Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mvrsval Structured version   Visualization version   GIF version

Theorem mvrsval 34099
Description: The set of variables in an expression. (Contributed by Mario Carneiro, 18-Jul-2016.)
Hypotheses
Ref Expression
mvrsval.v 𝑉 = (mVR‘𝑇)
mvrsval.e 𝐸 = (mEx‘𝑇)
mvrsval.w 𝑊 = (mVars‘𝑇)
Assertion
Ref Expression
mvrsval (𝑋𝐸 → (𝑊𝑋) = (ran (2nd𝑋) ∩ 𝑉))

Proof of Theorem mvrsval
Dummy variables 𝑡 𝑒 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mvrsval.w . . 3 𝑊 = (mVars‘𝑇)
2 elfvex 6880 . . . . 5 (𝑋 ∈ (mEx‘𝑇) → 𝑇 ∈ V)
3 mvrsval.e . . . . 5 𝐸 = (mEx‘𝑇)
42, 3eleq2s 2856 . . . 4 (𝑋𝐸𝑇 ∈ V)
5 fveq2 6842 . . . . . . 7 (𝑡 = 𝑇 → (mEx‘𝑡) = (mEx‘𝑇))
65, 3eqtr4di 2794 . . . . . 6 (𝑡 = 𝑇 → (mEx‘𝑡) = 𝐸)
7 fveq2 6842 . . . . . . . 8 (𝑡 = 𝑇 → (mVR‘𝑡) = (mVR‘𝑇))
8 mvrsval.v . . . . . . . 8 𝑉 = (mVR‘𝑇)
97, 8eqtr4di 2794 . . . . . . 7 (𝑡 = 𝑇 → (mVR‘𝑡) = 𝑉)
109ineq2d 4172 . . . . . 6 (𝑡 = 𝑇 → (ran (2nd𝑒) ∩ (mVR‘𝑡)) = (ran (2nd𝑒) ∩ 𝑉))
116, 10mpteq12dv 5196 . . . . 5 (𝑡 = 𝑇 → (𝑒 ∈ (mEx‘𝑡) ↦ (ran (2nd𝑒) ∩ (mVR‘𝑡))) = (𝑒𝐸 ↦ (ran (2nd𝑒) ∩ 𝑉)))
12 df-mvrs 34083 . . . . 5 mVars = (𝑡 ∈ V ↦ (𝑒 ∈ (mEx‘𝑡) ↦ (ran (2nd𝑒) ∩ (mVR‘𝑡))))
1311, 12, 3mptfvmpt 7178 . . . 4 (𝑇 ∈ V → (mVars‘𝑇) = (𝑒𝐸 ↦ (ran (2nd𝑒) ∩ 𝑉)))
144, 13syl 17 . . 3 (𝑋𝐸 → (mVars‘𝑇) = (𝑒𝐸 ↦ (ran (2nd𝑒) ∩ 𝑉)))
151, 14eqtrid 2788 . 2 (𝑋𝐸𝑊 = (𝑒𝐸 ↦ (ran (2nd𝑒) ∩ 𝑉)))
16 fveq2 6842 . . . . 5 (𝑒 = 𝑋 → (2nd𝑒) = (2nd𝑋))
1716rneqd 5893 . . . 4 (𝑒 = 𝑋 → ran (2nd𝑒) = ran (2nd𝑋))
1817ineq1d 4171 . . 3 (𝑒 = 𝑋 → (ran (2nd𝑒) ∩ 𝑉) = (ran (2nd𝑋) ∩ 𝑉))
1918adantl 482 . 2 ((𝑋𝐸𝑒 = 𝑋) → (ran (2nd𝑒) ∩ 𝑉) = (ran (2nd𝑋) ∩ 𝑉))
20 id 22 . 2 (𝑋𝐸𝑋𝐸)
21 fvex 6855 . . . . 5 (2nd𝑋) ∈ V
2221rnex 7849 . . . 4 ran (2nd𝑋) ∈ V
2322inex1 5274 . . 3 (ran (2nd𝑋) ∩ 𝑉) ∈ V
2423a1i 11 . 2 (𝑋𝐸 → (ran (2nd𝑋) ∩ 𝑉) ∈ V)
2515, 19, 20, 24fvmptd 6955 1 (𝑋𝐸 → (𝑊𝑋) = (ran (2nd𝑋) ∩ 𝑉))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2106  Vcvv 3445  cin 3909  cmpt 5188  ran crn 5634  cfv 6496  2nd c2nd 7920  mVRcmvar 34055  mExcmex 34061  mVarscmvrs 34063
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pr 5384  ax-un 7672
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-ral 3065  df-rex 3074  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-nul 4283  df-if 4487  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-id 5531  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-mvrs 34083
This theorem is referenced by:  mvrsfpw  34100  msubvrs  34154
  Copyright terms: Public domain W3C validator