Home | Metamath
Proof Explorer Theorem List (p. 239 of 466) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | Metamath Proof Explorer
(1-29289) |
Hilbert Space Explorer
(29290-30812) |
Users' Mathboxes
(30813-46532) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | ngptgp 23801 | A normed abelian group is a topological group (with the topology induced by the metric induced by the norm). (Contributed by Mario Carneiro, 4-Oct-2015.) |
⊢ ((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) → 𝐺 ∈ TopGrp) | ||
Theorem | ngppropd 23802* | Property deduction for a normed group. (Contributed by Mario Carneiro, 4-Oct-2015.) |
⊢ (𝜑 → 𝐵 = (Base‘𝐾)) & ⊢ (𝜑 → 𝐵 = (Base‘𝐿)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(+g‘𝐾)𝑦) = (𝑥(+g‘𝐿)𝑦)) & ⊢ (𝜑 → ((dist‘𝐾) ↾ (𝐵 × 𝐵)) = ((dist‘𝐿) ↾ (𝐵 × 𝐵))) & ⊢ (𝜑 → (TopOpen‘𝐾) = (TopOpen‘𝐿)) ⇒ ⊢ (𝜑 → (𝐾 ∈ NrmGrp ↔ 𝐿 ∈ NrmGrp)) | ||
Theorem | reldmtng 23803 | The function toNrmGrp is a two-argument function. (Contributed by Mario Carneiro, 8-Oct-2015.) |
⊢ Rel dom toNrmGrp | ||
Theorem | tngval 23804 | Value of the function which augments a given structure 𝐺 with a norm 𝑁. (Contributed by Mario Carneiro, 2-Oct-2015.) |
⊢ 𝑇 = (𝐺 toNrmGrp 𝑁) & ⊢ − = (-g‘𝐺) & ⊢ 𝐷 = (𝑁 ∘ − ) & ⊢ 𝐽 = (MetOpen‘𝐷) ⇒ ⊢ ((𝐺 ∈ 𝑉 ∧ 𝑁 ∈ 𝑊) → 𝑇 = ((𝐺 sSet 〈(dist‘ndx), 𝐷〉) sSet 〈(TopSet‘ndx), 𝐽〉)) | ||
Theorem | tnglem 23805 | Lemma for tngbas 23807 and similar theorems. (Contributed by Mario Carneiro, 2-Oct-2015.) (Revised by AV, 31-Oct-2024.) |
⊢ 𝑇 = (𝐺 toNrmGrp 𝑁) & ⊢ 𝐸 = Slot (𝐸‘ndx) & ⊢ (𝐸‘ndx) ≠ (TopSet‘ndx) & ⊢ (𝐸‘ndx) ≠ (dist‘ndx) ⇒ ⊢ (𝑁 ∈ 𝑉 → (𝐸‘𝐺) = (𝐸‘𝑇)) | ||
Theorem | tnglemOLD 23806 | Obsolete version of tnglem 23805 as of 31-Oct-2024. Lemma for tngbas 23807 and similar theorems. (Contributed by Mario Carneiro, 2-Oct-2015.) (New usage is discouraged.) (Proof modification is discouraged.) |
⊢ 𝑇 = (𝐺 toNrmGrp 𝑁) & ⊢ 𝐸 = Slot 𝐾 & ⊢ 𝐾 ∈ ℕ & ⊢ 𝐾 < 9 ⇒ ⊢ (𝑁 ∈ 𝑉 → (𝐸‘𝐺) = (𝐸‘𝑇)) | ||
Theorem | tngbas 23807 | The base set of a structure augmented with a norm. (Contributed by Mario Carneiro, 2-Oct-2015.) (Revised by AV, 31-Oct-2024.) |
⊢ 𝑇 = (𝐺 toNrmGrp 𝑁) & ⊢ 𝐵 = (Base‘𝐺) ⇒ ⊢ (𝑁 ∈ 𝑉 → 𝐵 = (Base‘𝑇)) | ||
Theorem | tngbasOLD 23808 | Obsolete proof of tngbas 23807 as of 31-Oct-2024. The base set of a structure augmented with a norm. (Contributed by Mario Carneiro, 2-Oct-2015.) (New usage is discouraged.) (Proof modification is discouraged.) |
⊢ 𝑇 = (𝐺 toNrmGrp 𝑁) & ⊢ 𝐵 = (Base‘𝐺) ⇒ ⊢ (𝑁 ∈ 𝑉 → 𝐵 = (Base‘𝑇)) | ||
Theorem | tngplusg 23809 | The group addition of a structure augmented with a norm. (Contributed by Mario Carneiro, 2-Oct-2015.) (Revised by AV, 31-Oct-2024.) |
⊢ 𝑇 = (𝐺 toNrmGrp 𝑁) & ⊢ + = (+g‘𝐺) ⇒ ⊢ (𝑁 ∈ 𝑉 → + = (+g‘𝑇)) | ||
Theorem | tngplusgOLD 23810 | Obsolete proof of tngplusg 23809 as of 31-Oct-2024. The group addition of a structure augmented with a norm. (Contributed by Mario Carneiro, 2-Oct-2015.) (New usage is discouraged.) (Proof modification is discouraged.) |
⊢ 𝑇 = (𝐺 toNrmGrp 𝑁) & ⊢ + = (+g‘𝐺) ⇒ ⊢ (𝑁 ∈ 𝑉 → + = (+g‘𝑇)) | ||
Theorem | tng0 23811 | The group identity of a structure augmented with a norm. (Contributed by Mario Carneiro, 4-Oct-2015.) (Revised by AV, 31-Oct-2024.) |
⊢ 𝑇 = (𝐺 toNrmGrp 𝑁) & ⊢ 0 = (0g‘𝐺) ⇒ ⊢ (𝑁 ∈ 𝑉 → 0 = (0g‘𝑇)) | ||
Theorem | tngmulr 23812 | The ring multiplication of a structure augmented with a norm. (Contributed by Mario Carneiro, 2-Oct-2015.) (Revised by AV, 31-Oct-2024.) |
⊢ 𝑇 = (𝐺 toNrmGrp 𝑁) & ⊢ · = (.r‘𝐺) ⇒ ⊢ (𝑁 ∈ 𝑉 → · = (.r‘𝑇)) | ||
Theorem | tngmulrOLD 23813 | Obsolete proof of tngmulr 23812 as of 31-Oct-2024. The ring multiplication of a structure augmented with a norm. (Contributed by Mario Carneiro, 2-Oct-2015.) (New usage is discouraged.) (Proof modification is discouraged.) |
⊢ 𝑇 = (𝐺 toNrmGrp 𝑁) & ⊢ · = (.r‘𝐺) ⇒ ⊢ (𝑁 ∈ 𝑉 → · = (.r‘𝑇)) | ||
Theorem | tngsca 23814 | The scalar ring of a structure augmented with a norm. (Contributed by Mario Carneiro, 2-Oct-2015.) (Revised by AV, 31-Oct-2024.) |
⊢ 𝑇 = (𝐺 toNrmGrp 𝑁) & ⊢ 𝐹 = (Scalar‘𝐺) ⇒ ⊢ (𝑁 ∈ 𝑉 → 𝐹 = (Scalar‘𝑇)) | ||
Theorem | tngscaOLD 23815 | Obsolete proof of tngsca 23814 as of 31-Oct-2024. The scalar ring of a structure augmented with a norm. (Contributed by Mario Carneiro, 2-Oct-2015.) (New usage is discouraged.) (Proof modification is discouraged.) |
⊢ 𝑇 = (𝐺 toNrmGrp 𝑁) & ⊢ 𝐹 = (Scalar‘𝐺) ⇒ ⊢ (𝑁 ∈ 𝑉 → 𝐹 = (Scalar‘𝑇)) | ||
Theorem | tngvsca 23816 | The scalar multiplication of a structure augmented with a norm. (Contributed by Mario Carneiro, 2-Oct-2015.) (Revised by AV, 31-Oct-2024.) |
⊢ 𝑇 = (𝐺 toNrmGrp 𝑁) & ⊢ · = ( ·𝑠 ‘𝐺) ⇒ ⊢ (𝑁 ∈ 𝑉 → · = ( ·𝑠 ‘𝑇)) | ||
Theorem | tngvscaOLD 23817 | Obsolete proof of tngvsca 23816 as of 31-Oct-2024. The scalar multiplication of a structure augmented with a norm. (Contributed by Mario Carneiro, 2-Oct-2015.) (New usage is discouraged.) (Proof modification is discouraged.) |
⊢ 𝑇 = (𝐺 toNrmGrp 𝑁) & ⊢ · = ( ·𝑠 ‘𝐺) ⇒ ⊢ (𝑁 ∈ 𝑉 → · = ( ·𝑠 ‘𝑇)) | ||
Theorem | tngip 23818 | The inner product operation of a structure augmented with a norm. (Contributed by Mario Carneiro, 2-Oct-2015.) (Revised by AV, 31-Oct-2024.) |
⊢ 𝑇 = (𝐺 toNrmGrp 𝑁) & ⊢ , = (·𝑖‘𝐺) ⇒ ⊢ (𝑁 ∈ 𝑉 → , = (·𝑖‘𝑇)) | ||
Theorem | tngipOLD 23819 | Obsolete proof of tngip 23818 as of 31-Oct-2024. The inner product operation of a structure augmented with a norm. (Contributed by Mario Carneiro, 2-Oct-2015.) (New usage is discouraged.) (Proof modification is discouraged.) |
⊢ 𝑇 = (𝐺 toNrmGrp 𝑁) & ⊢ , = (·𝑖‘𝐺) ⇒ ⊢ (𝑁 ∈ 𝑉 → , = (·𝑖‘𝑇)) | ||
Theorem | tngds 23820 | The metric function of a structure augmented with a norm. (Contributed by Mario Carneiro, 3-Oct-2015.) (Proof shortened by AV, 29-Oct-2024.) |
⊢ 𝑇 = (𝐺 toNrmGrp 𝑁) & ⊢ − = (-g‘𝐺) ⇒ ⊢ (𝑁 ∈ 𝑉 → (𝑁 ∘ − ) = (dist‘𝑇)) | ||
Theorem | tngdsOLD 23821 | Obsolete proof of tngds 23820 as of 29-Oct-2024. The metric function of a structure augmented with a norm. (Contributed by Mario Carneiro, 3-Oct-2015.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ 𝑇 = (𝐺 toNrmGrp 𝑁) & ⊢ − = (-g‘𝐺) ⇒ ⊢ (𝑁 ∈ 𝑉 → (𝑁 ∘ − ) = (dist‘𝑇)) | ||
Theorem | tngtset 23822 | The topology generated by a normed structure. (Contributed by Mario Carneiro, 3-Oct-2015.) |
⊢ 𝑇 = (𝐺 toNrmGrp 𝑁) & ⊢ 𝐷 = (dist‘𝑇) & ⊢ 𝐽 = (MetOpen‘𝐷) ⇒ ⊢ ((𝐺 ∈ 𝑉 ∧ 𝑁 ∈ 𝑊) → 𝐽 = (TopSet‘𝑇)) | ||
Theorem | tngtopn 23823 | The topology generated by a normed structure. (Contributed by Mario Carneiro, 4-Oct-2015.) |
⊢ 𝑇 = (𝐺 toNrmGrp 𝑁) & ⊢ 𝐷 = (dist‘𝑇) & ⊢ 𝐽 = (MetOpen‘𝐷) ⇒ ⊢ ((𝐺 ∈ 𝑉 ∧ 𝑁 ∈ 𝑊) → 𝐽 = (TopOpen‘𝑇)) | ||
Theorem | tngnm 23824 | The topology generated by a normed structure. (Contributed by Mario Carneiro, 4-Oct-2015.) |
⊢ 𝑇 = (𝐺 toNrmGrp 𝑁) & ⊢ 𝑋 = (Base‘𝐺) & ⊢ 𝐴 ∈ V ⇒ ⊢ ((𝐺 ∈ Grp ∧ 𝑁:𝑋⟶𝐴) → 𝑁 = (norm‘𝑇)) | ||
Theorem | tngngp2 23825 | A norm turns a group into a normed group iff the generated metric is in fact a metric. (Contributed by Mario Carneiro, 4-Oct-2015.) |
⊢ 𝑇 = (𝐺 toNrmGrp 𝑁) & ⊢ 𝑋 = (Base‘𝐺) & ⊢ 𝐷 = (dist‘𝑇) ⇒ ⊢ (𝑁:𝑋⟶ℝ → (𝑇 ∈ NrmGrp ↔ (𝐺 ∈ Grp ∧ 𝐷 ∈ (Met‘𝑋)))) | ||
Theorem | tngngpd 23826* | Derive the axioms for a normed group from the axioms for a metric space. (Contributed by Mario Carneiro, 4-Oct-2015.) |
⊢ 𝑇 = (𝐺 toNrmGrp 𝑁) & ⊢ 𝑋 = (Base‘𝐺) & ⊢ − = (-g‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ Grp) & ⊢ (𝜑 → 𝑁:𝑋⟶ℝ) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → ((𝑁‘𝑥) = 0 ↔ 𝑥 = 0 )) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → (𝑁‘(𝑥 − 𝑦)) ≤ ((𝑁‘𝑥) + (𝑁‘𝑦))) ⇒ ⊢ (𝜑 → 𝑇 ∈ NrmGrp) | ||
Theorem | tngngp 23827* | Derive the axioms for a normed group from the axioms for a metric space. (Contributed by Mario Carneiro, 4-Oct-2015.) |
⊢ 𝑇 = (𝐺 toNrmGrp 𝑁) & ⊢ 𝑋 = (Base‘𝐺) & ⊢ − = (-g‘𝐺) & ⊢ 0 = (0g‘𝐺) ⇒ ⊢ (𝑁:𝑋⟶ℝ → (𝑇 ∈ NrmGrp ↔ (𝐺 ∈ Grp ∧ ∀𝑥 ∈ 𝑋 (((𝑁‘𝑥) = 0 ↔ 𝑥 = 0 ) ∧ ∀𝑦 ∈ 𝑋 (𝑁‘(𝑥 − 𝑦)) ≤ ((𝑁‘𝑥) + (𝑁‘𝑦)))))) | ||
Theorem | tnggrpr 23828 | If a structure equipped with a norm is a normed group, the structure itself must be a group. (Contributed by AV, 15-Oct-2021.) |
⊢ 𝑇 = (𝐺 toNrmGrp 𝑁) ⇒ ⊢ ((𝑁 ∈ 𝑉 ∧ 𝑇 ∈ NrmGrp) → 𝐺 ∈ Grp) | ||
Theorem | tngngp3 23829* | Alternate definition of a normed group (i.e., a group equipped with a norm) without using the properties of a metric space. This corresponds to the definition in N. H. Bingham, A. J. Ostaszewski: "Normed versus topological groups: dichotomy and duality", 2010, Dissertationes Mathematicae 472, pp. 1-138 and E. Deza, M.M. Deza: "Dictionary of Distances", Elsevier, 2006. (Contributed by AV, 16-Oct-2021.) |
⊢ 𝑇 = (𝐺 toNrmGrp 𝑁) & ⊢ 𝑋 = (Base‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ + = (+g‘𝐺) & ⊢ 𝐼 = (invg‘𝐺) ⇒ ⊢ (𝑁:𝑋⟶ℝ → (𝑇 ∈ NrmGrp ↔ (𝐺 ∈ Grp ∧ ∀𝑥 ∈ 𝑋 (((𝑁‘𝑥) = 0 ↔ 𝑥 = 0 ) ∧ (𝑁‘(𝐼‘𝑥)) = (𝑁‘𝑥) ∧ ∀𝑦 ∈ 𝑋 (𝑁‘(𝑥 + 𝑦)) ≤ ((𝑁‘𝑥) + (𝑁‘𝑦)))))) | ||
Theorem | nrmtngdist 23830 | The augmentation of a normed group by its own norm has the same distance function as the normed group (restricted to the base set). (Contributed by AV, 15-Oct-2021.) |
⊢ 𝑇 = (𝐺 toNrmGrp (norm‘𝐺)) & ⊢ 𝑋 = (Base‘𝐺) ⇒ ⊢ (𝐺 ∈ NrmGrp → (dist‘𝑇) = ((dist‘𝐺) ↾ (𝑋 × 𝑋))) | ||
Theorem | nrmtngnrm 23831 | The augmentation of a normed group by its own norm is a normed group with the same norm. (Contributed by AV, 15-Oct-2021.) |
⊢ 𝑇 = (𝐺 toNrmGrp (norm‘𝐺)) ⇒ ⊢ (𝐺 ∈ NrmGrp → (𝑇 ∈ NrmGrp ∧ (norm‘𝑇) = (norm‘𝐺))) | ||
Theorem | tngngpim 23832 | The induced metric of a normed group is a function. (Contributed by AV, 19-Oct-2021.) |
⊢ 𝑇 = (𝐺 toNrmGrp 𝑁) & ⊢ 𝑁 = (norm‘𝐺) & ⊢ 𝑋 = (Base‘𝐺) & ⊢ 𝐷 = (dist‘𝑇) ⇒ ⊢ (𝐺 ∈ NrmGrp → 𝐷:(𝑋 × 𝑋)⟶ℝ) | ||
Theorem | isnrg 23833 | A normed ring is a ring with a norm that makes it into a normed group, and such that the norm is an absolute value on the ring. (Contributed by Mario Carneiro, 4-Oct-2015.) |
⊢ 𝑁 = (norm‘𝑅) & ⊢ 𝐴 = (AbsVal‘𝑅) ⇒ ⊢ (𝑅 ∈ NrmRing ↔ (𝑅 ∈ NrmGrp ∧ 𝑁 ∈ 𝐴)) | ||
Theorem | nrgabv 23834 | The norm of a normed ring is an absolute value. (Contributed by Mario Carneiro, 4-Oct-2015.) |
⊢ 𝑁 = (norm‘𝑅) & ⊢ 𝐴 = (AbsVal‘𝑅) ⇒ ⊢ (𝑅 ∈ NrmRing → 𝑁 ∈ 𝐴) | ||
Theorem | nrgngp 23835 | A normed ring is a normed group. (Contributed by Mario Carneiro, 4-Oct-2015.) |
⊢ (𝑅 ∈ NrmRing → 𝑅 ∈ NrmGrp) | ||
Theorem | nrgring 23836 | A normed ring is a ring. (Contributed by Mario Carneiro, 4-Oct-2015.) |
⊢ (𝑅 ∈ NrmRing → 𝑅 ∈ Ring) | ||
Theorem | nmmul 23837 | The norm of a product in a normed ring. (Contributed by Mario Carneiro, 5-Oct-2015.) |
⊢ 𝑋 = (Base‘𝑅) & ⊢ 𝑁 = (norm‘𝑅) & ⊢ · = (.r‘𝑅) ⇒ ⊢ ((𝑅 ∈ NrmRing ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝑁‘(𝐴 · 𝐵)) = ((𝑁‘𝐴) · (𝑁‘𝐵))) | ||
Theorem | nrgdsdi 23838 | Distribute a distance calculation. (Contributed by Mario Carneiro, 5-Oct-2015.) |
⊢ 𝑋 = (Base‘𝑅) & ⊢ 𝑁 = (norm‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ 𝐷 = (dist‘𝑅) ⇒ ⊢ ((𝑅 ∈ NrmRing ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → ((𝑁‘𝐴) · (𝐵𝐷𝐶)) = ((𝐴 · 𝐵)𝐷(𝐴 · 𝐶))) | ||
Theorem | nrgdsdir 23839 | Distribute a distance calculation. (Contributed by Mario Carneiro, 5-Oct-2015.) |
⊢ 𝑋 = (Base‘𝑅) & ⊢ 𝑁 = (norm‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ 𝐷 = (dist‘𝑅) ⇒ ⊢ ((𝑅 ∈ NrmRing ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → ((𝐴𝐷𝐵) · (𝑁‘𝐶)) = ((𝐴 · 𝐶)𝐷(𝐵 · 𝐶))) | ||
Theorem | nm1 23840 | The norm of one in a nonzero normed ring. (Contributed by Mario Carneiro, 5-Oct-2015.) |
⊢ 𝑁 = (norm‘𝑅) & ⊢ 1 = (1r‘𝑅) ⇒ ⊢ ((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing) → (𝑁‘ 1 ) = 1) | ||
Theorem | unitnmn0 23841 | The norm of a unit is nonzero in a nonzero normed ring. (Contributed by Mario Carneiro, 5-Oct-2015.) |
⊢ 𝑁 = (norm‘𝑅) & ⊢ 𝑈 = (Unit‘𝑅) ⇒ ⊢ ((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing ∧ 𝐴 ∈ 𝑈) → (𝑁‘𝐴) ≠ 0) | ||
Theorem | nminvr 23842 | The norm of an inverse in a nonzero normed ring. (Contributed by Mario Carneiro, 5-Oct-2015.) |
⊢ 𝑁 = (norm‘𝑅) & ⊢ 𝑈 = (Unit‘𝑅) & ⊢ 𝐼 = (invr‘𝑅) ⇒ ⊢ ((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing ∧ 𝐴 ∈ 𝑈) → (𝑁‘(𝐼‘𝐴)) = (1 / (𝑁‘𝐴))) | ||
Theorem | nmdvr 23843 | The norm of a division in a nonzero normed ring. (Contributed by Mario Carneiro, 5-Oct-2015.) |
⊢ 𝑋 = (Base‘𝑅) & ⊢ 𝑁 = (norm‘𝑅) & ⊢ 𝑈 = (Unit‘𝑅) & ⊢ / = (/r‘𝑅) ⇒ ⊢ (((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑈)) → (𝑁‘(𝐴 / 𝐵)) = ((𝑁‘𝐴) / (𝑁‘𝐵))) | ||
Theorem | nrgdomn 23844 | A nonzero normed ring is a domain. (Contributed by Mario Carneiro, 4-Oct-2015.) |
⊢ (𝑅 ∈ NrmRing → (𝑅 ∈ Domn ↔ 𝑅 ∈ NzRing)) | ||
Theorem | nrgtgp 23845 | A normed ring is a topological group. (Contributed by Mario Carneiro, 5-Oct-2015.) |
⊢ (𝑅 ∈ NrmRing → 𝑅 ∈ TopGrp) | ||
Theorem | subrgnrg 23846 | A normed ring restricted to a subring is a normed ring. (Contributed by Mario Carneiro, 4-Oct-2015.) |
⊢ 𝐻 = (𝐺 ↾s 𝐴) ⇒ ⊢ ((𝐺 ∈ NrmRing ∧ 𝐴 ∈ (SubRing‘𝐺)) → 𝐻 ∈ NrmRing) | ||
Theorem | tngnrg 23847 | Given any absolute value over a ring, augmenting the ring with the absolute value produces a normed ring. (Contributed by Mario Carneiro, 4-Oct-2015.) |
⊢ 𝑇 = (𝑅 toNrmGrp 𝐹) & ⊢ 𝐴 = (AbsVal‘𝑅) ⇒ ⊢ (𝐹 ∈ 𝐴 → 𝑇 ∈ NrmRing) | ||
Theorem | isnlm 23848* | A normed (left) module is a module which is also a normed group over a normed ring, such that the norm distributes over scalar multiplication. (Contributed by Mario Carneiro, 4-Oct-2015.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝑁 = (norm‘𝑊) & ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝐹) & ⊢ 𝐴 = (norm‘𝐹) ⇒ ⊢ (𝑊 ∈ NrmMod ↔ ((𝑊 ∈ NrmGrp ∧ 𝑊 ∈ LMod ∧ 𝐹 ∈ NrmRing) ∧ ∀𝑥 ∈ 𝐾 ∀𝑦 ∈ 𝑉 (𝑁‘(𝑥 · 𝑦)) = ((𝐴‘𝑥) · (𝑁‘𝑦)))) | ||
Theorem | nmvs 23849 | Defining property of a normed module. (Contributed by Mario Carneiro, 4-Oct-2015.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝑁 = (norm‘𝑊) & ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝐹) & ⊢ 𝐴 = (norm‘𝐹) ⇒ ⊢ ((𝑊 ∈ NrmMod ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝑉) → (𝑁‘(𝑋 · 𝑌)) = ((𝐴‘𝑋) · (𝑁‘𝑌))) | ||
Theorem | nlmngp 23850 | A normed module is a normed group. (Contributed by Mario Carneiro, 4-Oct-2015.) |
⊢ (𝑊 ∈ NrmMod → 𝑊 ∈ NrmGrp) | ||
Theorem | nlmlmod 23851 | A normed module is a left module. (Contributed by Mario Carneiro, 4-Oct-2015.) |
⊢ (𝑊 ∈ NrmMod → 𝑊 ∈ LMod) | ||
Theorem | nlmnrg 23852 | The scalar component of a left module is a normed ring. (Contributed by Mario Carneiro, 4-Oct-2015.) |
⊢ 𝐹 = (Scalar‘𝑊) ⇒ ⊢ (𝑊 ∈ NrmMod → 𝐹 ∈ NrmRing) | ||
Theorem | nlmngp2 23853 | The scalar component of a left module is a normed group. (Contributed by Mario Carneiro, 4-Oct-2015.) |
⊢ 𝐹 = (Scalar‘𝑊) ⇒ ⊢ (𝑊 ∈ NrmMod → 𝐹 ∈ NrmGrp) | ||
Theorem | nlmdsdi 23854 | Distribute a distance calculation. (Contributed by Mario Carneiro, 6-Oct-2015.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝐹) & ⊢ 𝐷 = (dist‘𝑊) & ⊢ 𝐴 = (norm‘𝐹) ⇒ ⊢ ((𝑊 ∈ NrmMod ∧ (𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑉)) → ((𝐴‘𝑋) · (𝑌𝐷𝑍)) = ((𝑋 · 𝑌)𝐷(𝑋 · 𝑍))) | ||
Theorem | nlmdsdir 23855 | Distribute a distance calculation. (Contributed by Mario Carneiro, 6-Oct-2015.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝐹) & ⊢ 𝐷 = (dist‘𝑊) & ⊢ 𝑁 = (norm‘𝑊) & ⊢ 𝐸 = (dist‘𝐹) ⇒ ⊢ ((𝑊 ∈ NrmMod ∧ (𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐾 ∧ 𝑍 ∈ 𝑉)) → ((𝑋𝐸𝑌) · (𝑁‘𝑍)) = ((𝑋 · 𝑍)𝐷(𝑌 · 𝑍))) | ||
Theorem | nlmmul0or 23856 | If a scalar product is zero, one of its factors must be zero. (Contributed by NM, 6-Dec-2007.) (Revised by Mario Carneiro, 4-Oct-2015.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ 0 = (0g‘𝑊) & ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝐹) & ⊢ 𝑂 = (0g‘𝐹) ⇒ ⊢ ((𝑊 ∈ NrmMod ∧ 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝑉) → ((𝐴 · 𝐵) = 0 ↔ (𝐴 = 𝑂 ∨ 𝐵 = 0 ))) | ||
Theorem | sranlm 23857 | The subring algebra over a normed ring is a normed left module. (Contributed by Mario Carneiro, 4-Oct-2015.) |
⊢ 𝐴 = ((subringAlg ‘𝑊)‘𝑆) ⇒ ⊢ ((𝑊 ∈ NrmRing ∧ 𝑆 ∈ (SubRing‘𝑊)) → 𝐴 ∈ NrmMod) | ||
Theorem | nlmvscnlem2 23858 | Lemma for nlmvscn 23860. Compare this proof with the similar elementary proof mulcn2 15314 for continuity of multiplication on ℂ. (Contributed by Mario Carneiro, 5-Oct-2015.) |
⊢ 𝐹 = (Scalar‘𝑊) & ⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝐾 = (Base‘𝐹) & ⊢ 𝐷 = (dist‘𝑊) & ⊢ 𝐸 = (dist‘𝐹) & ⊢ 𝑁 = (norm‘𝑊) & ⊢ 𝐴 = (norm‘𝐹) & ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ 𝑇 = ((𝑅 / 2) / ((𝐴‘𝐵) + 1)) & ⊢ 𝑈 = ((𝑅 / 2) / ((𝑁‘𝑋) + 𝑇)) & ⊢ (𝜑 → 𝑊 ∈ NrmMod) & ⊢ (𝜑 → 𝑅 ∈ ℝ+) & ⊢ (𝜑 → 𝐵 ∈ 𝐾) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝐶 ∈ 𝐾) & ⊢ (𝜑 → 𝑌 ∈ 𝑉) & ⊢ (𝜑 → (𝐵𝐸𝐶) < 𝑈) & ⊢ (𝜑 → (𝑋𝐷𝑌) < 𝑇) ⇒ ⊢ (𝜑 → ((𝐵 · 𝑋)𝐷(𝐶 · 𝑌)) < 𝑅) | ||
Theorem | nlmvscnlem1 23859* | Lemma for nlmvscn 23860. (Contributed by Mario Carneiro, 5-Oct-2015.) |
⊢ 𝐹 = (Scalar‘𝑊) & ⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝐾 = (Base‘𝐹) & ⊢ 𝐷 = (dist‘𝑊) & ⊢ 𝐸 = (dist‘𝐹) & ⊢ 𝑁 = (norm‘𝑊) & ⊢ 𝐴 = (norm‘𝐹) & ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ 𝑇 = ((𝑅 / 2) / ((𝐴‘𝐵) + 1)) & ⊢ 𝑈 = ((𝑅 / 2) / ((𝑁‘𝑋) + 𝑇)) & ⊢ (𝜑 → 𝑊 ∈ NrmMod) & ⊢ (𝜑 → 𝑅 ∈ ℝ+) & ⊢ (𝜑 → 𝐵 ∈ 𝐾) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) ⇒ ⊢ (𝜑 → ∃𝑟 ∈ ℝ+ ∀𝑥 ∈ 𝐾 ∀𝑦 ∈ 𝑉 (((𝐵𝐸𝑥) < 𝑟 ∧ (𝑋𝐷𝑦) < 𝑟) → ((𝐵 · 𝑋)𝐷(𝑥 · 𝑦)) < 𝑅)) | ||
Theorem | nlmvscn 23860 | The scalar multiplication of a normed module is continuous. Lemma for nrgtrg 23863 and nlmtlm 23867. (Contributed by Mario Carneiro, 4-Oct-2015.) |
⊢ 𝐹 = (Scalar‘𝑊) & ⊢ · = ( ·sf ‘𝑊) & ⊢ 𝐽 = (TopOpen‘𝑊) & ⊢ 𝐾 = (TopOpen‘𝐹) ⇒ ⊢ (𝑊 ∈ NrmMod → · ∈ ((𝐾 ×t 𝐽) Cn 𝐽)) | ||
Theorem | rlmnlm 23861 | The ring module over a normed ring is a normed module. (Contributed by Mario Carneiro, 4-Oct-2015.) |
⊢ (𝑅 ∈ NrmRing → (ringLMod‘𝑅) ∈ NrmMod) | ||
Theorem | rlmnm 23862 | The norm function in the ring module. (Contributed by AV, 9-Oct-2021.) |
⊢ (norm‘𝑅) = (norm‘(ringLMod‘𝑅)) | ||
Theorem | nrgtrg 23863 | A normed ring is a topological ring. (Contributed by Mario Carneiro, 4-Oct-2015.) (Proof shortened by AV, 31-Oct-2024.) |
⊢ (𝑅 ∈ NrmRing → 𝑅 ∈ TopRing) | ||
Theorem | nrginvrcnlem 23864* | Lemma for nrginvrcn 23865. Compare this proof with reccn2 15315, the elementary proof of continuity of division. (Contributed by Mario Carneiro, 6-Oct-2015.) |
⊢ 𝑋 = (Base‘𝑅) & ⊢ 𝑈 = (Unit‘𝑅) & ⊢ 𝐼 = (invr‘𝑅) & ⊢ 𝑁 = (norm‘𝑅) & ⊢ 𝐷 = (dist‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ NrmRing) & ⊢ (𝜑 → 𝑅 ∈ NzRing) & ⊢ (𝜑 → 𝐴 ∈ 𝑈) & ⊢ (𝜑 → 𝐵 ∈ ℝ+) & ⊢ 𝑇 = (if(1 ≤ ((𝑁‘𝐴) · 𝐵), 1, ((𝑁‘𝐴) · 𝐵)) · ((𝑁‘𝐴) / 2)) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ ℝ+ ∀𝑦 ∈ 𝑈 ((𝐴𝐷𝑦) < 𝑥 → ((𝐼‘𝐴)𝐷(𝐼‘𝑦)) < 𝐵)) | ||
Theorem | nrginvrcn 23865 | The ring inverse function is continuous in a normed ring. (Note that this is true even in rings which are not division rings.) (Contributed by Mario Carneiro, 6-Oct-2015.) |
⊢ 𝑋 = (Base‘𝑅) & ⊢ 𝑈 = (Unit‘𝑅) & ⊢ 𝐼 = (invr‘𝑅) & ⊢ 𝐽 = (TopOpen‘𝑅) ⇒ ⊢ (𝑅 ∈ NrmRing → 𝐼 ∈ ((𝐽 ↾t 𝑈) Cn (𝐽 ↾t 𝑈))) | ||
Theorem | nrgtdrg 23866 | A normed division ring is a topological division ring. (Contributed by Mario Carneiro, 6-Oct-2015.) |
⊢ ((𝑅 ∈ NrmRing ∧ 𝑅 ∈ DivRing) → 𝑅 ∈ TopDRing) | ||
Theorem | nlmtlm 23867 | A normed module is a topological module. (Contributed by Mario Carneiro, 6-Oct-2015.) |
⊢ (𝑊 ∈ NrmMod → 𝑊 ∈ TopMod) | ||
Theorem | isnvc 23868 | A normed vector space is just a normed module which is algebraically a vector space. (Contributed by Mario Carneiro, 4-Oct-2015.) |
⊢ (𝑊 ∈ NrmVec ↔ (𝑊 ∈ NrmMod ∧ 𝑊 ∈ LVec)) | ||
Theorem | nvcnlm 23869 | A normed vector space is a normed module. (Contributed by Mario Carneiro, 4-Oct-2015.) |
⊢ (𝑊 ∈ NrmVec → 𝑊 ∈ NrmMod) | ||
Theorem | nvclvec 23870 | A normed vector space is a left vector space. (Contributed by Mario Carneiro, 4-Oct-2015.) |
⊢ (𝑊 ∈ NrmVec → 𝑊 ∈ LVec) | ||
Theorem | nvclmod 23871 | A normed vector space is a left module. (Contributed by Mario Carneiro, 4-Oct-2015.) |
⊢ (𝑊 ∈ NrmVec → 𝑊 ∈ LMod) | ||
Theorem | isnvc2 23872 | A normed vector space is just a normed module whose scalar ring is a division ring. (Contributed by Mario Carneiro, 4-Oct-2015.) |
⊢ 𝐹 = (Scalar‘𝑊) ⇒ ⊢ (𝑊 ∈ NrmVec ↔ (𝑊 ∈ NrmMod ∧ 𝐹 ∈ DivRing)) | ||
Theorem | nvctvc 23873 | A normed vector space is a topological vector space. (Contributed by Mario Carneiro, 4-Oct-2015.) |
⊢ (𝑊 ∈ NrmVec → 𝑊 ∈ TopVec) | ||
Theorem | lssnlm 23874 | A subspace of a normed module is a normed module. (Contributed by Mario Carneiro, 4-Oct-2015.) |
⊢ 𝑋 = (𝑊 ↾s 𝑈) & ⊢ 𝑆 = (LSubSp‘𝑊) ⇒ ⊢ ((𝑊 ∈ NrmMod ∧ 𝑈 ∈ 𝑆) → 𝑋 ∈ NrmMod) | ||
Theorem | lssnvc 23875 | A subspace of a normed vector space is a normed vector space. (Contributed by Mario Carneiro, 4-Oct-2015.) |
⊢ 𝑋 = (𝑊 ↾s 𝑈) & ⊢ 𝑆 = (LSubSp‘𝑊) ⇒ ⊢ ((𝑊 ∈ NrmVec ∧ 𝑈 ∈ 𝑆) → 𝑋 ∈ NrmVec) | ||
Theorem | rlmnvc 23876 | The ring module over a normed division ring is a normed vector space. (Contributed by Mario Carneiro, 4-Oct-2015.) |
⊢ ((𝑅 ∈ NrmRing ∧ 𝑅 ∈ DivRing) → (ringLMod‘𝑅) ∈ NrmVec) | ||
Theorem | ngpocelbl 23877 | Membership of an off-center vector in a ball in a normed module. (Contributed by NM, 27-Dec-2007.) (Revised by AV, 14-Oct-2021.) |
⊢ 𝑁 = (norm‘𝐺) & ⊢ 𝑋 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) & ⊢ 𝐷 = ((dist‘𝐺) ↾ (𝑋 × 𝑋)) ⇒ ⊢ ((𝐺 ∈ NrmMod ∧ 𝑅 ∈ ℝ* ∧ (𝑃 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋)) → ((𝑃 + 𝐴) ∈ (𝑃(ball‘𝐷)𝑅) ↔ (𝑁‘𝐴) < 𝑅)) | ||
Syntax | cnmo 23878 | The operator norm function. |
class normOp | ||
Syntax | cnghm 23879 | The class of normed group homomorphisms. |
class NGHom | ||
Syntax | cnmhm 23880 | The class of normed module homomorphisms. |
class NMHom | ||
Definition | df-nmo 23881* | Define the norm of an operator between two normed groups (usually vector spaces). This definition produces an operator norm function for each pair of groups 〈𝑠, 𝑡〉. Equivalent to the definition of linear operator norm in [AkhiezerGlazman] p. 39. (Contributed by Mario Carneiro, 18-Oct-2015.) (Revised by AV, 25-Sep-2020.) |
⊢ normOp = (𝑠 ∈ NrmGrp, 𝑡 ∈ NrmGrp ↦ (𝑓 ∈ (𝑠 GrpHom 𝑡) ↦ inf({𝑟 ∈ (0[,)+∞) ∣ ∀𝑥 ∈ (Base‘𝑠)((norm‘𝑡)‘(𝑓‘𝑥)) ≤ (𝑟 · ((norm‘𝑠)‘𝑥))}, ℝ*, < ))) | ||
Definition | df-nghm 23882* | Define the set of normed group homomorphisms between two normed groups. A normed group homomorphism is a group homomorphism which additionally bounds the increase of norm by a fixed real operator. In vector spaces these are also known as bounded linear operators. (Contributed by Mario Carneiro, 18-Oct-2015.) |
⊢ NGHom = (𝑠 ∈ NrmGrp, 𝑡 ∈ NrmGrp ↦ (◡(𝑠 normOp 𝑡) “ ℝ)) | ||
Definition | df-nmhm 23883* | Define a normed module homomorphism, also known as a bounded linear operator. This is a module homomorphism (a linear function) such that the operator norm is finite, or equivalently there is a constant 𝑐 such that... (Contributed by Mario Carneiro, 18-Oct-2015.) |
⊢ NMHom = (𝑠 ∈ NrmMod, 𝑡 ∈ NrmMod ↦ ((𝑠 LMHom 𝑡) ∩ (𝑠 NGHom 𝑡))) | ||
Theorem | nmoffn 23884 | The function producing operator norm functions is a function on normed groups. (Contributed by Mario Carneiro, 18-Oct-2015.) (Proof shortened by AV, 26-Sep-2020.) |
⊢ normOp Fn (NrmGrp × NrmGrp) | ||
Theorem | reldmnghm 23885 | Lemma for normed group homomorphisms. (Contributed by Mario Carneiro, 18-Oct-2015.) |
⊢ Rel dom NGHom | ||
Theorem | reldmnmhm 23886 | Lemma for module homomorphisms. (Contributed by Mario Carneiro, 18-Oct-2015.) |
⊢ Rel dom NMHom | ||
Theorem | nmofval 23887* | Value of the operator norm. (Contributed by Mario Carneiro, 18-Oct-2015.) (Revised by AV, 26-Sep-2020.) |
⊢ 𝑁 = (𝑆 normOp 𝑇) & ⊢ 𝑉 = (Base‘𝑆) & ⊢ 𝐿 = (norm‘𝑆) & ⊢ 𝑀 = (norm‘𝑇) ⇒ ⊢ ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp) → 𝑁 = (𝑓 ∈ (𝑆 GrpHom 𝑇) ↦ inf({𝑟 ∈ (0[,)+∞) ∣ ∀𝑥 ∈ 𝑉 (𝑀‘(𝑓‘𝑥)) ≤ (𝑟 · (𝐿‘𝑥))}, ℝ*, < ))) | ||
Theorem | nmoval 23888* | Value of the operator norm. (Contributed by Mario Carneiro, 18-Oct-2015.) (Revised by AV, 26-Sep-2020.) |
⊢ 𝑁 = (𝑆 normOp 𝑇) & ⊢ 𝑉 = (Base‘𝑆) & ⊢ 𝐿 = (norm‘𝑆) & ⊢ 𝑀 = (norm‘𝑇) ⇒ ⊢ ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) → (𝑁‘𝐹) = inf({𝑟 ∈ (0[,)+∞) ∣ ∀𝑥 ∈ 𝑉 (𝑀‘(𝐹‘𝑥)) ≤ (𝑟 · (𝐿‘𝑥))}, ℝ*, < )) | ||
Theorem | nmogelb 23889* | Property of the operator norm. (Contributed by Mario Carneiro, 18-Oct-2015.) (Proof shortened by AV, 26-Sep-2020.) |
⊢ 𝑁 = (𝑆 normOp 𝑇) & ⊢ 𝑉 = (Base‘𝑆) & ⊢ 𝐿 = (norm‘𝑆) & ⊢ 𝑀 = (norm‘𝑇) ⇒ ⊢ (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ 𝐴 ∈ ℝ*) → (𝐴 ≤ (𝑁‘𝐹) ↔ ∀𝑟 ∈ (0[,)+∞)(∀𝑥 ∈ 𝑉 (𝑀‘(𝐹‘𝑥)) ≤ (𝑟 · (𝐿‘𝑥)) → 𝐴 ≤ 𝑟))) | ||
Theorem | nmolb 23890* | Any upper bound on the values of a linear operator translates to an upper bound on the operator norm. (Contributed by Mario Carneiro, 18-Oct-2015.) (Proof shortened by AV, 26-Sep-2020.) |
⊢ 𝑁 = (𝑆 normOp 𝑇) & ⊢ 𝑉 = (Base‘𝑆) & ⊢ 𝐿 = (norm‘𝑆) & ⊢ 𝑀 = (norm‘𝑇) ⇒ ⊢ (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (∀𝑥 ∈ 𝑉 (𝑀‘(𝐹‘𝑥)) ≤ (𝐴 · (𝐿‘𝑥)) → (𝑁‘𝐹) ≤ 𝐴)) | ||
Theorem | nmolb2d 23891* | Any upper bound on the values of a linear operator at nonzero vectors translates to an upper bound on the operator norm. (Contributed by Mario Carneiro, 18-Oct-2015.) |
⊢ 𝑁 = (𝑆 normOp 𝑇) & ⊢ 𝑉 = (Base‘𝑆) & ⊢ 𝐿 = (norm‘𝑆) & ⊢ 𝑀 = (norm‘𝑇) & ⊢ 0 = (0g‘𝑆) & ⊢ (𝜑 → 𝑆 ∈ NrmGrp) & ⊢ (𝜑 → 𝑇 ∈ NrmGrp) & ⊢ (𝜑 → 𝐹 ∈ (𝑆 GrpHom 𝑇)) & ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 0 ≤ 𝐴) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑥 ≠ 0 )) → (𝑀‘(𝐹‘𝑥)) ≤ (𝐴 · (𝐿‘𝑥))) ⇒ ⊢ (𝜑 → (𝑁‘𝐹) ≤ 𝐴) | ||
Theorem | nmof 23892 | The operator norm is a function into the extended reals. (Contributed by Mario Carneiro, 18-Oct-2015.) (Proof shortened by AV, 26-Sep-2020.) |
⊢ 𝑁 = (𝑆 normOp 𝑇) ⇒ ⊢ ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp) → 𝑁:(𝑆 GrpHom 𝑇)⟶ℝ*) | ||
Theorem | nmocl 23893 | The operator norm of an operator is an extended real. (Contributed by Mario Carneiro, 18-Oct-2015.) |
⊢ 𝑁 = (𝑆 normOp 𝑇) ⇒ ⊢ ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) → (𝑁‘𝐹) ∈ ℝ*) | ||
Theorem | nmoge0 23894 | The operator norm of an operator is nonnegative. (Contributed by Mario Carneiro, 18-Oct-2015.) |
⊢ 𝑁 = (𝑆 normOp 𝑇) ⇒ ⊢ ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) → 0 ≤ (𝑁‘𝐹)) | ||
Theorem | nghmfval 23895 | A normed group homomorphism is a group homomorphism with bounded norm. (Contributed by Mario Carneiro, 18-Oct-2015.) |
⊢ 𝑁 = (𝑆 normOp 𝑇) ⇒ ⊢ (𝑆 NGHom 𝑇) = (◡𝑁 “ ℝ) | ||
Theorem | isnghm 23896 | A normed group homomorphism is a group homomorphism with bounded norm. (Contributed by Mario Carneiro, 18-Oct-2015.) |
⊢ 𝑁 = (𝑆 normOp 𝑇) ⇒ ⊢ (𝐹 ∈ (𝑆 NGHom 𝑇) ↔ ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp) ∧ (𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ (𝑁‘𝐹) ∈ ℝ))) | ||
Theorem | isnghm2 23897 | A normed group homomorphism is a group homomorphism with bounded norm. (Contributed by Mario Carneiro, 18-Oct-2015.) |
⊢ 𝑁 = (𝑆 normOp 𝑇) ⇒ ⊢ ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) → (𝐹 ∈ (𝑆 NGHom 𝑇) ↔ (𝑁‘𝐹) ∈ ℝ)) | ||
Theorem | isnghm3 23898 | A normed group homomorphism is a group homomorphism with bounded norm. (Contributed by Mario Carneiro, 18-Oct-2015.) |
⊢ 𝑁 = (𝑆 normOp 𝑇) ⇒ ⊢ ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) → (𝐹 ∈ (𝑆 NGHom 𝑇) ↔ (𝑁‘𝐹) < +∞)) | ||
Theorem | bddnghm 23899 | A bounded group homomorphism is a normed group homomorphism. (Contributed by Mario Carneiro, 18-Oct-2015.) |
⊢ 𝑁 = (𝑆 normOp 𝑇) ⇒ ⊢ (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ (𝐴 ∈ ℝ ∧ (𝑁‘𝐹) ≤ 𝐴)) → 𝐹 ∈ (𝑆 NGHom 𝑇)) | ||
Theorem | nghmcl 23900 | A normed group homomorphism has a real operator norm. (Contributed by Mario Carneiro, 18-Oct-2015.) |
⊢ 𝑁 = (𝑆 normOp 𝑇) ⇒ ⊢ (𝐹 ∈ (𝑆 NGHom 𝑇) → (𝑁‘𝐹) ∈ ℝ) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |