Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > mvrsval | Structured version Visualization version GIF version |
Description: The set of variables in an expression. (Contributed by Mario Carneiro, 18-Jul-2016.) |
Ref | Expression |
---|---|
mvrsval.v | ⊢ 𝑉 = (mVR‘𝑇) |
mvrsval.e | ⊢ 𝐸 = (mEx‘𝑇) |
mvrsval.w | ⊢ 𝑊 = (mVars‘𝑇) |
Ref | Expression |
---|---|
mvrsval | ⊢ (𝑋 ∈ 𝐸 → (𝑊‘𝑋) = (ran (2nd ‘𝑋) ∩ 𝑉)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mvrsval.w | . . 3 ⊢ 𝑊 = (mVars‘𝑇) | |
2 | elfvex 6691 | . . . . 5 ⊢ (𝑋 ∈ (mEx‘𝑇) → 𝑇 ∈ V) | |
3 | mvrsval.e | . . . . 5 ⊢ 𝐸 = (mEx‘𝑇) | |
4 | 2, 3 | eleq2s 2870 | . . . 4 ⊢ (𝑋 ∈ 𝐸 → 𝑇 ∈ V) |
5 | fveq2 6658 | . . . . . . 7 ⊢ (𝑡 = 𝑇 → (mEx‘𝑡) = (mEx‘𝑇)) | |
6 | 5, 3 | eqtr4di 2811 | . . . . . 6 ⊢ (𝑡 = 𝑇 → (mEx‘𝑡) = 𝐸) |
7 | fveq2 6658 | . . . . . . . 8 ⊢ (𝑡 = 𝑇 → (mVR‘𝑡) = (mVR‘𝑇)) | |
8 | mvrsval.v | . . . . . . . 8 ⊢ 𝑉 = (mVR‘𝑇) | |
9 | 7, 8 | eqtr4di 2811 | . . . . . . 7 ⊢ (𝑡 = 𝑇 → (mVR‘𝑡) = 𝑉) |
10 | 9 | ineq2d 4117 | . . . . . 6 ⊢ (𝑡 = 𝑇 → (ran (2nd ‘𝑒) ∩ (mVR‘𝑡)) = (ran (2nd ‘𝑒) ∩ 𝑉)) |
11 | 6, 10 | mpteq12dv 5117 | . . . . 5 ⊢ (𝑡 = 𝑇 → (𝑒 ∈ (mEx‘𝑡) ↦ (ran (2nd ‘𝑒) ∩ (mVR‘𝑡))) = (𝑒 ∈ 𝐸 ↦ (ran (2nd ‘𝑒) ∩ 𝑉))) |
12 | df-mvrs 32967 | . . . . 5 ⊢ mVars = (𝑡 ∈ V ↦ (𝑒 ∈ (mEx‘𝑡) ↦ (ran (2nd ‘𝑒) ∩ (mVR‘𝑡)))) | |
13 | 11, 12, 3 | mptfvmpt 6982 | . . . 4 ⊢ (𝑇 ∈ V → (mVars‘𝑇) = (𝑒 ∈ 𝐸 ↦ (ran (2nd ‘𝑒) ∩ 𝑉))) |
14 | 4, 13 | syl 17 | . . 3 ⊢ (𝑋 ∈ 𝐸 → (mVars‘𝑇) = (𝑒 ∈ 𝐸 ↦ (ran (2nd ‘𝑒) ∩ 𝑉))) |
15 | 1, 14 | syl5eq 2805 | . 2 ⊢ (𝑋 ∈ 𝐸 → 𝑊 = (𝑒 ∈ 𝐸 ↦ (ran (2nd ‘𝑒) ∩ 𝑉))) |
16 | fveq2 6658 | . . . . 5 ⊢ (𝑒 = 𝑋 → (2nd ‘𝑒) = (2nd ‘𝑋)) | |
17 | 16 | rneqd 5779 | . . . 4 ⊢ (𝑒 = 𝑋 → ran (2nd ‘𝑒) = ran (2nd ‘𝑋)) |
18 | 17 | ineq1d 4116 | . . 3 ⊢ (𝑒 = 𝑋 → (ran (2nd ‘𝑒) ∩ 𝑉) = (ran (2nd ‘𝑋) ∩ 𝑉)) |
19 | 18 | adantl 485 | . 2 ⊢ ((𝑋 ∈ 𝐸 ∧ 𝑒 = 𝑋) → (ran (2nd ‘𝑒) ∩ 𝑉) = (ran (2nd ‘𝑋) ∩ 𝑉)) |
20 | id 22 | . 2 ⊢ (𝑋 ∈ 𝐸 → 𝑋 ∈ 𝐸) | |
21 | fvex 6671 | . . . . 5 ⊢ (2nd ‘𝑋) ∈ V | |
22 | 21 | rnex 7622 | . . . 4 ⊢ ran (2nd ‘𝑋) ∈ V |
23 | 22 | inex1 5187 | . . 3 ⊢ (ran (2nd ‘𝑋) ∩ 𝑉) ∈ V |
24 | 23 | a1i 11 | . 2 ⊢ (𝑋 ∈ 𝐸 → (ran (2nd ‘𝑋) ∩ 𝑉) ∈ V) |
25 | 15, 19, 20, 24 | fvmptd 6766 | 1 ⊢ (𝑋 ∈ 𝐸 → (𝑊‘𝑋) = (ran (2nd ‘𝑋) ∩ 𝑉)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1538 ∈ wcel 2111 Vcvv 3409 ∩ cin 3857 ↦ cmpt 5112 ran crn 5525 ‘cfv 6335 2nd c2nd 7692 mVRcmvar 32939 mExcmex 32945 mVarscmvrs 32947 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-rep 5156 ax-sep 5169 ax-nul 5176 ax-pr 5298 ax-un 7459 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-ral 3075 df-rex 3076 df-reu 3077 df-rab 3079 df-v 3411 df-sbc 3697 df-csb 3806 df-dif 3861 df-un 3863 df-in 3865 df-ss 3875 df-nul 4226 df-if 4421 df-sn 4523 df-pr 4525 df-op 4529 df-uni 4799 df-iun 4885 df-br 5033 df-opab 5095 df-mpt 5113 df-id 5430 df-xp 5530 df-rel 5531 df-cnv 5532 df-co 5533 df-dm 5534 df-rn 5535 df-res 5536 df-ima 5537 df-iota 6294 df-fun 6337 df-fn 6338 df-f 6339 df-f1 6340 df-fo 6341 df-f1o 6342 df-fv 6343 df-mvrs 32967 |
This theorem is referenced by: mvrsfpw 32984 msubvrs 33038 |
Copyright terms: Public domain | W3C validator |