MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  natfval Structured version   Visualization version   GIF version

Theorem natfval 17578
Description: Value of the function giving natural transformations between two categories. (Contributed by Mario Carneiro, 6-Jan-2017.) (Proof shortened by AV, 1-Mar-2024.)
Hypotheses
Ref Expression
natfval.1 𝑁 = (𝐶 Nat 𝐷)
natfval.b 𝐵 = (Base‘𝐶)
natfval.h 𝐻 = (Hom ‘𝐶)
natfval.j 𝐽 = (Hom ‘𝐷)
natfval.o · = (comp‘𝐷)
Assertion
Ref Expression
natfval 𝑁 = (𝑓 ∈ (𝐶 Func 𝐷), 𝑔 ∈ (𝐶 Func 𝐷) ↦ (1st𝑓) / 𝑟(1st𝑔) / 𝑠{𝑎X𝑥𝐵 ((𝑟𝑥)𝐽(𝑠𝑥)) ∣ ∀𝑥𝐵𝑦𝐵 ∈ (𝑥𝐻𝑦)((𝑎𝑦)(⟨(𝑟𝑥), (𝑟𝑦)⟩ · (𝑠𝑦))((𝑥(2nd𝑓)𝑦)‘)) = (((𝑥(2nd𝑔)𝑦)‘)(⟨(𝑟𝑥), (𝑠𝑥)⟩ · (𝑠𝑦))(𝑎𝑥))})
Distinct variable groups:   𝑓,𝑎,𝑔,,𝑟,𝑠,𝑥,𝑦   𝐵,𝑎,𝑓,𝑔,𝑟,𝑠,𝑥,𝑦   𝐶,𝑎,𝑓,𝑔,,𝑟,𝑠,𝑥,𝑦   𝐽,𝑎,𝑓,𝑔,𝑟,𝑠   𝐻,𝑎,𝑓,𝑔,,𝑟,𝑠   · ,𝑎,𝑓,𝑔,𝑟,𝑠   𝐷,𝑎,𝑓,𝑔,,𝑟,𝑠,𝑥,𝑦
Allowed substitution hints:   𝐵()   · (𝑥,𝑦,)   𝐻(𝑥,𝑦)   𝐽(𝑥,𝑦,)   𝑁(𝑥,𝑦,𝑓,𝑔,,𝑠,𝑟,𝑎)

Proof of Theorem natfval
Dummy variables 𝑡 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 natfval.1 . 2 𝑁 = (𝐶 Nat 𝐷)
2 oveq12 7264 . . . . 5 ((𝑡 = 𝐶𝑢 = 𝐷) → (𝑡 Func 𝑢) = (𝐶 Func 𝐷))
3 simpl 482 . . . . . . . . . . . 12 ((𝑡 = 𝐶𝑢 = 𝐷) → 𝑡 = 𝐶)
43fveq2d 6760 . . . . . . . . . . 11 ((𝑡 = 𝐶𝑢 = 𝐷) → (Base‘𝑡) = (Base‘𝐶))
5 natfval.b . . . . . . . . . . 11 𝐵 = (Base‘𝐶)
64, 5eqtr4di 2797 . . . . . . . . . 10 ((𝑡 = 𝐶𝑢 = 𝐷) → (Base‘𝑡) = 𝐵)
76ixpeq1d 8655 . . . . . . . . 9 ((𝑡 = 𝐶𝑢 = 𝐷) → X𝑥 ∈ (Base‘𝑡)((𝑟𝑥)(Hom ‘𝑢)(𝑠𝑥)) = X𝑥𝐵 ((𝑟𝑥)(Hom ‘𝑢)(𝑠𝑥)))
8 simpr 484 . . . . . . . . . . . . 13 ((𝑡 = 𝐶𝑢 = 𝐷) → 𝑢 = 𝐷)
98fveq2d 6760 . . . . . . . . . . . 12 ((𝑡 = 𝐶𝑢 = 𝐷) → (Hom ‘𝑢) = (Hom ‘𝐷))
10 natfval.j . . . . . . . . . . . 12 𝐽 = (Hom ‘𝐷)
119, 10eqtr4di 2797 . . . . . . . . . . 11 ((𝑡 = 𝐶𝑢 = 𝐷) → (Hom ‘𝑢) = 𝐽)
1211oveqd 7272 . . . . . . . . . 10 ((𝑡 = 𝐶𝑢 = 𝐷) → ((𝑟𝑥)(Hom ‘𝑢)(𝑠𝑥)) = ((𝑟𝑥)𝐽(𝑠𝑥)))
1312ixpeq2dv 8659 . . . . . . . . 9 ((𝑡 = 𝐶𝑢 = 𝐷) → X𝑥𝐵 ((𝑟𝑥)(Hom ‘𝑢)(𝑠𝑥)) = X𝑥𝐵 ((𝑟𝑥)𝐽(𝑠𝑥)))
147, 13eqtrd 2778 . . . . . . . 8 ((𝑡 = 𝐶𝑢 = 𝐷) → X𝑥 ∈ (Base‘𝑡)((𝑟𝑥)(Hom ‘𝑢)(𝑠𝑥)) = X𝑥𝐵 ((𝑟𝑥)𝐽(𝑠𝑥)))
153fveq2d 6760 . . . . . . . . . . . . 13 ((𝑡 = 𝐶𝑢 = 𝐷) → (Hom ‘𝑡) = (Hom ‘𝐶))
16 natfval.h . . . . . . . . . . . . 13 𝐻 = (Hom ‘𝐶)
1715, 16eqtr4di 2797 . . . . . . . . . . . 12 ((𝑡 = 𝐶𝑢 = 𝐷) → (Hom ‘𝑡) = 𝐻)
1817oveqd 7272 . . . . . . . . . . 11 ((𝑡 = 𝐶𝑢 = 𝐷) → (𝑥(Hom ‘𝑡)𝑦) = (𝑥𝐻𝑦))
198fveq2d 6760 . . . . . . . . . . . . . . 15 ((𝑡 = 𝐶𝑢 = 𝐷) → (comp‘𝑢) = (comp‘𝐷))
20 natfval.o . . . . . . . . . . . . . . 15 · = (comp‘𝐷)
2119, 20eqtr4di 2797 . . . . . . . . . . . . . 14 ((𝑡 = 𝐶𝑢 = 𝐷) → (comp‘𝑢) = · )
2221oveqd 7272 . . . . . . . . . . . . 13 ((𝑡 = 𝐶𝑢 = 𝐷) → (⟨(𝑟𝑥), (𝑟𝑦)⟩(comp‘𝑢)(𝑠𝑦)) = (⟨(𝑟𝑥), (𝑟𝑦)⟩ · (𝑠𝑦)))
2322oveqd 7272 . . . . . . . . . . . 12 ((𝑡 = 𝐶𝑢 = 𝐷) → ((𝑎𝑦)(⟨(𝑟𝑥), (𝑟𝑦)⟩(comp‘𝑢)(𝑠𝑦))((𝑥(2nd𝑓)𝑦)‘)) = ((𝑎𝑦)(⟨(𝑟𝑥), (𝑟𝑦)⟩ · (𝑠𝑦))((𝑥(2nd𝑓)𝑦)‘)))
2421oveqd 7272 . . . . . . . . . . . . 13 ((𝑡 = 𝐶𝑢 = 𝐷) → (⟨(𝑟𝑥), (𝑠𝑥)⟩(comp‘𝑢)(𝑠𝑦)) = (⟨(𝑟𝑥), (𝑠𝑥)⟩ · (𝑠𝑦)))
2524oveqd 7272 . . . . . . . . . . . 12 ((𝑡 = 𝐶𝑢 = 𝐷) → (((𝑥(2nd𝑔)𝑦)‘)(⟨(𝑟𝑥), (𝑠𝑥)⟩(comp‘𝑢)(𝑠𝑦))(𝑎𝑥)) = (((𝑥(2nd𝑔)𝑦)‘)(⟨(𝑟𝑥), (𝑠𝑥)⟩ · (𝑠𝑦))(𝑎𝑥)))
2623, 25eqeq12d 2754 . . . . . . . . . . 11 ((𝑡 = 𝐶𝑢 = 𝐷) → (((𝑎𝑦)(⟨(𝑟𝑥), (𝑟𝑦)⟩(comp‘𝑢)(𝑠𝑦))((𝑥(2nd𝑓)𝑦)‘)) = (((𝑥(2nd𝑔)𝑦)‘)(⟨(𝑟𝑥), (𝑠𝑥)⟩(comp‘𝑢)(𝑠𝑦))(𝑎𝑥)) ↔ ((𝑎𝑦)(⟨(𝑟𝑥), (𝑟𝑦)⟩ · (𝑠𝑦))((𝑥(2nd𝑓)𝑦)‘)) = (((𝑥(2nd𝑔)𝑦)‘)(⟨(𝑟𝑥), (𝑠𝑥)⟩ · (𝑠𝑦))(𝑎𝑥))))
2718, 26raleqbidv 3327 . . . . . . . . . 10 ((𝑡 = 𝐶𝑢 = 𝐷) → (∀ ∈ (𝑥(Hom ‘𝑡)𝑦)((𝑎𝑦)(⟨(𝑟𝑥), (𝑟𝑦)⟩(comp‘𝑢)(𝑠𝑦))((𝑥(2nd𝑓)𝑦)‘)) = (((𝑥(2nd𝑔)𝑦)‘)(⟨(𝑟𝑥), (𝑠𝑥)⟩(comp‘𝑢)(𝑠𝑦))(𝑎𝑥)) ↔ ∀ ∈ (𝑥𝐻𝑦)((𝑎𝑦)(⟨(𝑟𝑥), (𝑟𝑦)⟩ · (𝑠𝑦))((𝑥(2nd𝑓)𝑦)‘)) = (((𝑥(2nd𝑔)𝑦)‘)(⟨(𝑟𝑥), (𝑠𝑥)⟩ · (𝑠𝑦))(𝑎𝑥))))
286, 27raleqbidv 3327 . . . . . . . . 9 ((𝑡 = 𝐶𝑢 = 𝐷) → (∀𝑦 ∈ (Base‘𝑡)∀ ∈ (𝑥(Hom ‘𝑡)𝑦)((𝑎𝑦)(⟨(𝑟𝑥), (𝑟𝑦)⟩(comp‘𝑢)(𝑠𝑦))((𝑥(2nd𝑓)𝑦)‘)) = (((𝑥(2nd𝑔)𝑦)‘)(⟨(𝑟𝑥), (𝑠𝑥)⟩(comp‘𝑢)(𝑠𝑦))(𝑎𝑥)) ↔ ∀𝑦𝐵 ∈ (𝑥𝐻𝑦)((𝑎𝑦)(⟨(𝑟𝑥), (𝑟𝑦)⟩ · (𝑠𝑦))((𝑥(2nd𝑓)𝑦)‘)) = (((𝑥(2nd𝑔)𝑦)‘)(⟨(𝑟𝑥), (𝑠𝑥)⟩ · (𝑠𝑦))(𝑎𝑥))))
296, 28raleqbidv 3327 . . . . . . . 8 ((𝑡 = 𝐶𝑢 = 𝐷) → (∀𝑥 ∈ (Base‘𝑡)∀𝑦 ∈ (Base‘𝑡)∀ ∈ (𝑥(Hom ‘𝑡)𝑦)((𝑎𝑦)(⟨(𝑟𝑥), (𝑟𝑦)⟩(comp‘𝑢)(𝑠𝑦))((𝑥(2nd𝑓)𝑦)‘)) = (((𝑥(2nd𝑔)𝑦)‘)(⟨(𝑟𝑥), (𝑠𝑥)⟩(comp‘𝑢)(𝑠𝑦))(𝑎𝑥)) ↔ ∀𝑥𝐵𝑦𝐵 ∈ (𝑥𝐻𝑦)((𝑎𝑦)(⟨(𝑟𝑥), (𝑟𝑦)⟩ · (𝑠𝑦))((𝑥(2nd𝑓)𝑦)‘)) = (((𝑥(2nd𝑔)𝑦)‘)(⟨(𝑟𝑥), (𝑠𝑥)⟩ · (𝑠𝑦))(𝑎𝑥))))
3014, 29rabeqbidv 3410 . . . . . . 7 ((𝑡 = 𝐶𝑢 = 𝐷) → {𝑎X𝑥 ∈ (Base‘𝑡)((𝑟𝑥)(Hom ‘𝑢)(𝑠𝑥)) ∣ ∀𝑥 ∈ (Base‘𝑡)∀𝑦 ∈ (Base‘𝑡)∀ ∈ (𝑥(Hom ‘𝑡)𝑦)((𝑎𝑦)(⟨(𝑟𝑥), (𝑟𝑦)⟩(comp‘𝑢)(𝑠𝑦))((𝑥(2nd𝑓)𝑦)‘)) = (((𝑥(2nd𝑔)𝑦)‘)(⟨(𝑟𝑥), (𝑠𝑥)⟩(comp‘𝑢)(𝑠𝑦))(𝑎𝑥))} = {𝑎X𝑥𝐵 ((𝑟𝑥)𝐽(𝑠𝑥)) ∣ ∀𝑥𝐵𝑦𝐵 ∈ (𝑥𝐻𝑦)((𝑎𝑦)(⟨(𝑟𝑥), (𝑟𝑦)⟩ · (𝑠𝑦))((𝑥(2nd𝑓)𝑦)‘)) = (((𝑥(2nd𝑔)𝑦)‘)(⟨(𝑟𝑥), (𝑠𝑥)⟩ · (𝑠𝑦))(𝑎𝑥))})
3130csbeq2dv 3835 . . . . . 6 ((𝑡 = 𝐶𝑢 = 𝐷) → (1st𝑔) / 𝑠{𝑎X𝑥 ∈ (Base‘𝑡)((𝑟𝑥)(Hom ‘𝑢)(𝑠𝑥)) ∣ ∀𝑥 ∈ (Base‘𝑡)∀𝑦 ∈ (Base‘𝑡)∀ ∈ (𝑥(Hom ‘𝑡)𝑦)((𝑎𝑦)(⟨(𝑟𝑥), (𝑟𝑦)⟩(comp‘𝑢)(𝑠𝑦))((𝑥(2nd𝑓)𝑦)‘)) = (((𝑥(2nd𝑔)𝑦)‘)(⟨(𝑟𝑥), (𝑠𝑥)⟩(comp‘𝑢)(𝑠𝑦))(𝑎𝑥))} = (1st𝑔) / 𝑠{𝑎X𝑥𝐵 ((𝑟𝑥)𝐽(𝑠𝑥)) ∣ ∀𝑥𝐵𝑦𝐵 ∈ (𝑥𝐻𝑦)((𝑎𝑦)(⟨(𝑟𝑥), (𝑟𝑦)⟩ · (𝑠𝑦))((𝑥(2nd𝑓)𝑦)‘)) = (((𝑥(2nd𝑔)𝑦)‘)(⟨(𝑟𝑥), (𝑠𝑥)⟩ · (𝑠𝑦))(𝑎𝑥))})
3231csbeq2dv 3835 . . . . 5 ((𝑡 = 𝐶𝑢 = 𝐷) → (1st𝑓) / 𝑟(1st𝑔) / 𝑠{𝑎X𝑥 ∈ (Base‘𝑡)((𝑟𝑥)(Hom ‘𝑢)(𝑠𝑥)) ∣ ∀𝑥 ∈ (Base‘𝑡)∀𝑦 ∈ (Base‘𝑡)∀ ∈ (𝑥(Hom ‘𝑡)𝑦)((𝑎𝑦)(⟨(𝑟𝑥), (𝑟𝑦)⟩(comp‘𝑢)(𝑠𝑦))((𝑥(2nd𝑓)𝑦)‘)) = (((𝑥(2nd𝑔)𝑦)‘)(⟨(𝑟𝑥), (𝑠𝑥)⟩(comp‘𝑢)(𝑠𝑦))(𝑎𝑥))} = (1st𝑓) / 𝑟(1st𝑔) / 𝑠{𝑎X𝑥𝐵 ((𝑟𝑥)𝐽(𝑠𝑥)) ∣ ∀𝑥𝐵𝑦𝐵 ∈ (𝑥𝐻𝑦)((𝑎𝑦)(⟨(𝑟𝑥), (𝑟𝑦)⟩ · (𝑠𝑦))((𝑥(2nd𝑓)𝑦)‘)) = (((𝑥(2nd𝑔)𝑦)‘)(⟨(𝑟𝑥), (𝑠𝑥)⟩ · (𝑠𝑦))(𝑎𝑥))})
332, 2, 32mpoeq123dv 7328 . . . 4 ((𝑡 = 𝐶𝑢 = 𝐷) → (𝑓 ∈ (𝑡 Func 𝑢), 𝑔 ∈ (𝑡 Func 𝑢) ↦ (1st𝑓) / 𝑟(1st𝑔) / 𝑠{𝑎X𝑥 ∈ (Base‘𝑡)((𝑟𝑥)(Hom ‘𝑢)(𝑠𝑥)) ∣ ∀𝑥 ∈ (Base‘𝑡)∀𝑦 ∈ (Base‘𝑡)∀ ∈ (𝑥(Hom ‘𝑡)𝑦)((𝑎𝑦)(⟨(𝑟𝑥), (𝑟𝑦)⟩(comp‘𝑢)(𝑠𝑦))((𝑥(2nd𝑓)𝑦)‘)) = (((𝑥(2nd𝑔)𝑦)‘)(⟨(𝑟𝑥), (𝑠𝑥)⟩(comp‘𝑢)(𝑠𝑦))(𝑎𝑥))}) = (𝑓 ∈ (𝐶 Func 𝐷), 𝑔 ∈ (𝐶 Func 𝐷) ↦ (1st𝑓) / 𝑟(1st𝑔) / 𝑠{𝑎X𝑥𝐵 ((𝑟𝑥)𝐽(𝑠𝑥)) ∣ ∀𝑥𝐵𝑦𝐵 ∈ (𝑥𝐻𝑦)((𝑎𝑦)(⟨(𝑟𝑥), (𝑟𝑦)⟩ · (𝑠𝑦))((𝑥(2nd𝑓)𝑦)‘)) = (((𝑥(2nd𝑔)𝑦)‘)(⟨(𝑟𝑥), (𝑠𝑥)⟩ · (𝑠𝑦))(𝑎𝑥))}))
34 df-nat 17575 . . . 4 Nat = (𝑡 ∈ Cat, 𝑢 ∈ Cat ↦ (𝑓 ∈ (𝑡 Func 𝑢), 𝑔 ∈ (𝑡 Func 𝑢) ↦ (1st𝑓) / 𝑟(1st𝑔) / 𝑠{𝑎X𝑥 ∈ (Base‘𝑡)((𝑟𝑥)(Hom ‘𝑢)(𝑠𝑥)) ∣ ∀𝑥 ∈ (Base‘𝑡)∀𝑦 ∈ (Base‘𝑡)∀ ∈ (𝑥(Hom ‘𝑡)𝑦)((𝑎𝑦)(⟨(𝑟𝑥), (𝑟𝑦)⟩(comp‘𝑢)(𝑠𝑦))((𝑥(2nd𝑓)𝑦)‘)) = (((𝑥(2nd𝑔)𝑦)‘)(⟨(𝑟𝑥), (𝑠𝑥)⟩(comp‘𝑢)(𝑠𝑦))(𝑎𝑥))}))
35 ovex 7288 . . . . 5 (𝐶 Func 𝐷) ∈ V
3635, 35mpoex 7893 . . . 4 (𝑓 ∈ (𝐶 Func 𝐷), 𝑔 ∈ (𝐶 Func 𝐷) ↦ (1st𝑓) / 𝑟(1st𝑔) / 𝑠{𝑎X𝑥𝐵 ((𝑟𝑥)𝐽(𝑠𝑥)) ∣ ∀𝑥𝐵𝑦𝐵 ∈ (𝑥𝐻𝑦)((𝑎𝑦)(⟨(𝑟𝑥), (𝑟𝑦)⟩ · (𝑠𝑦))((𝑥(2nd𝑓)𝑦)‘)) = (((𝑥(2nd𝑔)𝑦)‘)(⟨(𝑟𝑥), (𝑠𝑥)⟩ · (𝑠𝑦))(𝑎𝑥))}) ∈ V
3733, 34, 36ovmpoa 7406 . . 3 ((𝐶 ∈ Cat ∧ 𝐷 ∈ Cat) → (𝐶 Nat 𝐷) = (𝑓 ∈ (𝐶 Func 𝐷), 𝑔 ∈ (𝐶 Func 𝐷) ↦ (1st𝑓) / 𝑟(1st𝑔) / 𝑠{𝑎X𝑥𝐵 ((𝑟𝑥)𝐽(𝑠𝑥)) ∣ ∀𝑥𝐵𝑦𝐵 ∈ (𝑥𝐻𝑦)((𝑎𝑦)(⟨(𝑟𝑥), (𝑟𝑦)⟩ · (𝑠𝑦))((𝑥(2nd𝑓)𝑦)‘)) = (((𝑥(2nd𝑔)𝑦)‘)(⟨(𝑟𝑥), (𝑠𝑥)⟩ · (𝑠𝑦))(𝑎𝑥))}))
3834mpondm0 7488 . . . 4 (¬ (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat) → (𝐶 Nat 𝐷) = ∅)
39 funcrcl 17494 . . . . . . . 8 (𝑓 ∈ (𝐶 Func 𝐷) → (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat))
4039con3i 154 . . . . . . 7 (¬ (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat) → ¬ 𝑓 ∈ (𝐶 Func 𝐷))
4140eq0rdv 4335 . . . . . 6 (¬ (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat) → (𝐶 Func 𝐷) = ∅)
4241olcd 870 . . . . 5 (¬ (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat) → ((𝐶 Func 𝐷) = ∅ ∨ (𝐶 Func 𝐷) = ∅))
43 0mpo0 7336 . . . . 5 (((𝐶 Func 𝐷) = ∅ ∨ (𝐶 Func 𝐷) = ∅) → (𝑓 ∈ (𝐶 Func 𝐷), 𝑔 ∈ (𝐶 Func 𝐷) ↦ (1st𝑓) / 𝑟(1st𝑔) / 𝑠{𝑎X𝑥𝐵 ((𝑟𝑥)𝐽(𝑠𝑥)) ∣ ∀𝑥𝐵𝑦𝐵 ∈ (𝑥𝐻𝑦)((𝑎𝑦)(⟨(𝑟𝑥), (𝑟𝑦)⟩ · (𝑠𝑦))((𝑥(2nd𝑓)𝑦)‘)) = (((𝑥(2nd𝑔)𝑦)‘)(⟨(𝑟𝑥), (𝑠𝑥)⟩ · (𝑠𝑦))(𝑎𝑥))}) = ∅)
4442, 43syl 17 . . . 4 (¬ (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat) → (𝑓 ∈ (𝐶 Func 𝐷), 𝑔 ∈ (𝐶 Func 𝐷) ↦ (1st𝑓) / 𝑟(1st𝑔) / 𝑠{𝑎X𝑥𝐵 ((𝑟𝑥)𝐽(𝑠𝑥)) ∣ ∀𝑥𝐵𝑦𝐵 ∈ (𝑥𝐻𝑦)((𝑎𝑦)(⟨(𝑟𝑥), (𝑟𝑦)⟩ · (𝑠𝑦))((𝑥(2nd𝑓)𝑦)‘)) = (((𝑥(2nd𝑔)𝑦)‘)(⟨(𝑟𝑥), (𝑠𝑥)⟩ · (𝑠𝑦))(𝑎𝑥))}) = ∅)
4538, 44eqtr4d 2781 . . 3 (¬ (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat) → (𝐶 Nat 𝐷) = (𝑓 ∈ (𝐶 Func 𝐷), 𝑔 ∈ (𝐶 Func 𝐷) ↦ (1st𝑓) / 𝑟(1st𝑔) / 𝑠{𝑎X𝑥𝐵 ((𝑟𝑥)𝐽(𝑠𝑥)) ∣ ∀𝑥𝐵𝑦𝐵 ∈ (𝑥𝐻𝑦)((𝑎𝑦)(⟨(𝑟𝑥), (𝑟𝑦)⟩ · (𝑠𝑦))((𝑥(2nd𝑓)𝑦)‘)) = (((𝑥(2nd𝑔)𝑦)‘)(⟨(𝑟𝑥), (𝑠𝑥)⟩ · (𝑠𝑦))(𝑎𝑥))}))
4637, 45pm2.61i 182 . 2 (𝐶 Nat 𝐷) = (𝑓 ∈ (𝐶 Func 𝐷), 𝑔 ∈ (𝐶 Func 𝐷) ↦ (1st𝑓) / 𝑟(1st𝑔) / 𝑠{𝑎X𝑥𝐵 ((𝑟𝑥)𝐽(𝑠𝑥)) ∣ ∀𝑥𝐵𝑦𝐵 ∈ (𝑥𝐻𝑦)((𝑎𝑦)(⟨(𝑟𝑥), (𝑟𝑦)⟩ · (𝑠𝑦))((𝑥(2nd𝑓)𝑦)‘)) = (((𝑥(2nd𝑔)𝑦)‘)(⟨(𝑟𝑥), (𝑠𝑥)⟩ · (𝑠𝑦))(𝑎𝑥))})
471, 46eqtri 2766 1 𝑁 = (𝑓 ∈ (𝐶 Func 𝐷), 𝑔 ∈ (𝐶 Func 𝐷) ↦ (1st𝑓) / 𝑟(1st𝑔) / 𝑠{𝑎X𝑥𝐵 ((𝑟𝑥)𝐽(𝑠𝑥)) ∣ ∀𝑥𝐵𝑦𝐵 ∈ (𝑥𝐻𝑦)((𝑎𝑦)(⟨(𝑟𝑥), (𝑟𝑦)⟩ · (𝑠𝑦))((𝑥(2nd𝑓)𝑦)‘)) = (((𝑥(2nd𝑔)𝑦)‘)(⟨(𝑟𝑥), (𝑠𝑥)⟩ · (𝑠𝑦))(𝑎𝑥))})
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 395  wo 843   = wceq 1539  wcel 2108  wral 3063  {crab 3067  csb 3828  c0 4253  cop 4564  cfv 6418  (class class class)co 7255  cmpo 7257  1st c1st 7802  2nd c2nd 7803  Xcixp 8643  Basecbs 16840  Hom chom 16899  compcco 16900  Catccat 17290   Func cfunc 17485   Nat cnat 17573
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-1st 7804  df-2nd 7805  df-ixp 8644  df-func 17489  df-nat 17575
This theorem is referenced by:  isnat  17579  natffn  17581  natrcl  17582  wunnat  17588  wunnatOLD  17589  natpropd  17610
  Copyright terms: Public domain W3C validator