MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  natfval Structured version   Visualization version   GIF version

Theorem natfval 17218
Description: Value of the function giving natural transformations between two categories. (Contributed by Mario Carneiro, 6-Jan-2017.) (Proof shortened by AV, 1-Mar-2024.)
Hypotheses
Ref Expression
natfval.1 𝑁 = (𝐶 Nat 𝐷)
natfval.b 𝐵 = (Base‘𝐶)
natfval.h 𝐻 = (Hom ‘𝐶)
natfval.j 𝐽 = (Hom ‘𝐷)
natfval.o · = (comp‘𝐷)
Assertion
Ref Expression
natfval 𝑁 = (𝑓 ∈ (𝐶 Func 𝐷), 𝑔 ∈ (𝐶 Func 𝐷) ↦ (1st𝑓) / 𝑟(1st𝑔) / 𝑠{𝑎X𝑥𝐵 ((𝑟𝑥)𝐽(𝑠𝑥)) ∣ ∀𝑥𝐵𝑦𝐵 ∈ (𝑥𝐻𝑦)((𝑎𝑦)(⟨(𝑟𝑥), (𝑟𝑦)⟩ · (𝑠𝑦))((𝑥(2nd𝑓)𝑦)‘)) = (((𝑥(2nd𝑔)𝑦)‘)(⟨(𝑟𝑥), (𝑠𝑥)⟩ · (𝑠𝑦))(𝑎𝑥))})
Distinct variable groups:   𝑓,𝑎,𝑔,,𝑟,𝑠,𝑥,𝑦   𝐵,𝑎,𝑓,𝑔,𝑟,𝑠,𝑥,𝑦   𝐶,𝑎,𝑓,𝑔,,𝑟,𝑠,𝑥,𝑦   𝐽,𝑎,𝑓,𝑔,𝑟,𝑠   𝐻,𝑎,𝑓,𝑔,,𝑟,𝑠   · ,𝑎,𝑓,𝑔,𝑟,𝑠   𝐷,𝑎,𝑓,𝑔,,𝑟,𝑠,𝑥,𝑦
Allowed substitution hints:   𝐵()   · (𝑥,𝑦,)   𝐻(𝑥,𝑦)   𝐽(𝑥,𝑦,)   𝑁(𝑥,𝑦,𝑓,𝑔,,𝑠,𝑟,𝑎)

Proof of Theorem natfval
Dummy variables 𝑡 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 natfval.1 . 2 𝑁 = (𝐶 Nat 𝐷)
2 oveq12 7167 . . . . 5 ((𝑡 = 𝐶𝑢 = 𝐷) → (𝑡 Func 𝑢) = (𝐶 Func 𝐷))
3 simpl 485 . . . . . . . . . . . 12 ((𝑡 = 𝐶𝑢 = 𝐷) → 𝑡 = 𝐶)
43fveq2d 6676 . . . . . . . . . . 11 ((𝑡 = 𝐶𝑢 = 𝐷) → (Base‘𝑡) = (Base‘𝐶))
5 natfval.b . . . . . . . . . . 11 𝐵 = (Base‘𝐶)
64, 5syl6eqr 2876 . . . . . . . . . 10 ((𝑡 = 𝐶𝑢 = 𝐷) → (Base‘𝑡) = 𝐵)
76ixpeq1d 8475 . . . . . . . . 9 ((𝑡 = 𝐶𝑢 = 𝐷) → X𝑥 ∈ (Base‘𝑡)((𝑟𝑥)(Hom ‘𝑢)(𝑠𝑥)) = X𝑥𝐵 ((𝑟𝑥)(Hom ‘𝑢)(𝑠𝑥)))
8 simpr 487 . . . . . . . . . . . . 13 ((𝑡 = 𝐶𝑢 = 𝐷) → 𝑢 = 𝐷)
98fveq2d 6676 . . . . . . . . . . . 12 ((𝑡 = 𝐶𝑢 = 𝐷) → (Hom ‘𝑢) = (Hom ‘𝐷))
10 natfval.j . . . . . . . . . . . 12 𝐽 = (Hom ‘𝐷)
119, 10syl6eqr 2876 . . . . . . . . . . 11 ((𝑡 = 𝐶𝑢 = 𝐷) → (Hom ‘𝑢) = 𝐽)
1211oveqd 7175 . . . . . . . . . 10 ((𝑡 = 𝐶𝑢 = 𝐷) → ((𝑟𝑥)(Hom ‘𝑢)(𝑠𝑥)) = ((𝑟𝑥)𝐽(𝑠𝑥)))
1312ixpeq2dv 8479 . . . . . . . . 9 ((𝑡 = 𝐶𝑢 = 𝐷) → X𝑥𝐵 ((𝑟𝑥)(Hom ‘𝑢)(𝑠𝑥)) = X𝑥𝐵 ((𝑟𝑥)𝐽(𝑠𝑥)))
147, 13eqtrd 2858 . . . . . . . 8 ((𝑡 = 𝐶𝑢 = 𝐷) → X𝑥 ∈ (Base‘𝑡)((𝑟𝑥)(Hom ‘𝑢)(𝑠𝑥)) = X𝑥𝐵 ((𝑟𝑥)𝐽(𝑠𝑥)))
153fveq2d 6676 . . . . . . . . . . . . 13 ((𝑡 = 𝐶𝑢 = 𝐷) → (Hom ‘𝑡) = (Hom ‘𝐶))
16 natfval.h . . . . . . . . . . . . 13 𝐻 = (Hom ‘𝐶)
1715, 16syl6eqr 2876 . . . . . . . . . . . 12 ((𝑡 = 𝐶𝑢 = 𝐷) → (Hom ‘𝑡) = 𝐻)
1817oveqd 7175 . . . . . . . . . . 11 ((𝑡 = 𝐶𝑢 = 𝐷) → (𝑥(Hom ‘𝑡)𝑦) = (𝑥𝐻𝑦))
198fveq2d 6676 . . . . . . . . . . . . . . 15 ((𝑡 = 𝐶𝑢 = 𝐷) → (comp‘𝑢) = (comp‘𝐷))
20 natfval.o . . . . . . . . . . . . . . 15 · = (comp‘𝐷)
2119, 20syl6eqr 2876 . . . . . . . . . . . . . 14 ((𝑡 = 𝐶𝑢 = 𝐷) → (comp‘𝑢) = · )
2221oveqd 7175 . . . . . . . . . . . . 13 ((𝑡 = 𝐶𝑢 = 𝐷) → (⟨(𝑟𝑥), (𝑟𝑦)⟩(comp‘𝑢)(𝑠𝑦)) = (⟨(𝑟𝑥), (𝑟𝑦)⟩ · (𝑠𝑦)))
2322oveqd 7175 . . . . . . . . . . . 12 ((𝑡 = 𝐶𝑢 = 𝐷) → ((𝑎𝑦)(⟨(𝑟𝑥), (𝑟𝑦)⟩(comp‘𝑢)(𝑠𝑦))((𝑥(2nd𝑓)𝑦)‘)) = ((𝑎𝑦)(⟨(𝑟𝑥), (𝑟𝑦)⟩ · (𝑠𝑦))((𝑥(2nd𝑓)𝑦)‘)))
2421oveqd 7175 . . . . . . . . . . . . 13 ((𝑡 = 𝐶𝑢 = 𝐷) → (⟨(𝑟𝑥), (𝑠𝑥)⟩(comp‘𝑢)(𝑠𝑦)) = (⟨(𝑟𝑥), (𝑠𝑥)⟩ · (𝑠𝑦)))
2524oveqd 7175 . . . . . . . . . . . 12 ((𝑡 = 𝐶𝑢 = 𝐷) → (((𝑥(2nd𝑔)𝑦)‘)(⟨(𝑟𝑥), (𝑠𝑥)⟩(comp‘𝑢)(𝑠𝑦))(𝑎𝑥)) = (((𝑥(2nd𝑔)𝑦)‘)(⟨(𝑟𝑥), (𝑠𝑥)⟩ · (𝑠𝑦))(𝑎𝑥)))
2623, 25eqeq12d 2839 . . . . . . . . . . 11 ((𝑡 = 𝐶𝑢 = 𝐷) → (((𝑎𝑦)(⟨(𝑟𝑥), (𝑟𝑦)⟩(comp‘𝑢)(𝑠𝑦))((𝑥(2nd𝑓)𝑦)‘)) = (((𝑥(2nd𝑔)𝑦)‘)(⟨(𝑟𝑥), (𝑠𝑥)⟩(comp‘𝑢)(𝑠𝑦))(𝑎𝑥)) ↔ ((𝑎𝑦)(⟨(𝑟𝑥), (𝑟𝑦)⟩ · (𝑠𝑦))((𝑥(2nd𝑓)𝑦)‘)) = (((𝑥(2nd𝑔)𝑦)‘)(⟨(𝑟𝑥), (𝑠𝑥)⟩ · (𝑠𝑦))(𝑎𝑥))))
2718, 26raleqbidv 3403 . . . . . . . . . 10 ((𝑡 = 𝐶𝑢 = 𝐷) → (∀ ∈ (𝑥(Hom ‘𝑡)𝑦)((𝑎𝑦)(⟨(𝑟𝑥), (𝑟𝑦)⟩(comp‘𝑢)(𝑠𝑦))((𝑥(2nd𝑓)𝑦)‘)) = (((𝑥(2nd𝑔)𝑦)‘)(⟨(𝑟𝑥), (𝑠𝑥)⟩(comp‘𝑢)(𝑠𝑦))(𝑎𝑥)) ↔ ∀ ∈ (𝑥𝐻𝑦)((𝑎𝑦)(⟨(𝑟𝑥), (𝑟𝑦)⟩ · (𝑠𝑦))((𝑥(2nd𝑓)𝑦)‘)) = (((𝑥(2nd𝑔)𝑦)‘)(⟨(𝑟𝑥), (𝑠𝑥)⟩ · (𝑠𝑦))(𝑎𝑥))))
286, 27raleqbidv 3403 . . . . . . . . 9 ((𝑡 = 𝐶𝑢 = 𝐷) → (∀𝑦 ∈ (Base‘𝑡)∀ ∈ (𝑥(Hom ‘𝑡)𝑦)((𝑎𝑦)(⟨(𝑟𝑥), (𝑟𝑦)⟩(comp‘𝑢)(𝑠𝑦))((𝑥(2nd𝑓)𝑦)‘)) = (((𝑥(2nd𝑔)𝑦)‘)(⟨(𝑟𝑥), (𝑠𝑥)⟩(comp‘𝑢)(𝑠𝑦))(𝑎𝑥)) ↔ ∀𝑦𝐵 ∈ (𝑥𝐻𝑦)((𝑎𝑦)(⟨(𝑟𝑥), (𝑟𝑦)⟩ · (𝑠𝑦))((𝑥(2nd𝑓)𝑦)‘)) = (((𝑥(2nd𝑔)𝑦)‘)(⟨(𝑟𝑥), (𝑠𝑥)⟩ · (𝑠𝑦))(𝑎𝑥))))
296, 28raleqbidv 3403 . . . . . . . 8 ((𝑡 = 𝐶𝑢 = 𝐷) → (∀𝑥 ∈ (Base‘𝑡)∀𝑦 ∈ (Base‘𝑡)∀ ∈ (𝑥(Hom ‘𝑡)𝑦)((𝑎𝑦)(⟨(𝑟𝑥), (𝑟𝑦)⟩(comp‘𝑢)(𝑠𝑦))((𝑥(2nd𝑓)𝑦)‘)) = (((𝑥(2nd𝑔)𝑦)‘)(⟨(𝑟𝑥), (𝑠𝑥)⟩(comp‘𝑢)(𝑠𝑦))(𝑎𝑥)) ↔ ∀𝑥𝐵𝑦𝐵 ∈ (𝑥𝐻𝑦)((𝑎𝑦)(⟨(𝑟𝑥), (𝑟𝑦)⟩ · (𝑠𝑦))((𝑥(2nd𝑓)𝑦)‘)) = (((𝑥(2nd𝑔)𝑦)‘)(⟨(𝑟𝑥), (𝑠𝑥)⟩ · (𝑠𝑦))(𝑎𝑥))))
3014, 29rabeqbidv 3487 . . . . . . 7 ((𝑡 = 𝐶𝑢 = 𝐷) → {𝑎X𝑥 ∈ (Base‘𝑡)((𝑟𝑥)(Hom ‘𝑢)(𝑠𝑥)) ∣ ∀𝑥 ∈ (Base‘𝑡)∀𝑦 ∈ (Base‘𝑡)∀ ∈ (𝑥(Hom ‘𝑡)𝑦)((𝑎𝑦)(⟨(𝑟𝑥), (𝑟𝑦)⟩(comp‘𝑢)(𝑠𝑦))((𝑥(2nd𝑓)𝑦)‘)) = (((𝑥(2nd𝑔)𝑦)‘)(⟨(𝑟𝑥), (𝑠𝑥)⟩(comp‘𝑢)(𝑠𝑦))(𝑎𝑥))} = {𝑎X𝑥𝐵 ((𝑟𝑥)𝐽(𝑠𝑥)) ∣ ∀𝑥𝐵𝑦𝐵 ∈ (𝑥𝐻𝑦)((𝑎𝑦)(⟨(𝑟𝑥), (𝑟𝑦)⟩ · (𝑠𝑦))((𝑥(2nd𝑓)𝑦)‘)) = (((𝑥(2nd𝑔)𝑦)‘)(⟨(𝑟𝑥), (𝑠𝑥)⟩ · (𝑠𝑦))(𝑎𝑥))})
3130csbeq2dv 3892 . . . . . 6 ((𝑡 = 𝐶𝑢 = 𝐷) → (1st𝑔) / 𝑠{𝑎X𝑥 ∈ (Base‘𝑡)((𝑟𝑥)(Hom ‘𝑢)(𝑠𝑥)) ∣ ∀𝑥 ∈ (Base‘𝑡)∀𝑦 ∈ (Base‘𝑡)∀ ∈ (𝑥(Hom ‘𝑡)𝑦)((𝑎𝑦)(⟨(𝑟𝑥), (𝑟𝑦)⟩(comp‘𝑢)(𝑠𝑦))((𝑥(2nd𝑓)𝑦)‘)) = (((𝑥(2nd𝑔)𝑦)‘)(⟨(𝑟𝑥), (𝑠𝑥)⟩(comp‘𝑢)(𝑠𝑦))(𝑎𝑥))} = (1st𝑔) / 𝑠{𝑎X𝑥𝐵 ((𝑟𝑥)𝐽(𝑠𝑥)) ∣ ∀𝑥𝐵𝑦𝐵 ∈ (𝑥𝐻𝑦)((𝑎𝑦)(⟨(𝑟𝑥), (𝑟𝑦)⟩ · (𝑠𝑦))((𝑥(2nd𝑓)𝑦)‘)) = (((𝑥(2nd𝑔)𝑦)‘)(⟨(𝑟𝑥), (𝑠𝑥)⟩ · (𝑠𝑦))(𝑎𝑥))})
3231csbeq2dv 3892 . . . . 5 ((𝑡 = 𝐶𝑢 = 𝐷) → (1st𝑓) / 𝑟(1st𝑔) / 𝑠{𝑎X𝑥 ∈ (Base‘𝑡)((𝑟𝑥)(Hom ‘𝑢)(𝑠𝑥)) ∣ ∀𝑥 ∈ (Base‘𝑡)∀𝑦 ∈ (Base‘𝑡)∀ ∈ (𝑥(Hom ‘𝑡)𝑦)((𝑎𝑦)(⟨(𝑟𝑥), (𝑟𝑦)⟩(comp‘𝑢)(𝑠𝑦))((𝑥(2nd𝑓)𝑦)‘)) = (((𝑥(2nd𝑔)𝑦)‘)(⟨(𝑟𝑥), (𝑠𝑥)⟩(comp‘𝑢)(𝑠𝑦))(𝑎𝑥))} = (1st𝑓) / 𝑟(1st𝑔) / 𝑠{𝑎X𝑥𝐵 ((𝑟𝑥)𝐽(𝑠𝑥)) ∣ ∀𝑥𝐵𝑦𝐵 ∈ (𝑥𝐻𝑦)((𝑎𝑦)(⟨(𝑟𝑥), (𝑟𝑦)⟩ · (𝑠𝑦))((𝑥(2nd𝑓)𝑦)‘)) = (((𝑥(2nd𝑔)𝑦)‘)(⟨(𝑟𝑥), (𝑠𝑥)⟩ · (𝑠𝑦))(𝑎𝑥))})
332, 2, 32mpoeq123dv 7231 . . . 4 ((𝑡 = 𝐶𝑢 = 𝐷) → (𝑓 ∈ (𝑡 Func 𝑢), 𝑔 ∈ (𝑡 Func 𝑢) ↦ (1st𝑓) / 𝑟(1st𝑔) / 𝑠{𝑎X𝑥 ∈ (Base‘𝑡)((𝑟𝑥)(Hom ‘𝑢)(𝑠𝑥)) ∣ ∀𝑥 ∈ (Base‘𝑡)∀𝑦 ∈ (Base‘𝑡)∀ ∈ (𝑥(Hom ‘𝑡)𝑦)((𝑎𝑦)(⟨(𝑟𝑥), (𝑟𝑦)⟩(comp‘𝑢)(𝑠𝑦))((𝑥(2nd𝑓)𝑦)‘)) = (((𝑥(2nd𝑔)𝑦)‘)(⟨(𝑟𝑥), (𝑠𝑥)⟩(comp‘𝑢)(𝑠𝑦))(𝑎𝑥))}) = (𝑓 ∈ (𝐶 Func 𝐷), 𝑔 ∈ (𝐶 Func 𝐷) ↦ (1st𝑓) / 𝑟(1st𝑔) / 𝑠{𝑎X𝑥𝐵 ((𝑟𝑥)𝐽(𝑠𝑥)) ∣ ∀𝑥𝐵𝑦𝐵 ∈ (𝑥𝐻𝑦)((𝑎𝑦)(⟨(𝑟𝑥), (𝑟𝑦)⟩ · (𝑠𝑦))((𝑥(2nd𝑓)𝑦)‘)) = (((𝑥(2nd𝑔)𝑦)‘)(⟨(𝑟𝑥), (𝑠𝑥)⟩ · (𝑠𝑦))(𝑎𝑥))}))
34 df-nat 17215 . . . 4 Nat = (𝑡 ∈ Cat, 𝑢 ∈ Cat ↦ (𝑓 ∈ (𝑡 Func 𝑢), 𝑔 ∈ (𝑡 Func 𝑢) ↦ (1st𝑓) / 𝑟(1st𝑔) / 𝑠{𝑎X𝑥 ∈ (Base‘𝑡)((𝑟𝑥)(Hom ‘𝑢)(𝑠𝑥)) ∣ ∀𝑥 ∈ (Base‘𝑡)∀𝑦 ∈ (Base‘𝑡)∀ ∈ (𝑥(Hom ‘𝑡)𝑦)((𝑎𝑦)(⟨(𝑟𝑥), (𝑟𝑦)⟩(comp‘𝑢)(𝑠𝑦))((𝑥(2nd𝑓)𝑦)‘)) = (((𝑥(2nd𝑔)𝑦)‘)(⟨(𝑟𝑥), (𝑠𝑥)⟩(comp‘𝑢)(𝑠𝑦))(𝑎𝑥))}))
35 ovex 7191 . . . . 5 (𝐶 Func 𝐷) ∈ V
3635, 35mpoex 7779 . . . 4 (𝑓 ∈ (𝐶 Func 𝐷), 𝑔 ∈ (𝐶 Func 𝐷) ↦ (1st𝑓) / 𝑟(1st𝑔) / 𝑠{𝑎X𝑥𝐵 ((𝑟𝑥)𝐽(𝑠𝑥)) ∣ ∀𝑥𝐵𝑦𝐵 ∈ (𝑥𝐻𝑦)((𝑎𝑦)(⟨(𝑟𝑥), (𝑟𝑦)⟩ · (𝑠𝑦))((𝑥(2nd𝑓)𝑦)‘)) = (((𝑥(2nd𝑔)𝑦)‘)(⟨(𝑟𝑥), (𝑠𝑥)⟩ · (𝑠𝑦))(𝑎𝑥))}) ∈ V
3733, 34, 36ovmpoa 7307 . . 3 ((𝐶 ∈ Cat ∧ 𝐷 ∈ Cat) → (𝐶 Nat 𝐷) = (𝑓 ∈ (𝐶 Func 𝐷), 𝑔 ∈ (𝐶 Func 𝐷) ↦ (1st𝑓) / 𝑟(1st𝑔) / 𝑠{𝑎X𝑥𝐵 ((𝑟𝑥)𝐽(𝑠𝑥)) ∣ ∀𝑥𝐵𝑦𝐵 ∈ (𝑥𝐻𝑦)((𝑎𝑦)(⟨(𝑟𝑥), (𝑟𝑦)⟩ · (𝑠𝑦))((𝑥(2nd𝑓)𝑦)‘)) = (((𝑥(2nd𝑔)𝑦)‘)(⟨(𝑟𝑥), (𝑠𝑥)⟩ · (𝑠𝑦))(𝑎𝑥))}))
3834mpondm0 7388 . . . 4 (¬ (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat) → (𝐶 Nat 𝐷) = ∅)
39 funcrcl 17135 . . . . . . . 8 (𝑓 ∈ (𝐶 Func 𝐷) → (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat))
4039con3i 157 . . . . . . 7 (¬ (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat) → ¬ 𝑓 ∈ (𝐶 Func 𝐷))
4140eq0rdv 4359 . . . . . 6 (¬ (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat) → (𝐶 Func 𝐷) = ∅)
4241olcd 870 . . . . 5 (¬ (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat) → ((𝐶 Func 𝐷) = ∅ ∨ (𝐶 Func 𝐷) = ∅))
43 0mpo0 7239 . . . . 5 (((𝐶 Func 𝐷) = ∅ ∨ (𝐶 Func 𝐷) = ∅) → (𝑓 ∈ (𝐶 Func 𝐷), 𝑔 ∈ (𝐶 Func 𝐷) ↦ (1st𝑓) / 𝑟(1st𝑔) / 𝑠{𝑎X𝑥𝐵 ((𝑟𝑥)𝐽(𝑠𝑥)) ∣ ∀𝑥𝐵𝑦𝐵 ∈ (𝑥𝐻𝑦)((𝑎𝑦)(⟨(𝑟𝑥), (𝑟𝑦)⟩ · (𝑠𝑦))((𝑥(2nd𝑓)𝑦)‘)) = (((𝑥(2nd𝑔)𝑦)‘)(⟨(𝑟𝑥), (𝑠𝑥)⟩ · (𝑠𝑦))(𝑎𝑥))}) = ∅)
4442, 43syl 17 . . . 4 (¬ (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat) → (𝑓 ∈ (𝐶 Func 𝐷), 𝑔 ∈ (𝐶 Func 𝐷) ↦ (1st𝑓) / 𝑟(1st𝑔) / 𝑠{𝑎X𝑥𝐵 ((𝑟𝑥)𝐽(𝑠𝑥)) ∣ ∀𝑥𝐵𝑦𝐵 ∈ (𝑥𝐻𝑦)((𝑎𝑦)(⟨(𝑟𝑥), (𝑟𝑦)⟩ · (𝑠𝑦))((𝑥(2nd𝑓)𝑦)‘)) = (((𝑥(2nd𝑔)𝑦)‘)(⟨(𝑟𝑥), (𝑠𝑥)⟩ · (𝑠𝑦))(𝑎𝑥))}) = ∅)
4538, 44eqtr4d 2861 . . 3 (¬ (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat) → (𝐶 Nat 𝐷) = (𝑓 ∈ (𝐶 Func 𝐷), 𝑔 ∈ (𝐶 Func 𝐷) ↦ (1st𝑓) / 𝑟(1st𝑔) / 𝑠{𝑎X𝑥𝐵 ((𝑟𝑥)𝐽(𝑠𝑥)) ∣ ∀𝑥𝐵𝑦𝐵 ∈ (𝑥𝐻𝑦)((𝑎𝑦)(⟨(𝑟𝑥), (𝑟𝑦)⟩ · (𝑠𝑦))((𝑥(2nd𝑓)𝑦)‘)) = (((𝑥(2nd𝑔)𝑦)‘)(⟨(𝑟𝑥), (𝑠𝑥)⟩ · (𝑠𝑦))(𝑎𝑥))}))
4637, 45pm2.61i 184 . 2 (𝐶 Nat 𝐷) = (𝑓 ∈ (𝐶 Func 𝐷), 𝑔 ∈ (𝐶 Func 𝐷) ↦ (1st𝑓) / 𝑟(1st𝑔) / 𝑠{𝑎X𝑥𝐵 ((𝑟𝑥)𝐽(𝑠𝑥)) ∣ ∀𝑥𝐵𝑦𝐵 ∈ (𝑥𝐻𝑦)((𝑎𝑦)(⟨(𝑟𝑥), (𝑟𝑦)⟩ · (𝑠𝑦))((𝑥(2nd𝑓)𝑦)‘)) = (((𝑥(2nd𝑔)𝑦)‘)(⟨(𝑟𝑥), (𝑠𝑥)⟩ · (𝑠𝑦))(𝑎𝑥))})
471, 46eqtri 2846 1 𝑁 = (𝑓 ∈ (𝐶 Func 𝐷), 𝑔 ∈ (𝐶 Func 𝐷) ↦ (1st𝑓) / 𝑟(1st𝑔) / 𝑠{𝑎X𝑥𝐵 ((𝑟𝑥)𝐽(𝑠𝑥)) ∣ ∀𝑥𝐵𝑦𝐵 ∈ (𝑥𝐻𝑦)((𝑎𝑦)(⟨(𝑟𝑥), (𝑟𝑦)⟩ · (𝑠𝑦))((𝑥(2nd𝑓)𝑦)‘)) = (((𝑥(2nd𝑔)𝑦)‘)(⟨(𝑟𝑥), (𝑠𝑥)⟩ · (𝑠𝑦))(𝑎𝑥))})
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 398  wo 843   = wceq 1537  wcel 2114  wral 3140  {crab 3144  csb 3885  c0 4293  cop 4575  cfv 6357  (class class class)co 7158  cmpo 7160  1st c1st 7689  2nd c2nd 7690  Xcixp 8463  Basecbs 16485  Hom chom 16578  compcco 16579  Catccat 16937   Func cfunc 17126   Nat cnat 17213
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-ral 3145  df-rex 3146  df-reu 3147  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-op 4576  df-uni 4841  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-id 5462  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-ov 7161  df-oprab 7162  df-mpo 7163  df-1st 7691  df-2nd 7692  df-ixp 8464  df-func 17130  df-nat 17215
This theorem is referenced by:  isnat  17219  natffn  17221  natrcl  17222  wunnat  17228  natpropd  17248
  Copyright terms: Public domain W3C validator