MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isms Structured version   Visualization version   GIF version

Theorem isms 23962
Description: Express the predicate "βŸ¨π‘‹, 𝐷⟩ is a metric space" with underlying set 𝑋 and distance function 𝐷. (Contributed by NM, 27-Aug-2006.) (Revised by Mario Carneiro, 24-Aug-2015.)
Hypotheses
Ref Expression
isms.j 𝐽 = (TopOpenβ€˜πΎ)
isms.x 𝑋 = (Baseβ€˜πΎ)
isms.d 𝐷 = ((distβ€˜πΎ) β†Ύ (𝑋 Γ— 𝑋))
Assertion
Ref Expression
isms (𝐾 ∈ MetSp ↔ (𝐾 ∈ ∞MetSp ∧ 𝐷 ∈ (Metβ€˜π‘‹)))

Proof of Theorem isms
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 fveq2 6891 . . . . 5 (𝑓 = 𝐾 β†’ (distβ€˜π‘“) = (distβ€˜πΎ))
2 fveq2 6891 . . . . . . 7 (𝑓 = 𝐾 β†’ (Baseβ€˜π‘“) = (Baseβ€˜πΎ))
3 isms.x . . . . . . 7 𝑋 = (Baseβ€˜πΎ)
42, 3eqtr4di 2790 . . . . . 6 (𝑓 = 𝐾 β†’ (Baseβ€˜π‘“) = 𝑋)
54sqxpeqd 5708 . . . . 5 (𝑓 = 𝐾 β†’ ((Baseβ€˜π‘“) Γ— (Baseβ€˜π‘“)) = (𝑋 Γ— 𝑋))
61, 5reseq12d 5982 . . . 4 (𝑓 = 𝐾 β†’ ((distβ€˜π‘“) β†Ύ ((Baseβ€˜π‘“) Γ— (Baseβ€˜π‘“))) = ((distβ€˜πΎ) β†Ύ (𝑋 Γ— 𝑋)))
7 isms.d . . . 4 𝐷 = ((distβ€˜πΎ) β†Ύ (𝑋 Γ— 𝑋))
86, 7eqtr4di 2790 . . 3 (𝑓 = 𝐾 β†’ ((distβ€˜π‘“) β†Ύ ((Baseβ€˜π‘“) Γ— (Baseβ€˜π‘“))) = 𝐷)
94fveq2d 6895 . . 3 (𝑓 = 𝐾 β†’ (Metβ€˜(Baseβ€˜π‘“)) = (Metβ€˜π‘‹))
108, 9eleq12d 2827 . 2 (𝑓 = 𝐾 β†’ (((distβ€˜π‘“) β†Ύ ((Baseβ€˜π‘“) Γ— (Baseβ€˜π‘“))) ∈ (Metβ€˜(Baseβ€˜π‘“)) ↔ 𝐷 ∈ (Metβ€˜π‘‹)))
11 df-ms 23834 . 2 MetSp = {𝑓 ∈ ∞MetSp ∣ ((distβ€˜π‘“) β†Ύ ((Baseβ€˜π‘“) Γ— (Baseβ€˜π‘“))) ∈ (Metβ€˜(Baseβ€˜π‘“))}
1210, 11elrab2 3686 1 (𝐾 ∈ MetSp ↔ (𝐾 ∈ ∞MetSp ∧ 𝐷 ∈ (Metβ€˜π‘‹)))
Colors of variables: wff setvar class
Syntax hints:   ↔ wb 205   ∧ wa 396   = wceq 1541   ∈ wcel 2106   Γ— cxp 5674   β†Ύ cres 5678  β€˜cfv 6543  Basecbs 17146  distcds 17208  TopOpenctopn 17369  Metcmet 20936  βˆžMetSpcxms 23830  MetSpcms 23831
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2703
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-rab 3433  df-v 3476  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-xp 5682  df-res 5688  df-iota 6495  df-fv 6551  df-ms 23834
This theorem is referenced by:  isms2  23963  msxms  23967  mspropd  23987  setsms  23995  tmsms  24003  imasf1oms  24006  ressms  24042  prdsms  24047
  Copyright terms: Public domain W3C validator