![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > isms | Structured version Visualization version GIF version |
Description: Express the predicate "β¨π, π·β© is a metric space" with underlying set π and distance function π·. (Contributed by NM, 27-Aug-2006.) (Revised by Mario Carneiro, 24-Aug-2015.) |
Ref | Expression |
---|---|
isms.j | β’ π½ = (TopOpenβπΎ) |
isms.x | β’ π = (BaseβπΎ) |
isms.d | β’ π· = ((distβπΎ) βΎ (π Γ π)) |
Ref | Expression |
---|---|
isms | β’ (πΎ β MetSp β (πΎ β βMetSp β§ π· β (Metβπ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6891 | . . . . 5 β’ (π = πΎ β (distβπ) = (distβπΎ)) | |
2 | fveq2 6891 | . . . . . . 7 β’ (π = πΎ β (Baseβπ) = (BaseβπΎ)) | |
3 | isms.x | . . . . . . 7 β’ π = (BaseβπΎ) | |
4 | 2, 3 | eqtr4di 2790 | . . . . . 6 β’ (π = πΎ β (Baseβπ) = π) |
5 | 4 | sqxpeqd 5708 | . . . . 5 β’ (π = πΎ β ((Baseβπ) Γ (Baseβπ)) = (π Γ π)) |
6 | 1, 5 | reseq12d 5982 | . . . 4 β’ (π = πΎ β ((distβπ) βΎ ((Baseβπ) Γ (Baseβπ))) = ((distβπΎ) βΎ (π Γ π))) |
7 | isms.d | . . . 4 β’ π· = ((distβπΎ) βΎ (π Γ π)) | |
8 | 6, 7 | eqtr4di 2790 | . . 3 β’ (π = πΎ β ((distβπ) βΎ ((Baseβπ) Γ (Baseβπ))) = π·) |
9 | 4 | fveq2d 6895 | . . 3 β’ (π = πΎ β (Metβ(Baseβπ)) = (Metβπ)) |
10 | 8, 9 | eleq12d 2827 | . 2 β’ (π = πΎ β (((distβπ) βΎ ((Baseβπ) Γ (Baseβπ))) β (Metβ(Baseβπ)) β π· β (Metβπ))) |
11 | df-ms 23834 | . 2 β’ MetSp = {π β βMetSp β£ ((distβπ) βΎ ((Baseβπ) Γ (Baseβπ))) β (Metβ(Baseβπ))} | |
12 | 10, 11 | elrab2 3686 | 1 β’ (πΎ β MetSp β (πΎ β βMetSp β§ π· β (Metβπ))) |
Colors of variables: wff setvar class |
Syntax hints: β wb 205 β§ wa 396 = wceq 1541 β wcel 2106 Γ cxp 5674 βΎ cres 5678 βcfv 6543 Basecbs 17146 distcds 17208 TopOpenctopn 17369 Metcmet 20936 βMetSpcxms 23830 MetSpcms 23831 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-rab 3433 df-v 3476 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-xp 5682 df-res 5688 df-iota 6495 df-fv 6551 df-ms 23834 |
This theorem is referenced by: isms2 23963 msxms 23967 mspropd 23987 setsms 23995 tmsms 24003 imasf1oms 24006 ressms 24042 prdsms 24047 |
Copyright terms: Public domain | W3C validator |