Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mvrsval Structured version   Visualization version   GIF version

Theorem mvrsval 35492
Description: The set of variables in an expression. (Contributed by Mario Carneiro, 18-Jul-2016.)
Hypotheses
Ref Expression
mvrsval.v 𝑉 = (mVR‘𝑇)
mvrsval.e 𝐸 = (mEx‘𝑇)
mvrsval.w 𝑊 = (mVars‘𝑇)
Assertion
Ref Expression
mvrsval (𝑋𝐸 → (𝑊𝑋) = (ran (2nd𝑋) ∩ 𝑉))

Proof of Theorem mvrsval
Dummy variables 𝑡 𝑒 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mvrsval.w . . 3 𝑊 = (mVars‘𝑇)
2 elfvex 6896 . . . . 5 (𝑋 ∈ (mEx‘𝑇) → 𝑇 ∈ V)
3 mvrsval.e . . . . 5 𝐸 = (mEx‘𝑇)
42, 3eleq2s 2846 . . . 4 (𝑋𝐸𝑇 ∈ V)
5 fveq2 6858 . . . . . . 7 (𝑡 = 𝑇 → (mEx‘𝑡) = (mEx‘𝑇))
65, 3eqtr4di 2782 . . . . . 6 (𝑡 = 𝑇 → (mEx‘𝑡) = 𝐸)
7 fveq2 6858 . . . . . . . 8 (𝑡 = 𝑇 → (mVR‘𝑡) = (mVR‘𝑇))
8 mvrsval.v . . . . . . . 8 𝑉 = (mVR‘𝑇)
97, 8eqtr4di 2782 . . . . . . 7 (𝑡 = 𝑇 → (mVR‘𝑡) = 𝑉)
109ineq2d 4183 . . . . . 6 (𝑡 = 𝑇 → (ran (2nd𝑒) ∩ (mVR‘𝑡)) = (ran (2nd𝑒) ∩ 𝑉))
116, 10mpteq12dv 5194 . . . . 5 (𝑡 = 𝑇 → (𝑒 ∈ (mEx‘𝑡) ↦ (ran (2nd𝑒) ∩ (mVR‘𝑡))) = (𝑒𝐸 ↦ (ran (2nd𝑒) ∩ 𝑉)))
12 df-mvrs 35476 . . . . 5 mVars = (𝑡 ∈ V ↦ (𝑒 ∈ (mEx‘𝑡) ↦ (ran (2nd𝑒) ∩ (mVR‘𝑡))))
1311, 12, 3mptfvmpt 7202 . . . 4 (𝑇 ∈ V → (mVars‘𝑇) = (𝑒𝐸 ↦ (ran (2nd𝑒) ∩ 𝑉)))
144, 13syl 17 . . 3 (𝑋𝐸 → (mVars‘𝑇) = (𝑒𝐸 ↦ (ran (2nd𝑒) ∩ 𝑉)))
151, 14eqtrid 2776 . 2 (𝑋𝐸𝑊 = (𝑒𝐸 ↦ (ran (2nd𝑒) ∩ 𝑉)))
16 fveq2 6858 . . . . 5 (𝑒 = 𝑋 → (2nd𝑒) = (2nd𝑋))
1716rneqd 5902 . . . 4 (𝑒 = 𝑋 → ran (2nd𝑒) = ran (2nd𝑋))
1817ineq1d 4182 . . 3 (𝑒 = 𝑋 → (ran (2nd𝑒) ∩ 𝑉) = (ran (2nd𝑋) ∩ 𝑉))
1918adantl 481 . 2 ((𝑋𝐸𝑒 = 𝑋) → (ran (2nd𝑒) ∩ 𝑉) = (ran (2nd𝑋) ∩ 𝑉))
20 id 22 . 2 (𝑋𝐸𝑋𝐸)
21 fvex 6871 . . . . 5 (2nd𝑋) ∈ V
2221rnex 7886 . . . 4 ran (2nd𝑋) ∈ V
2322inex1 5272 . . 3 (ran (2nd𝑋) ∩ 𝑉) ∈ V
2423a1i 11 . 2 (𝑋𝐸 → (ran (2nd𝑋) ∩ 𝑉) ∈ V)
2515, 19, 20, 24fvmptd 6975 1 (𝑋𝐸 → (𝑊𝑋) = (ran (2nd𝑋) ∩ 𝑉))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  Vcvv 3447  cin 3913  cmpt 5188  ran crn 5639  cfv 6511  2nd c2nd 7967  mVRcmvar 35448  mExcmex 35454  mVarscmvrs 35456
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-mvrs 35476
This theorem is referenced by:  mvrsfpw  35493  msubvrs  35547
  Copyright terms: Public domain W3C validator