Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > mvrsval | Structured version Visualization version GIF version |
Description: The set of variables in an expression. (Contributed by Mario Carneiro, 18-Jul-2016.) |
Ref | Expression |
---|---|
mvrsval.v | ⊢ 𝑉 = (mVR‘𝑇) |
mvrsval.e | ⊢ 𝐸 = (mEx‘𝑇) |
mvrsval.w | ⊢ 𝑊 = (mVars‘𝑇) |
Ref | Expression |
---|---|
mvrsval | ⊢ (𝑋 ∈ 𝐸 → (𝑊‘𝑋) = (ran (2nd ‘𝑋) ∩ 𝑉)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mvrsval.w | . . 3 ⊢ 𝑊 = (mVars‘𝑇) | |
2 | elfvex 6807 | . . . . 5 ⊢ (𝑋 ∈ (mEx‘𝑇) → 𝑇 ∈ V) | |
3 | mvrsval.e | . . . . 5 ⊢ 𝐸 = (mEx‘𝑇) | |
4 | 2, 3 | eleq2s 2857 | . . . 4 ⊢ (𝑋 ∈ 𝐸 → 𝑇 ∈ V) |
5 | fveq2 6774 | . . . . . . 7 ⊢ (𝑡 = 𝑇 → (mEx‘𝑡) = (mEx‘𝑇)) | |
6 | 5, 3 | eqtr4di 2796 | . . . . . 6 ⊢ (𝑡 = 𝑇 → (mEx‘𝑡) = 𝐸) |
7 | fveq2 6774 | . . . . . . . 8 ⊢ (𝑡 = 𝑇 → (mVR‘𝑡) = (mVR‘𝑇)) | |
8 | mvrsval.v | . . . . . . . 8 ⊢ 𝑉 = (mVR‘𝑇) | |
9 | 7, 8 | eqtr4di 2796 | . . . . . . 7 ⊢ (𝑡 = 𝑇 → (mVR‘𝑡) = 𝑉) |
10 | 9 | ineq2d 4146 | . . . . . 6 ⊢ (𝑡 = 𝑇 → (ran (2nd ‘𝑒) ∩ (mVR‘𝑡)) = (ran (2nd ‘𝑒) ∩ 𝑉)) |
11 | 6, 10 | mpteq12dv 5165 | . . . . 5 ⊢ (𝑡 = 𝑇 → (𝑒 ∈ (mEx‘𝑡) ↦ (ran (2nd ‘𝑒) ∩ (mVR‘𝑡))) = (𝑒 ∈ 𝐸 ↦ (ran (2nd ‘𝑒) ∩ 𝑉))) |
12 | df-mvrs 33451 | . . . . 5 ⊢ mVars = (𝑡 ∈ V ↦ (𝑒 ∈ (mEx‘𝑡) ↦ (ran (2nd ‘𝑒) ∩ (mVR‘𝑡)))) | |
13 | 11, 12, 3 | mptfvmpt 7104 | . . . 4 ⊢ (𝑇 ∈ V → (mVars‘𝑇) = (𝑒 ∈ 𝐸 ↦ (ran (2nd ‘𝑒) ∩ 𝑉))) |
14 | 4, 13 | syl 17 | . . 3 ⊢ (𝑋 ∈ 𝐸 → (mVars‘𝑇) = (𝑒 ∈ 𝐸 ↦ (ran (2nd ‘𝑒) ∩ 𝑉))) |
15 | 1, 14 | eqtrid 2790 | . 2 ⊢ (𝑋 ∈ 𝐸 → 𝑊 = (𝑒 ∈ 𝐸 ↦ (ran (2nd ‘𝑒) ∩ 𝑉))) |
16 | fveq2 6774 | . . . . 5 ⊢ (𝑒 = 𝑋 → (2nd ‘𝑒) = (2nd ‘𝑋)) | |
17 | 16 | rneqd 5847 | . . . 4 ⊢ (𝑒 = 𝑋 → ran (2nd ‘𝑒) = ran (2nd ‘𝑋)) |
18 | 17 | ineq1d 4145 | . . 3 ⊢ (𝑒 = 𝑋 → (ran (2nd ‘𝑒) ∩ 𝑉) = (ran (2nd ‘𝑋) ∩ 𝑉)) |
19 | 18 | adantl 482 | . 2 ⊢ ((𝑋 ∈ 𝐸 ∧ 𝑒 = 𝑋) → (ran (2nd ‘𝑒) ∩ 𝑉) = (ran (2nd ‘𝑋) ∩ 𝑉)) |
20 | id 22 | . 2 ⊢ (𝑋 ∈ 𝐸 → 𝑋 ∈ 𝐸) | |
21 | fvex 6787 | . . . . 5 ⊢ (2nd ‘𝑋) ∈ V | |
22 | 21 | rnex 7759 | . . . 4 ⊢ ran (2nd ‘𝑋) ∈ V |
23 | 22 | inex1 5241 | . . 3 ⊢ (ran (2nd ‘𝑋) ∩ 𝑉) ∈ V |
24 | 23 | a1i 11 | . 2 ⊢ (𝑋 ∈ 𝐸 → (ran (2nd ‘𝑋) ∩ 𝑉) ∈ V) |
25 | 15, 19, 20, 24 | fvmptd 6882 | 1 ⊢ (𝑋 ∈ 𝐸 → (𝑊‘𝑋) = (ran (2nd ‘𝑋) ∩ 𝑉)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2106 Vcvv 3432 ∩ cin 3886 ↦ cmpt 5157 ran crn 5590 ‘cfv 6433 2nd c2nd 7830 mVRcmvar 33423 mExcmex 33429 mVarscmvrs 33431 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-mvrs 33451 |
This theorem is referenced by: mvrsfpw 33468 msubvrs 33522 |
Copyright terms: Public domain | W3C validator |