Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > isms | Structured version Visualization version GIF version |
Description: Express the predicate "〈𝑋, 𝐷〉 is a metric space" with underlying set 𝑋 and distance function 𝐷. (Contributed by NM, 27-Aug-2006.) (Revised by Mario Carneiro, 24-Aug-2015.) |
Ref | Expression |
---|---|
isms.j | ⊢ 𝐽 = (TopOpen‘𝐾) |
isms.x | ⊢ 𝑋 = (Base‘𝐾) |
isms.d | ⊢ 𝐷 = ((dist‘𝐾) ↾ (𝑋 × 𝑋)) |
Ref | Expression |
---|---|
isms | ⊢ (𝐾 ∈ MetSp ↔ (𝐾 ∈ ∞MetSp ∧ 𝐷 ∈ (Met‘𝑋))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6774 | . . . . 5 ⊢ (𝑓 = 𝐾 → (dist‘𝑓) = (dist‘𝐾)) | |
2 | fveq2 6774 | . . . . . . 7 ⊢ (𝑓 = 𝐾 → (Base‘𝑓) = (Base‘𝐾)) | |
3 | isms.x | . . . . . . 7 ⊢ 𝑋 = (Base‘𝐾) | |
4 | 2, 3 | eqtr4di 2796 | . . . . . 6 ⊢ (𝑓 = 𝐾 → (Base‘𝑓) = 𝑋) |
5 | 4 | sqxpeqd 5621 | . . . . 5 ⊢ (𝑓 = 𝐾 → ((Base‘𝑓) × (Base‘𝑓)) = (𝑋 × 𝑋)) |
6 | 1, 5 | reseq12d 5892 | . . . 4 ⊢ (𝑓 = 𝐾 → ((dist‘𝑓) ↾ ((Base‘𝑓) × (Base‘𝑓))) = ((dist‘𝐾) ↾ (𝑋 × 𝑋))) |
7 | isms.d | . . . 4 ⊢ 𝐷 = ((dist‘𝐾) ↾ (𝑋 × 𝑋)) | |
8 | 6, 7 | eqtr4di 2796 | . . 3 ⊢ (𝑓 = 𝐾 → ((dist‘𝑓) ↾ ((Base‘𝑓) × (Base‘𝑓))) = 𝐷) |
9 | 4 | fveq2d 6778 | . . 3 ⊢ (𝑓 = 𝐾 → (Met‘(Base‘𝑓)) = (Met‘𝑋)) |
10 | 8, 9 | eleq12d 2833 | . 2 ⊢ (𝑓 = 𝐾 → (((dist‘𝑓) ↾ ((Base‘𝑓) × (Base‘𝑓))) ∈ (Met‘(Base‘𝑓)) ↔ 𝐷 ∈ (Met‘𝑋))) |
11 | df-ms 23474 | . 2 ⊢ MetSp = {𝑓 ∈ ∞MetSp ∣ ((dist‘𝑓) ↾ ((Base‘𝑓) × (Base‘𝑓))) ∈ (Met‘(Base‘𝑓))} | |
12 | 10, 11 | elrab2 3627 | 1 ⊢ (𝐾 ∈ MetSp ↔ (𝐾 ∈ ∞MetSp ∧ 𝐷 ∈ (Met‘𝑋))) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 396 = wceq 1539 ∈ wcel 2106 × cxp 5587 ↾ cres 5591 ‘cfv 6433 Basecbs 16912 distcds 16971 TopOpenctopn 17132 Metcmet 20583 ∞MetSpcxms 23470 MetSpcms 23471 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-xp 5595 df-res 5601 df-iota 6391 df-fv 6441 df-ms 23474 |
This theorem is referenced by: isms2 23603 msxms 23607 mspropd 23627 setsms 23635 tmsms 23643 imasf1oms 23646 ressms 23682 prdsms 23687 |
Copyright terms: Public domain | W3C validator |