Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mvrsval Structured version   Visualization version   GIF version

Theorem mvrsval 35499
Description: The set of variables in an expression. (Contributed by Mario Carneiro, 18-Jul-2016.)
Hypotheses
Ref Expression
mvrsval.v 𝑉 = (mVR‘𝑇)
mvrsval.e 𝐸 = (mEx‘𝑇)
mvrsval.w 𝑊 = (mVars‘𝑇)
Assertion
Ref Expression
mvrsval (𝑋𝐸 → (𝑊𝑋) = (ran (2nd𝑋) ∩ 𝑉))

Proof of Theorem mvrsval
Dummy variables 𝑡 𝑒 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mvrsval.w . . 3 𝑊 = (mVars‘𝑇)
2 elfvex 6899 . . . . 5 (𝑋 ∈ (mEx‘𝑇) → 𝑇 ∈ V)
3 mvrsval.e . . . . 5 𝐸 = (mEx‘𝑇)
42, 3eleq2s 2847 . . . 4 (𝑋𝐸𝑇 ∈ V)
5 fveq2 6861 . . . . . . 7 (𝑡 = 𝑇 → (mEx‘𝑡) = (mEx‘𝑇))
65, 3eqtr4di 2783 . . . . . 6 (𝑡 = 𝑇 → (mEx‘𝑡) = 𝐸)
7 fveq2 6861 . . . . . . . 8 (𝑡 = 𝑇 → (mVR‘𝑡) = (mVR‘𝑇))
8 mvrsval.v . . . . . . . 8 𝑉 = (mVR‘𝑇)
97, 8eqtr4di 2783 . . . . . . 7 (𝑡 = 𝑇 → (mVR‘𝑡) = 𝑉)
109ineq2d 4186 . . . . . 6 (𝑡 = 𝑇 → (ran (2nd𝑒) ∩ (mVR‘𝑡)) = (ran (2nd𝑒) ∩ 𝑉))
116, 10mpteq12dv 5197 . . . . 5 (𝑡 = 𝑇 → (𝑒 ∈ (mEx‘𝑡) ↦ (ran (2nd𝑒) ∩ (mVR‘𝑡))) = (𝑒𝐸 ↦ (ran (2nd𝑒) ∩ 𝑉)))
12 df-mvrs 35483 . . . . 5 mVars = (𝑡 ∈ V ↦ (𝑒 ∈ (mEx‘𝑡) ↦ (ran (2nd𝑒) ∩ (mVR‘𝑡))))
1311, 12, 3mptfvmpt 7205 . . . 4 (𝑇 ∈ V → (mVars‘𝑇) = (𝑒𝐸 ↦ (ran (2nd𝑒) ∩ 𝑉)))
144, 13syl 17 . . 3 (𝑋𝐸 → (mVars‘𝑇) = (𝑒𝐸 ↦ (ran (2nd𝑒) ∩ 𝑉)))
151, 14eqtrid 2777 . 2 (𝑋𝐸𝑊 = (𝑒𝐸 ↦ (ran (2nd𝑒) ∩ 𝑉)))
16 fveq2 6861 . . . . 5 (𝑒 = 𝑋 → (2nd𝑒) = (2nd𝑋))
1716rneqd 5905 . . . 4 (𝑒 = 𝑋 → ran (2nd𝑒) = ran (2nd𝑋))
1817ineq1d 4185 . . 3 (𝑒 = 𝑋 → (ran (2nd𝑒) ∩ 𝑉) = (ran (2nd𝑋) ∩ 𝑉))
1918adantl 481 . 2 ((𝑋𝐸𝑒 = 𝑋) → (ran (2nd𝑒) ∩ 𝑉) = (ran (2nd𝑋) ∩ 𝑉))
20 id 22 . 2 (𝑋𝐸𝑋𝐸)
21 fvex 6874 . . . . 5 (2nd𝑋) ∈ V
2221rnex 7889 . . . 4 ran (2nd𝑋) ∈ V
2322inex1 5275 . . 3 (ran (2nd𝑋) ∩ 𝑉) ∈ V
2423a1i 11 . 2 (𝑋𝐸 → (ran (2nd𝑋) ∩ 𝑉) ∈ V)
2515, 19, 20, 24fvmptd 6978 1 (𝑋𝐸 → (𝑊𝑋) = (ran (2nd𝑋) ∩ 𝑉))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  Vcvv 3450  cin 3916  cmpt 5191  ran crn 5642  cfv 6514  2nd c2nd 7970  mVRcmvar 35455  mExcmex 35461  mVarscmvrs 35463
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-mvrs 35483
This theorem is referenced by:  mvrsfpw  35500  msubvrs  35554
  Copyright terms: Public domain W3C validator