Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mvrsval Structured version   Visualization version   GIF version

Theorem mvrsval 35473
Description: The set of variables in an expression. (Contributed by Mario Carneiro, 18-Jul-2016.)
Hypotheses
Ref Expression
mvrsval.v 𝑉 = (mVR‘𝑇)
mvrsval.e 𝐸 = (mEx‘𝑇)
mvrsval.w 𝑊 = (mVars‘𝑇)
Assertion
Ref Expression
mvrsval (𝑋𝐸 → (𝑊𝑋) = (ran (2nd𝑋) ∩ 𝑉))

Proof of Theorem mvrsval
Dummy variables 𝑡 𝑒 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mvrsval.w . . 3 𝑊 = (mVars‘𝑇)
2 elfvex 6958 . . . . 5 (𝑋 ∈ (mEx‘𝑇) → 𝑇 ∈ V)
3 mvrsval.e . . . . 5 𝐸 = (mEx‘𝑇)
42, 3eleq2s 2862 . . . 4 (𝑋𝐸𝑇 ∈ V)
5 fveq2 6920 . . . . . . 7 (𝑡 = 𝑇 → (mEx‘𝑡) = (mEx‘𝑇))
65, 3eqtr4di 2798 . . . . . 6 (𝑡 = 𝑇 → (mEx‘𝑡) = 𝐸)
7 fveq2 6920 . . . . . . . 8 (𝑡 = 𝑇 → (mVR‘𝑡) = (mVR‘𝑇))
8 mvrsval.v . . . . . . . 8 𝑉 = (mVR‘𝑇)
97, 8eqtr4di 2798 . . . . . . 7 (𝑡 = 𝑇 → (mVR‘𝑡) = 𝑉)
109ineq2d 4241 . . . . . 6 (𝑡 = 𝑇 → (ran (2nd𝑒) ∩ (mVR‘𝑡)) = (ran (2nd𝑒) ∩ 𝑉))
116, 10mpteq12dv 5257 . . . . 5 (𝑡 = 𝑇 → (𝑒 ∈ (mEx‘𝑡) ↦ (ran (2nd𝑒) ∩ (mVR‘𝑡))) = (𝑒𝐸 ↦ (ran (2nd𝑒) ∩ 𝑉)))
12 df-mvrs 35457 . . . . 5 mVars = (𝑡 ∈ V ↦ (𝑒 ∈ (mEx‘𝑡) ↦ (ran (2nd𝑒) ∩ (mVR‘𝑡))))
1311, 12, 3mptfvmpt 7265 . . . 4 (𝑇 ∈ V → (mVars‘𝑇) = (𝑒𝐸 ↦ (ran (2nd𝑒) ∩ 𝑉)))
144, 13syl 17 . . 3 (𝑋𝐸 → (mVars‘𝑇) = (𝑒𝐸 ↦ (ran (2nd𝑒) ∩ 𝑉)))
151, 14eqtrid 2792 . 2 (𝑋𝐸𝑊 = (𝑒𝐸 ↦ (ran (2nd𝑒) ∩ 𝑉)))
16 fveq2 6920 . . . . 5 (𝑒 = 𝑋 → (2nd𝑒) = (2nd𝑋))
1716rneqd 5963 . . . 4 (𝑒 = 𝑋 → ran (2nd𝑒) = ran (2nd𝑋))
1817ineq1d 4240 . . 3 (𝑒 = 𝑋 → (ran (2nd𝑒) ∩ 𝑉) = (ran (2nd𝑋) ∩ 𝑉))
1918adantl 481 . 2 ((𝑋𝐸𝑒 = 𝑋) → (ran (2nd𝑒) ∩ 𝑉) = (ran (2nd𝑋) ∩ 𝑉))
20 id 22 . 2 (𝑋𝐸𝑋𝐸)
21 fvex 6933 . . . . 5 (2nd𝑋) ∈ V
2221rnex 7950 . . . 4 ran (2nd𝑋) ∈ V
2322inex1 5335 . . 3 (ran (2nd𝑋) ∩ 𝑉) ∈ V
2423a1i 11 . 2 (𝑋𝐸 → (ran (2nd𝑋) ∩ 𝑉) ∈ V)
2515, 19, 20, 24fvmptd 7036 1 (𝑋𝐸 → (𝑊𝑋) = (ran (2nd𝑋) ∩ 𝑉))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2108  Vcvv 3488  cin 3975  cmpt 5249  ran crn 5701  cfv 6573  2nd c2nd 8029  mVRcmvar 35429  mExcmex 35435  mVarscmvrs 35437
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-mvrs 35457
This theorem is referenced by:  mvrsfpw  35474  msubvrs  35528
  Copyright terms: Public domain W3C validator