| Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > mvrsval | Structured version Visualization version GIF version | ||
| Description: The set of variables in an expression. (Contributed by Mario Carneiro, 18-Jul-2016.) |
| Ref | Expression |
|---|---|
| mvrsval.v | ⊢ 𝑉 = (mVR‘𝑇) |
| mvrsval.e | ⊢ 𝐸 = (mEx‘𝑇) |
| mvrsval.w | ⊢ 𝑊 = (mVars‘𝑇) |
| Ref | Expression |
|---|---|
| mvrsval | ⊢ (𝑋 ∈ 𝐸 → (𝑊‘𝑋) = (ran (2nd ‘𝑋) ∩ 𝑉)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mvrsval.w | . . 3 ⊢ 𝑊 = (mVars‘𝑇) | |
| 2 | elfvex 6899 | . . . . 5 ⊢ (𝑋 ∈ (mEx‘𝑇) → 𝑇 ∈ V) | |
| 3 | mvrsval.e | . . . . 5 ⊢ 𝐸 = (mEx‘𝑇) | |
| 4 | 2, 3 | eleq2s 2847 | . . . 4 ⊢ (𝑋 ∈ 𝐸 → 𝑇 ∈ V) |
| 5 | fveq2 6861 | . . . . . . 7 ⊢ (𝑡 = 𝑇 → (mEx‘𝑡) = (mEx‘𝑇)) | |
| 6 | 5, 3 | eqtr4di 2783 | . . . . . 6 ⊢ (𝑡 = 𝑇 → (mEx‘𝑡) = 𝐸) |
| 7 | fveq2 6861 | . . . . . . . 8 ⊢ (𝑡 = 𝑇 → (mVR‘𝑡) = (mVR‘𝑇)) | |
| 8 | mvrsval.v | . . . . . . . 8 ⊢ 𝑉 = (mVR‘𝑇) | |
| 9 | 7, 8 | eqtr4di 2783 | . . . . . . 7 ⊢ (𝑡 = 𝑇 → (mVR‘𝑡) = 𝑉) |
| 10 | 9 | ineq2d 4186 | . . . . . 6 ⊢ (𝑡 = 𝑇 → (ran (2nd ‘𝑒) ∩ (mVR‘𝑡)) = (ran (2nd ‘𝑒) ∩ 𝑉)) |
| 11 | 6, 10 | mpteq12dv 5197 | . . . . 5 ⊢ (𝑡 = 𝑇 → (𝑒 ∈ (mEx‘𝑡) ↦ (ran (2nd ‘𝑒) ∩ (mVR‘𝑡))) = (𝑒 ∈ 𝐸 ↦ (ran (2nd ‘𝑒) ∩ 𝑉))) |
| 12 | df-mvrs 35483 | . . . . 5 ⊢ mVars = (𝑡 ∈ V ↦ (𝑒 ∈ (mEx‘𝑡) ↦ (ran (2nd ‘𝑒) ∩ (mVR‘𝑡)))) | |
| 13 | 11, 12, 3 | mptfvmpt 7205 | . . . 4 ⊢ (𝑇 ∈ V → (mVars‘𝑇) = (𝑒 ∈ 𝐸 ↦ (ran (2nd ‘𝑒) ∩ 𝑉))) |
| 14 | 4, 13 | syl 17 | . . 3 ⊢ (𝑋 ∈ 𝐸 → (mVars‘𝑇) = (𝑒 ∈ 𝐸 ↦ (ran (2nd ‘𝑒) ∩ 𝑉))) |
| 15 | 1, 14 | eqtrid 2777 | . 2 ⊢ (𝑋 ∈ 𝐸 → 𝑊 = (𝑒 ∈ 𝐸 ↦ (ran (2nd ‘𝑒) ∩ 𝑉))) |
| 16 | fveq2 6861 | . . . . 5 ⊢ (𝑒 = 𝑋 → (2nd ‘𝑒) = (2nd ‘𝑋)) | |
| 17 | 16 | rneqd 5905 | . . . 4 ⊢ (𝑒 = 𝑋 → ran (2nd ‘𝑒) = ran (2nd ‘𝑋)) |
| 18 | 17 | ineq1d 4185 | . . 3 ⊢ (𝑒 = 𝑋 → (ran (2nd ‘𝑒) ∩ 𝑉) = (ran (2nd ‘𝑋) ∩ 𝑉)) |
| 19 | 18 | adantl 481 | . 2 ⊢ ((𝑋 ∈ 𝐸 ∧ 𝑒 = 𝑋) → (ran (2nd ‘𝑒) ∩ 𝑉) = (ran (2nd ‘𝑋) ∩ 𝑉)) |
| 20 | id 22 | . 2 ⊢ (𝑋 ∈ 𝐸 → 𝑋 ∈ 𝐸) | |
| 21 | fvex 6874 | . . . . 5 ⊢ (2nd ‘𝑋) ∈ V | |
| 22 | 21 | rnex 7889 | . . . 4 ⊢ ran (2nd ‘𝑋) ∈ V |
| 23 | 22 | inex1 5275 | . . 3 ⊢ (ran (2nd ‘𝑋) ∩ 𝑉) ∈ V |
| 24 | 23 | a1i 11 | . 2 ⊢ (𝑋 ∈ 𝐸 → (ran (2nd ‘𝑋) ∩ 𝑉) ∈ V) |
| 25 | 15, 19, 20, 24 | fvmptd 6978 | 1 ⊢ (𝑋 ∈ 𝐸 → (𝑊‘𝑋) = (ran (2nd ‘𝑋) ∩ 𝑉)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 Vcvv 3450 ∩ cin 3916 ↦ cmpt 5191 ran crn 5642 ‘cfv 6514 2nd c2nd 7970 mVRcmvar 35455 mExcmex 35461 mVarscmvrs 35463 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-mvrs 35483 |
| This theorem is referenced by: mvrsfpw 35500 msubvrs 35554 |
| Copyright terms: Public domain | W3C validator |