![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > isms | Structured version Visualization version GIF version |
Description: Express the predicate "〈𝑋, 𝐷〉 is a metric space" with underlying set 𝑋 and distance function 𝐷. (Contributed by NM, 27-Aug-2006.) (Revised by Mario Carneiro, 24-Aug-2015.) |
Ref | Expression |
---|---|
isms.j | ⊢ 𝐽 = (TopOpen‘𝐾) |
isms.x | ⊢ 𝑋 = (Base‘𝐾) |
isms.d | ⊢ 𝐷 = ((dist‘𝐾) ↾ (𝑋 × 𝑋)) |
Ref | Expression |
---|---|
isms | ⊢ (𝐾 ∈ MetSp ↔ (𝐾 ∈ ∞MetSp ∧ 𝐷 ∈ (Met‘𝑋))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6920 | . . . . 5 ⊢ (𝑓 = 𝐾 → (dist‘𝑓) = (dist‘𝐾)) | |
2 | fveq2 6920 | . . . . . . 7 ⊢ (𝑓 = 𝐾 → (Base‘𝑓) = (Base‘𝐾)) | |
3 | isms.x | . . . . . . 7 ⊢ 𝑋 = (Base‘𝐾) | |
4 | 2, 3 | eqtr4di 2798 | . . . . . 6 ⊢ (𝑓 = 𝐾 → (Base‘𝑓) = 𝑋) |
5 | 4 | sqxpeqd 5732 | . . . . 5 ⊢ (𝑓 = 𝐾 → ((Base‘𝑓) × (Base‘𝑓)) = (𝑋 × 𝑋)) |
6 | 1, 5 | reseq12d 6010 | . . . 4 ⊢ (𝑓 = 𝐾 → ((dist‘𝑓) ↾ ((Base‘𝑓) × (Base‘𝑓))) = ((dist‘𝐾) ↾ (𝑋 × 𝑋))) |
7 | isms.d | . . . 4 ⊢ 𝐷 = ((dist‘𝐾) ↾ (𝑋 × 𝑋)) | |
8 | 6, 7 | eqtr4di 2798 | . . 3 ⊢ (𝑓 = 𝐾 → ((dist‘𝑓) ↾ ((Base‘𝑓) × (Base‘𝑓))) = 𝐷) |
9 | 4 | fveq2d 6924 | . . 3 ⊢ (𝑓 = 𝐾 → (Met‘(Base‘𝑓)) = (Met‘𝑋)) |
10 | 8, 9 | eleq12d 2838 | . 2 ⊢ (𝑓 = 𝐾 → (((dist‘𝑓) ↾ ((Base‘𝑓) × (Base‘𝑓))) ∈ (Met‘(Base‘𝑓)) ↔ 𝐷 ∈ (Met‘𝑋))) |
11 | df-ms 24352 | . 2 ⊢ MetSp = {𝑓 ∈ ∞MetSp ∣ ((dist‘𝑓) ↾ ((Base‘𝑓) × (Base‘𝑓))) ∈ (Met‘(Base‘𝑓))} | |
12 | 10, 11 | elrab2 3711 | 1 ⊢ (𝐾 ∈ MetSp ↔ (𝐾 ∈ ∞MetSp ∧ 𝐷 ∈ (Met‘𝑋))) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2108 × cxp 5698 ↾ cres 5702 ‘cfv 6573 Basecbs 17258 distcds 17320 TopOpenctopn 17481 Metcmet 21373 ∞MetSpcxms 24348 MetSpcms 24349 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-xp 5706 df-res 5712 df-iota 6525 df-fv 6581 df-ms 24352 |
This theorem is referenced by: isms2 24481 msxms 24485 mspropd 24505 setsms 24513 tmsms 24521 imasf1oms 24524 ressms 24560 prdsms 24565 |
Copyright terms: Public domain | W3C validator |