
⊢ 𝑀 = {〈(Base‘ndx), 𝑋〉, 〈(dist‘ndx), 𝐷〉} & ⊢ 𝐾 = (toMetSp‘𝐷) ⇒ ⊢ (𝐷 ∈ (∞Met‘𝑋) → (𝑋 = (Base‘𝐾) ∧ 𝐷 = (dist‘𝐾) ∧ (MetOpen‘𝐷) = (TopOpen‘𝐾))) | ||
Theorem | tmslemOLD 23838 | Obsolete version of tmslem 23837 as of 28-Oct-2024. Lemma for tmsbas 23839, tmsds 23840, and tmstopn 23841. (Contributed by Mario Carneiro, 2-Sep-2015.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ 𝑀 = {〈(Base‘ndx), 𝑋〉, 〈(dist‘ndx), 𝐷〉} & ⊢ 𝐾 = (toMetSp‘𝐷) ⇒ ⊢ (𝐷 ∈ (∞Met‘𝑋) → (𝑋 = (Base‘𝐾) ∧ 𝐷 = (dist‘𝐾) ∧ (MetOpen‘𝐷) = (TopOpen‘𝐾))) | ||
Theorem | tmsbas 23839 | The base set of a constructed metric space. (Contributed by Mario Carneiro, 2-Sep-2015.) |
⊢ 𝐾 = (toMetSp‘𝐷) ⇒ ⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝑋 = (Base‘𝐾)) | ||
Theorem | tmsds 23840 | The metric of a constructed metric space. (Contributed by Mario Carneiro, 2-Sep-2015.) |
⊢ 𝐾 = (toMetSp‘𝐷) ⇒ ⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝐷 = (dist‘𝐾)) | ||
Theorem | tmstopn 23841 | The topology of a constructed metric. (Contributed by Mario Carneiro, 2-Sep-2015.) |
⊢ 𝐾 = (toMetSp‘𝐷) & ⊢ 𝐽 = (MetOpen‘𝐷) ⇒ ⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝐽 = (TopOpen‘𝐾)) | ||
Theorem | tmsxms 23842 | The constructed metric space is an extended metric space. (Contributed by Mario Carneiro, 2-Sep-2015.) |
⊢ 𝐾 = (toMetSp‘𝐷) ⇒ ⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝐾 ∈ ∞MetSp) | ||
Theorem | tmsms 23843 | The constructed metric space is a metric space given a metric. (Contributed by Mario Carneiro, 2-Sep-2015.) |
⊢ 𝐾 = (toMetSp‘𝐷) ⇒ ⊢ (𝐷 ∈ (Met‘𝑋) → 𝐾 ∈ MetSp) | ||
Theorem | imasf1obl 23844 | The image of a metric space ball. (Contributed by Mario Carneiro, 28-Aug-2015.) |
⊢ (𝜑 → 𝑈 = (𝐹 “s 𝑅)) & ⊢ (𝜑 → 𝑉 = (Base‘𝑅)) & ⊢ (𝜑 → 𝐹:𝑉–1-1-onto→𝐵) & ⊢ (𝜑 → 𝑅 ∈ 𝑍) & ⊢ 𝐸 = ((dist‘𝑅) ↾ (𝑉 × 𝑉)) & ⊢ 𝐷 = (dist‘𝑈) & ⊢ (𝜑 → 𝐸 ∈ (∞Met‘𝑉)) & ⊢ (𝜑 → 𝑃 ∈ 𝑉) & ⊢ (𝜑 → 𝑆 ∈ ℝ*) ⇒ ⊢ (𝜑 → ((𝐹‘𝑃)(ball‘𝐷)𝑆) = (𝐹 “ (𝑃(ball‘𝐸)𝑆))) | ||
Theorem | imasf1oxms 23845 | The image of a metric space is a metric space. (Contributed by Mario Carneiro, 28-Aug-2015.) |
⊢ (𝜑 → 𝑈 = (𝐹 “s 𝑅)) & ⊢ (𝜑 → 𝑉 = (Base‘𝑅)) & ⊢ (𝜑 → 𝐹:𝑉–1-1-onto→𝐵) & ⊢ (𝜑 → 𝑅 ∈ ∞MetSp) ⇒ ⊢ (𝜑 → 𝑈 ∈ ∞MetSp) | ||
Theorem | imasf1oms 23846 | The image of a metric space is a metric space. (Contributed by Mario Carneiro, 28-Aug-2015.) |
⊢ (𝜑 → 𝑈 = (𝐹 “s 𝑅)) & ⊢ (𝜑 → 𝑉 = (Base‘𝑅)) & ⊢ (𝜑 → 𝐹:𝑉–1-1-onto→𝐵) & ⊢ (𝜑 → 𝑅 ∈ MetSp) ⇒ ⊢ (𝜑 → 𝑈 ∈ MetSp) | ||
Theorem | prdsbl 23847* |
A ball in the product metric for finite index set is the Cartesian
product of balls in all coordinates. For infinite index set this is no
longer true; instead the correct statement is that a *closed ball* is
the product of closed balls in each coordinate (where closed ball means
a set of the form in blcld 23861) - for a counterexample the point 𝑝 in
ℝ↑ℕ whose 𝑛-th
coordinate is 1 − 1 / 𝑛 is in
X𝑛 ∈ ℕball(0, 1) but is not
in the 1-ball of the
product (since 𝑑(0, 𝑝) = 1).
The last assumption, 0 < 𝐴, is needed only in the case 𝐼 = ∅, when the right side evaluates to {∅} and the left evaluates to ∅ if 𝐴 ≤ 0 and {∅} if 0 < 𝐴. (Contributed by Mario Carneiro, 28-Aug-2015.) |
⊢ 𝑌 = (𝑆Xs(𝑥 ∈ 𝐼 ↦ 𝑅)) & ⊢ 𝐵 = (Base‘𝑌) & ⊢ 𝑉 = (Base‘𝑅) & ⊢ 𝐸 = ((dist‘𝑅) ↾ (𝑉 × 𝑉)) & ⊢ 𝐷 = (dist‘𝑌) & ⊢ (𝜑 → 𝑆 ∈ 𝑊) & ⊢ (𝜑 → 𝐼 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → 𝑅 ∈ 𝑍) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → 𝐸 ∈ (∞Met‘𝑉)) & ⊢ (𝜑 → 𝑃 ∈ 𝐵) & ⊢ (𝜑 → 𝐴 ∈ ℝ*) & ⊢ (𝜑 → 0 < 𝐴) ⇒ ⊢ (𝜑 → (𝑃(ball‘𝐷)𝐴) = X𝑥 ∈ 𝐼 ((𝑃‘𝑥)(ball‘𝐸)𝐴)) | ||
Theorem | mopni 23848* | An open set of a metric space includes a ball around each of its points. (Contributed by NM, 3-Sep-2006.) (Revised by Mario Carneiro, 12-Nov-2013.) |
⊢ 𝐽 = (MetOpen‘𝐷) ⇒ ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴 ∈ 𝐽 ∧ 𝑃 ∈ 𝐴) → ∃𝑥 ∈ ran (ball‘𝐷)(𝑃 ∈ 𝑥 ∧ 𝑥 ⊆ 𝐴)) | ||
Theorem | mopni2 23849* | An open set of a metric space includes a ball around each of its points. (Contributed by NM, 2-May-2007.) (Revised by Mario Carneiro, 12-Nov-2013.) |
⊢ 𝐽 = (MetOpen‘𝐷) ⇒ ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴 ∈ 𝐽 ∧ 𝑃 ∈ 𝐴) → ∃𝑥 ∈ ℝ+ (𝑃(ball‘𝐷)𝑥) ⊆ 𝐴) | ||
Theorem | mopni3 23850* | An open set of a metric space includes an arbitrarily small ball around each of its points. (Contributed by NM, 20-Sep-2007.) (Revised by Mario Carneiro, 12-Nov-2013.) |
⊢ 𝐽 = (MetOpen‘𝐷) ⇒ ⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴 ∈ 𝐽 ∧ 𝑃 ∈ 𝐴) ∧ 𝑅 ∈ ℝ+) → ∃𝑥 ∈ ℝ+ (𝑥 < 𝑅 ∧ (𝑃(ball‘𝐷)𝑥) ⊆ 𝐴)) | ||
Theorem | blssopn 23851 | The balls of a metric space are open sets. (Contributed by NM, 12-Sep-2006.) (Revised by Mario Carneiro, 23-Dec-2013.) |
⊢ 𝐽 = (MetOpen‘𝐷) ⇒ ⊢ (𝐷 ∈ (∞Met‘𝑋) → ran (ball‘𝐷) ⊆ 𝐽) | ||
Theorem | unimopn 23852 | The union of a collection of open sets of a metric space is open. Theorem T2 of [Kreyszig] p. 19. (Contributed by NM, 4-Sep-2006.) (Revised by Mario Carneiro, 23-Dec-2013.) |
⊢ 𝐽 = (MetOpen‘𝐷) ⇒ ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴 ⊆ 𝐽) → ∪ 𝐴 ∈ 𝐽) | ||
Theorem | mopnin 23853 | The intersection of two open sets of a metric space is open. (Contributed by NM, 4-Sep-2006.) (Revised by Mario Carneiro, 23-Dec-2013.) |
⊢ 𝐽 = (MetOpen‘𝐷) ⇒ ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴 ∈ 𝐽 ∧ 𝐵 ∈ 𝐽) → (𝐴 ∩ 𝐵) ∈ 𝐽) | ||
Theorem | mopn0 23854 | The empty set is an open set of a metric space. Part of Theorem T1 of [Kreyszig] p. 19. (Contributed by NM, 4-Sep-2006.) |
⊢ 𝐽 = (MetOpen‘𝐷) ⇒ ⊢ (𝐷 ∈ (∞Met‘𝑋) → ∅ ∈ 𝐽) | ||
Theorem | rnblopn 23855 | A ball of a metric space is an open set. (Contributed by NM, 12-Sep-2006.) |
⊢ 𝐽 = (MetOpen‘𝐷) ⇒ ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐵 ∈ ran (ball‘𝐷)) → 𝐵 ∈ 𝐽) | ||
Theorem | blopn 23856 | A ball of a metric space is an open set. (Contributed by NM, 9-Mar-2007.) (Revised by Mario Carneiro, 12-Nov-2013.) |
⊢ 𝐽 = (MetOpen‘𝐷) ⇒ ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ*) → (𝑃(ball‘𝐷)𝑅) ∈ 𝐽) | ||
Theorem | neibl 23857* | The neighborhoods around a point 𝑃 of a metric space are those subsets containing a ball around 𝑃. Definition of neighborhood in [Kreyszig] p. 19. (Contributed by NM, 8-Nov-2007.) (Revised by Mario Carneiro, 23-Dec-2013.) |
⊢ 𝐽 = (MetOpen‘𝐷) ⇒ ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋) → (𝑁 ∈ ((nei‘𝐽)‘{𝑃}) ↔ (𝑁 ⊆ 𝑋 ∧ ∃𝑟 ∈ ℝ+ (𝑃(ball‘𝐷)𝑟) ⊆ 𝑁))) | ||
Theorem | blnei 23858 | A ball around a point is a neighborhood of the point. (Contributed by NM, 8-Nov-2007.) (Revised by Mario Carneiro, 24-Aug-2015.) |
⊢ 𝐽 = (MetOpen‘𝐷) ⇒ ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ+) → (𝑃(ball‘𝐷)𝑅) ∈ ((nei‘𝐽)‘{𝑃})) | ||
Theorem | lpbl 23859* | Every ball around a limit point 𝑃 of a subset 𝑆 includes a member of 𝑆 (even if 𝑃 ∉ 𝑆). (Contributed by NM, 9-Nov-2007.) (Revised by Mario Carneiro, 23-Dec-2013.) |
⊢ 𝐽 = (MetOpen‘𝐷) ⇒ ⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆 ⊆ 𝑋 ∧ 𝑃 ∈ ((limPt‘𝐽)‘𝑆)) ∧ 𝑅 ∈ ℝ+) → ∃𝑥 ∈ 𝑆 𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) | ||
Theorem | blsscls2 23860* | A smaller closed ball is contained in a larger open ball. (Contributed by Mario Carneiro, 10-Jan-2014.) |
⊢ 𝐽 = (MetOpen‘𝐷) & ⊢ 𝑆 = {𝑧 ∈ 𝑋 ∣ (𝑃𝐷𝑧) ≤ 𝑅} ⇒ ⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋) ∧ (𝑅 ∈ ℝ* ∧ 𝑇 ∈ ℝ* ∧ 𝑅 < 𝑇)) → 𝑆 ⊆ (𝑃(ball‘𝐷)𝑇)) | ||
Theorem | blcld 23861* | A "closed ball" in a metric space is actually closed. (Contributed by Mario Carneiro, 31-Dec-2013.) (Revised by Mario Carneiro, 24-Aug-2015.) |
⊢ 𝐽 = (MetOpen‘𝐷) & ⊢ 𝑆 = {𝑧 ∈ 𝑋 ∣ (𝑃𝐷𝑧) ≤ 𝑅} ⇒ ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ*) → 𝑆 ∈ (Clsd‘𝐽)) | ||
Theorem | blcls 23862* | The closure of an open ball in a metric space is contained in the corresponding closed ball. (Equality need not hold; for example, with the discrete metric, the closed ball of radius 1 is the whole space, but the open ball of radius 1 is just a point, whose closure is also a point.) (Contributed by Mario Carneiro, 31-Dec-2013.) |
⊢ 𝐽 = (MetOpen‘𝐷) & ⊢ 𝑆 = {𝑧 ∈ 𝑋 ∣ (𝑃𝐷𝑧) ≤ 𝑅} ⇒ ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ*) → ((cls‘𝐽)‘(𝑃(ball‘𝐷)𝑅)) ⊆ 𝑆) | ||
Theorem | blsscls 23863 | If two concentric balls have different radii, the closure of the smaller one is contained in the larger one. (Contributed by Mario Carneiro, 5-Jan-2014.) |
⊢ 𝐽 = (MetOpen‘𝐷) ⇒ ⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋) ∧ (𝑅 ∈ ℝ* ∧ 𝑆 ∈ ℝ* ∧ 𝑅 < 𝑆)) → ((cls‘𝐽)‘(𝑃(ball‘𝐷)𝑅)) ⊆ (𝑃(ball‘𝐷)𝑆)) | ||
Theorem | metss 23864* | Two ways of saying that metric 𝐷 generates a finer topology than metric 𝐶. (Contributed by Mario Carneiro, 12-Nov-2013.) (Revised by Mario Carneiro, 24-Aug-2015.) |
⊢ 𝐽 = (MetOpen‘𝐶) & ⊢ 𝐾 = (MetOpen‘𝐷) ⇒ ⊢ ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑋)) → (𝐽 ⊆ 𝐾 ↔ ∀𝑥 ∈ 𝑋 ∀𝑟 ∈ ℝ+ ∃𝑠 ∈ ℝ+ (𝑥(ball‘𝐷)𝑠) ⊆ (𝑥(ball‘𝐶)𝑟))) | ||
Theorem | metequiv 23865* | Two ways of saying that two metrics generate the same topology. Two metrics satisfying the right-hand side are said to be (topologically) equivalent. (Contributed by Jeff Hankins, 21-Jun-2009.) (Revised by Mario Carneiro, 12-Nov-2013.) |
⊢ 𝐽 = (MetOpen‘𝐶) & ⊢ 𝐾 = (MetOpen‘𝐷) ⇒ ⊢ ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑋)) → (𝐽 = 𝐾 ↔ ∀𝑥 ∈ 𝑋 (∀𝑟 ∈ ℝ+ ∃𝑠 ∈ ℝ+ (𝑥(ball‘𝐷)𝑠) ⊆ (𝑥(ball‘𝐶)𝑟) ∧ ∀𝑎 ∈ ℝ+ ∃𝑏 ∈ ℝ+ (𝑥(ball‘𝐶)𝑏) ⊆ (𝑥(ball‘𝐷)𝑎)))) | ||
Theorem | metequiv2 23866* | If there is a sequence of radii approaching zero for which the balls of both metrics coincide, then the generated topologies are equivalent. (Contributed by Mario Carneiro, 26-Aug-2015.) |
⊢ 𝐽 = (MetOpen‘𝐶) & ⊢ 𝐾 = (MetOpen‘𝐷) ⇒ ⊢ ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑋)) → (∀𝑥 ∈ 𝑋 ∀𝑟 ∈ ℝ+ ∃𝑠 ∈ ℝ+ (𝑠 ≤ 𝑟 ∧ (𝑥(ball‘𝐶)𝑠) = (𝑥(ball‘𝐷)𝑠)) → 𝐽 = 𝐾)) | ||
Theorem | metss2lem 23867* | Lemma for metss2 23868. (Contributed by Mario Carneiro, 14-Sep-2015.) |
⊢ 𝐽 = (MetOpen‘𝐶) & ⊢ 𝐾 = (MetOpen‘𝐷) & ⊢ (𝜑 → 𝐶 ∈ (Met‘𝑋)) & ⊢ (𝜑 → 𝐷 ∈ (Met‘𝑋)) & ⊢ (𝜑 → 𝑅 ∈ ℝ+) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → (𝑥𝐶𝑦) ≤ (𝑅 · (𝑥𝐷𝑦))) ⇒ ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑆 ∈ ℝ+)) → (𝑥(ball‘𝐷)(𝑆 / 𝑅)) ⊆ (𝑥(ball‘𝐶)𝑆)) | ||
Theorem | metss2 23868* | If the metric 𝐷 is "strongly finer" than 𝐶 (meaning that there is a positive real constant 𝑅 such that 𝐶(𝑥, 𝑦) ≤ 𝑅 · 𝐷(𝑥, 𝑦)), then 𝐷 generates a finer topology. (Using this theorem twice in each direction states that if two metrics are strongly equivalent, then they generate the same topology.) (Contributed by Mario Carneiro, 14-Sep-2015.) |
⊢ 𝐽 = (MetOpen‘𝐶) & ⊢ 𝐾 = (MetOpen‘𝐷) & ⊢ (𝜑 → 𝐶 ∈ (Met‘𝑋)) & ⊢ (𝜑 → 𝐷 ∈ (Met‘𝑋)) & ⊢ (𝜑 → 𝑅 ∈ ℝ+) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → (𝑥𝐶𝑦) ≤ (𝑅 · (𝑥𝐷𝑦))) ⇒ ⊢ (𝜑 → 𝐽 ⊆ 𝐾) | ||
Theorem | comet 23869* | The composition of an extended metric with a monotonic subadditive function is an extended metric. (Contributed by Mario Carneiro, 21-Mar-2015.) |
⊢ (𝜑 → 𝐷 ∈ (∞Met‘𝑋)) & ⊢ (𝜑 → 𝐹:(0[,]+∞)⟶ℝ*) & ⊢ ((𝜑 ∧ 𝑥 ∈ (0[,]+∞)) → ((𝐹‘𝑥) = 0 ↔ 𝑥 = 0)) & ⊢ ((𝜑 ∧ (𝑥 ∈ (0[,]+∞) ∧ 𝑦 ∈ (0[,]+∞))) → (𝑥 ≤ 𝑦 → (𝐹‘𝑥) ≤ (𝐹‘𝑦))) & ⊢ ((𝜑 ∧ (𝑥 ∈ (0[,]+∞) ∧ 𝑦 ∈ (0[,]+∞))) → (𝐹‘(𝑥 +𝑒 𝑦)) ≤ ((𝐹‘𝑥) +𝑒 (𝐹‘𝑦))) ⇒ ⊢ (𝜑 → (𝐹 ∘ 𝐷) ∈ (∞Met‘𝑋)) | ||
Theorem | stdbdmetval 23870* | Value of the standard bounded metric. (Contributed by Mario Carneiro, 26-Aug-2015.) |
⊢ 𝐷 = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ if((𝑥𝐶𝑦) ≤ 𝑅, (𝑥𝐶𝑦), 𝑅)) ⇒ ⊢ ((𝑅 ∈ 𝑉 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐷𝐵) = if((𝐴𝐶𝐵) ≤ 𝑅, (𝐴𝐶𝐵), 𝑅)) | ||
Theorem | stdbdxmet 23871* | The standard bounded metric is an extended metric given an extended metric and a positive extended real cutoff. (Contributed by Mario Carneiro, 26-Aug-2015.) |
⊢ 𝐷 = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ if((𝑥𝐶𝑦) ≤ 𝑅, (𝑥𝐶𝑦), 𝑅)) ⇒ ⊢ ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 < 𝑅) → 𝐷 ∈ (∞Met‘𝑋)) | ||
Theorem | stdbdmet 23872* | The standard bounded metric is a proper metric given an extended metric and a positive real cutoff. (Contributed by Mario Carneiro, 26-Aug-2015.) |
⊢ 𝐷 = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ if((𝑥𝐶𝑦) ≤ 𝑅, (𝑥𝐶𝑦), 𝑅)) ⇒ ⊢ ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ+) → 𝐷 ∈ (Met‘𝑋)) | ||
Theorem | stdbdbl 23873* | The standard bounded metric corresponding to 𝐶 generates the same balls as 𝐶 for radii less than 𝑅. (Contributed by Mario Carneiro, 26-Aug-2015.) |
⊢ 𝐷 = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ if((𝑥𝐶𝑦) ≤ 𝑅, (𝑥𝐶𝑦), 𝑅)) ⇒ ⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 < 𝑅) ∧ (𝑃 ∈ 𝑋 ∧ 𝑆 ∈ ℝ* ∧ 𝑆 ≤ 𝑅)) → (𝑃(ball‘𝐷)𝑆) = (𝑃(ball‘𝐶)𝑆)) | ||
Theorem | stdbdmopn 23874* | The standard bounded metric corresponding to 𝐶 generates the same topology as 𝐶. (Contributed by Mario Carneiro, 26-Aug-2015.) |
⊢ 𝐷 = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ if((𝑥𝐶𝑦) ≤ 𝑅, (𝑥𝐶𝑦), 𝑅)) & ⊢ 𝐽 = (MetOpen‘𝐶) ⇒ ⊢ ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 < 𝑅) → 𝐽 = (MetOpen‘𝐷)) | ||
Theorem | mopnex 23875* | The topology generated by an extended metric can also be generated by a true metric. Thus, "metrizable topologies" can equivalently be defined in terms of metrics or extended metrics. (Contributed by Mario Carneiro, 26-Aug-2015.) |
⊢ 𝐽 = (MetOpen‘𝐷) ⇒ ⊢ (𝐷 ∈ (∞Met‘𝑋) → ∃𝑑 ∈ (Met‘𝑋)𝐽 = (MetOpen‘𝑑)) | ||
Theorem | methaus 23876 | The topology generated by a metric space is Hausdorff. (Contributed by Mario Carneiro, 21-Mar-2015.) (Revised by Mario Carneiro, 26-Aug-2015.) |
⊢ 𝐽 = (MetOpen‘𝐷) ⇒ ⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝐽 ∈ Haus) | ||
Theorem | met1stc 23877 | The topology generated by a metric space is first-countable. (Contributed by Mario Carneiro, 21-Mar-2015.) |
⊢ 𝐽 = (MetOpen‘𝐷) ⇒ ⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝐽 ∈ 1stω) | ||
Theorem | met2ndci 23878 | A separable metric space (a metric space with a countable dense subset) is second-countable. (Contributed by Mario Carneiro, 13-Apr-2015.) |
⊢ 𝐽 = (MetOpen‘𝐷) ⇒ ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴 ⊆ 𝑋 ∧ 𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) → 𝐽 ∈ 2ndω) | ||
Theorem | met2ndc 23879* | A metric space is second-countable iff it is separable (has a countable dense subset). (Contributed by Mario Carneiro, 13-Apr-2015.) |
⊢ 𝐽 = (MetOpen‘𝐷) ⇒ ⊢ (𝐷 ∈ (∞Met‘𝑋) → (𝐽 ∈ 2ndω ↔ ∃𝑥 ∈ 𝒫 𝑋(𝑥 ≼ ω ∧ ((cls‘𝐽)‘𝑥) = 𝑋))) | ||
Theorem | metrest 23880 | Two alternate formulations of a subspace topology of a metric space topology. (Contributed by Jeff Hankins, 19-Aug-2009.) (Proof shortened by Mario Carneiro, 5-Jan-2014.) |
⊢ 𝐷 = (𝐶 ↾ (𝑌 × 𝑌)) & ⊢ 𝐽 = (MetOpen‘𝐶) & ⊢ 𝐾 = (MetOpen‘𝐷) ⇒ ⊢ ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) → (𝐽 ↾t 𝑌) = 𝐾) | ||
Theorem | ressxms 23881 | The restriction of a metric space is a metric space. (Contributed by Mario Carneiro, 24-Aug-2015.) |
⊢ ((𝐾 ∈ ∞MetSp ∧ 𝐴 ∈ 𝑉) → (𝐾 ↾s 𝐴) ∈ ∞MetSp) | ||
Theorem | ressms 23882 | The restriction of a metric space is a metric space. (Contributed by Mario Carneiro, 24-Aug-2015.) |
⊢ ((𝐾 ∈ MetSp ∧ 𝐴 ∈ 𝑉) → (𝐾 ↾s 𝐴) ∈ MetSp) | ||
Theorem | prdsmslem1 23883 | Lemma for prdsms 23887. The distance function of a product structure is an extended metric. (Contributed by Mario Carneiro, 28-Aug-2015.) |
⊢ 𝑌 = (𝑆Xs𝑅) & ⊢ (𝜑 → 𝑆 ∈ 𝑊) & ⊢ (𝜑 → 𝐼 ∈ Fin) & ⊢ 𝐷 = (dist‘𝑌) & ⊢ 𝐵 = (Base‘𝑌) & ⊢ (𝜑 → 𝑅:𝐼⟶MetSp) ⇒ ⊢ (𝜑 → 𝐷 ∈ (Met‘𝐵)) | ||
Theorem | prdsxmslem1 23884 | Lemma for prdsms 23887. The distance function of a product structure is an extended metric. (Contributed by Mario Carneiro, 28-Aug-2015.) |
⊢ 𝑌 = (𝑆Xs𝑅) & ⊢ (𝜑 → 𝑆 ∈ 𝑊) & ⊢ (𝜑 → 𝐼 ∈ Fin) & ⊢ 𝐷 = (dist‘𝑌) & ⊢ 𝐵 = (Base‘𝑌) & ⊢ (𝜑 → 𝑅:𝐼⟶∞MetSp) ⇒ ⊢ (𝜑 → 𝐷 ∈ (∞Met‘𝐵)) | ||
Theorem | prdsxmslem2 23885* | Lemma for prdsxms 23886. The topology generated by the supremum metric is the same as the product topology, when the index set is finite. (Contributed by Mario Carneiro, 28-Aug-2015.) |
⊢ 𝑌 = (𝑆Xs𝑅) & ⊢ (𝜑 → 𝑆 ∈ 𝑊) & ⊢ (𝜑 → 𝐼 ∈ Fin) & ⊢ 𝐷 = (dist‘𝑌) & ⊢ 𝐵 = (Base‘𝑌) & ⊢ (𝜑 → 𝑅:𝐼⟶∞MetSp) & ⊢ 𝐽 = (TopOpen‘𝑌) & ⊢ 𝑉 = (Base‘(𝑅‘𝑘)) & ⊢ 𝐸 = ((dist‘(𝑅‘𝑘)) ↾ (𝑉 × 𝑉)) & ⊢ 𝐾 = (TopOpen‘(𝑅‘𝑘)) & ⊢ 𝐶 = {𝑥 ∣ ∃𝑔((𝑔 Fn 𝐼 ∧ ∀𝑘 ∈ 𝐼 (𝑔‘𝑘) ∈ ((TopOpen ∘ 𝑅)‘𝑘) ∧ ∃𝑧 ∈ Fin ∀𝑘 ∈ (𝐼 ∖ 𝑧)(𝑔‘𝑘) = ∪ ((TopOpen ∘ 𝑅)‘𝑘)) ∧ 𝑥 = X𝑘 ∈ 𝐼 (𝑔‘𝑘))} ⇒ ⊢ (𝜑 → 𝐽 = (MetOpen‘𝐷)) | ||
Theorem | prdsxms 23886 | The indexed product structure is an extended metric space when the index set is finite. (Although the extended metric is still valid when the index set is infinite, it no longer agrees with the product topology, which is not metrizable in any case.) (Contributed by Mario Carneiro, 28-Aug-2015.) |
⊢ 𝑌 = (𝑆Xs𝑅) ⇒ ⊢ ((𝑆 ∈ 𝑊 ∧ 𝐼 ∈ Fin ∧ 𝑅:𝐼⟶∞MetSp) → 𝑌 ∈ ∞MetSp) | ||
Theorem | prdsms 23887 | The indexed product structure is a metric space when the index set is finite. (Contributed by Mario Carneiro, 28-Aug-2015.) |
⊢ 𝑌 = (𝑆Xs𝑅) ⇒ ⊢ ((𝑆 ∈ 𝑊 ∧ 𝐼 ∈ Fin ∧ 𝑅:𝐼⟶MetSp) → 𝑌 ∈ MetSp) | ||
Theorem | pwsxms 23888 | A power of an extended metric space is an extended metric space. (Contributed by Mario Carneiro, 28-Aug-2015.) |
⊢ 𝑌 = (𝑅 ↑s 𝐼) ⇒ ⊢ ((𝑅 ∈ ∞MetSp ∧ 𝐼 ∈ Fin) → 𝑌 ∈ ∞MetSp) | ||
Theorem | pwsms 23889 | A power of a metric space is a metric space. (Contributed by Mario Carneiro, 28-Aug-2015.) |
⊢ 𝑌 = (𝑅 ↑s 𝐼) ⇒ ⊢ ((𝑅 ∈ MetSp ∧ 𝐼 ∈ Fin) → 𝑌 ∈ MetSp) | ||
Theorem | xpsxms 23890 | A binary product of metric spaces is a metric space. (Contributed by Mario Carneiro, 28-Aug-2015.) |
⊢ 𝑇 = (𝑅 ×s 𝑆) ⇒ ⊢ ((𝑅 ∈ ∞MetSp ∧ 𝑆 ∈ ∞MetSp) → 𝑇 ∈ ∞MetSp) | ||
Theorem | xpsms 23891 | A binary product of metric spaces is a metric space. (Contributed by Mario Carneiro, 28-Aug-2015.) |
⊢ 𝑇 = (𝑅 ×s 𝑆) ⇒ ⊢ ((𝑅 ∈ MetSp ∧ 𝑆 ∈ MetSp) → 𝑇 ∈ MetSp) | ||
Theorem | tmsxps 23892 | Express the product of two metrics as another metric. (Contributed by Mario Carneiro, 2-Sep-2015.) |
⊢ 𝑃 = (dist‘((toMetSp‘𝑀) ×s (toMetSp‘𝑁))) & ⊢ (𝜑 → 𝑀 ∈ (∞Met‘𝑋)) & ⊢ (𝜑 → 𝑁 ∈ (∞Met‘𝑌)) ⇒ ⊢ (𝜑 → 𝑃 ∈ (∞Met‘(𝑋 × 𝑌))) | ||
Theorem | tmsxpsmopn 23893 | Express the product of two metrics as another metric. (Contributed by Mario Carneiro, 2-Sep-2015.) |
⊢ 𝑃 = (dist‘((toMetSp‘𝑀) ×s (toMetSp‘𝑁))) & ⊢ (𝜑 → 𝑀 ∈ (∞Met‘𝑋)) & ⊢ (𝜑 → 𝑁 ∈ (∞Met‘𝑌)) & ⊢ 𝐽 = (MetOpen‘𝑀) & ⊢ 𝐾 = (MetOpen‘𝑁) & ⊢ 𝐿 = (MetOpen‘𝑃) ⇒ ⊢ (𝜑 → 𝐿 = (𝐽 ×t 𝐾)) | ||
Theorem | tmsxpsval 23894 | Value of the product of two metrics. (Contributed by Mario Carneiro, 2-Sep-2015.) |
⊢ 𝑃 = (dist‘((toMetSp‘𝑀) ×s (toMetSp‘𝑁))) & ⊢ (𝜑 → 𝑀 ∈ (∞Met‘𝑋)) & ⊢ (𝜑 → 𝑁 ∈ (∞Met‘𝑌)) & ⊢ (𝜑 → 𝐴 ∈ 𝑋) & ⊢ (𝜑 → 𝐵 ∈ 𝑌) & ⊢ (𝜑 → 𝐶 ∈ 𝑋) & ⊢ (𝜑 → 𝐷 ∈ 𝑌) ⇒ ⊢ (𝜑 → (〈𝐴, 𝐵〉𝑃〈𝐶, 𝐷〉) = sup({(𝐴𝑀𝐶), (𝐵𝑁𝐷)}, ℝ*, < )) | ||
Theorem | tmsxpsval2 23895 | Value of the product of two metrics. (Contributed by Mario Carneiro, 2-Sep-2015.) |
⊢ 𝑃 = (dist‘((toMetSp‘𝑀) ×s (toMetSp‘𝑁))) & ⊢ (𝜑 → 𝑀 ∈ (∞Met‘𝑋)) & ⊢ (𝜑 → 𝑁 ∈ (∞Met‘𝑌)) & ⊢ (𝜑 → 𝐴 ∈ 𝑋) & ⊢ (𝜑 → 𝐵 ∈ 𝑌) & ⊢ (𝜑 → 𝐶 ∈ 𝑋) & ⊢ (𝜑 → 𝐷 ∈ 𝑌) ⇒ ⊢ (𝜑 → (〈𝐴, 𝐵〉𝑃〈𝐶, 𝐷〉) = if((𝐴𝑀𝐶) ≤ (𝐵𝑁𝐷), (𝐵𝑁𝐷), (𝐴𝑀𝐶))) | ||
Theorem | metcnp3 23896* | Two ways to express that 𝐹 is continuous at 𝑃 for metric spaces. Proposition 14-4.2 of [Gleason] p. 240. (Contributed by NM, 17-May-2007.) (Revised by Mario Carneiro, 28-Aug-2015.) |
⊢ 𝐽 = (MetOpen‘𝐶) & ⊢ 𝐾 = (MetOpen‘𝐷) ⇒ ⊢ ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃 ∈ 𝑋) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ↔ (𝐹:𝑋⟶𝑌 ∧ ∀𝑦 ∈ ℝ+ ∃𝑧 ∈ ℝ+ (𝐹 “ (𝑃(ball‘𝐶)𝑧)) ⊆ ((𝐹‘𝑃)(ball‘𝐷)𝑦)))) | ||
Theorem | metcnp 23897* | Two ways to say a mapping from metric 𝐶 to metric 𝐷 is continuous at point 𝑃. (Contributed by NM, 11-May-2007.) (Revised by Mario Carneiro, 28-Aug-2015.) |
⊢ 𝐽 = (MetOpen‘𝐶) & ⊢ 𝐾 = (MetOpen‘𝐷) ⇒ ⊢ ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃 ∈ 𝑋) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ↔ (𝐹:𝑋⟶𝑌 ∧ ∀𝑦 ∈ ℝ+ ∃𝑧 ∈ ℝ+ ∀𝑤 ∈ 𝑋 ((𝑃𝐶𝑤) < 𝑧 → ((𝐹‘𝑃)𝐷(𝐹‘𝑤)) < 𝑦)))) | ||
Theorem | metcnp2 23898* | Two ways to say a mapping from metric 𝐶 to metric 𝐷 is continuous at point 𝑃. The distance arguments are swapped compared to metcnp 23897 (and Munkres' metcn 23899) for compatibility with df-lm 22580. Definition 1.3-3 of [Kreyszig] p. 20. (Contributed by NM, 4-Jun-2007.) (Revised by Mario Carneiro, 13-Nov-2013.) |
⊢ 𝐽 = (MetOpen‘𝐶) & ⊢ 𝐾 = (MetOpen‘𝐷) ⇒ ⊢ ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃 ∈ 𝑋) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ↔ (𝐹:𝑋⟶𝑌 ∧ ∀𝑦 ∈ ℝ+ ∃𝑧 ∈ ℝ+ ∀𝑤 ∈ 𝑋 ((𝑤𝐶𝑃) < 𝑧 → ((𝐹‘𝑤)𝐷(𝐹‘𝑃)) < 𝑦)))) | ||
Theorem | metcn 23899* | Two ways to say a mapping from metric 𝐶 to metric 𝐷 is continuous. Theorem 10.1 of [Munkres] p. 127. The second biconditional argument says that for every positive "epsilon" 𝑦 there is a positive "delta" 𝑧 such that a distance less than delta in 𝐶 maps to a distance less than epsilon in 𝐷. (Contributed by NM, 15-May-2007.) (Revised by Mario Carneiro, 28-Aug-2015.) |
⊢ 𝐽 = (MetOpen‘𝐶) & ⊢ 𝐾 = (MetOpen‘𝐷) ⇒ ⊢ ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌)) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:𝑋⟶𝑌 ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ ℝ+ ∃𝑧 ∈ ℝ+ ∀𝑤 ∈ 𝑋 ((𝑥𝐶𝑤) < 𝑧 → ((𝐹‘𝑥)𝐷(𝐹‘𝑤)) < 𝑦)))) | ||
Theorem | metcnpi 23900* | Epsilon-delta property of a continuous metric space function, with function arguments as in metcnp 23897. (Contributed by NM, 17-Dec-2007.) (Revised by Mario Carneiro, 13-Nov-2013.) |
⊢ 𝐽 = (MetOpen‘𝐶) & ⊢ 𝐾 = (MetOpen‘𝐷) ⇒ ⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌)) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐴 ∈ ℝ+)) → ∃𝑥 ∈ ℝ+ ∀𝑦 ∈ 𝑋 ((𝑃𝐶𝑦) < 𝑥 → ((𝐹‘𝑃)𝐷(𝐹‘𝑦)) < 𝐴)) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |