MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  natfval Structured version   Visualization version   GIF version

Theorem natfval 17962
Description: Value of the function giving natural transformations between two categories. (Contributed by Mario Carneiro, 6-Jan-2017.) (Proof shortened by AV, 1-Mar-2024.)
Hypotheses
Ref Expression
natfval.1 𝑁 = (𝐶 Nat 𝐷)
natfval.b 𝐵 = (Base‘𝐶)
natfval.h 𝐻 = (Hom ‘𝐶)
natfval.j 𝐽 = (Hom ‘𝐷)
natfval.o · = (comp‘𝐷)
Assertion
Ref Expression
natfval 𝑁 = (𝑓 ∈ (𝐶 Func 𝐷), 𝑔 ∈ (𝐶 Func 𝐷) ↦ (1st𝑓) / 𝑟(1st𝑔) / 𝑠{𝑎X𝑥𝐵 ((𝑟𝑥)𝐽(𝑠𝑥)) ∣ ∀𝑥𝐵𝑦𝐵 ∈ (𝑥𝐻𝑦)((𝑎𝑦)(⟨(𝑟𝑥), (𝑟𝑦)⟩ · (𝑠𝑦))((𝑥(2nd𝑓)𝑦)‘)) = (((𝑥(2nd𝑔)𝑦)‘)(⟨(𝑟𝑥), (𝑠𝑥)⟩ · (𝑠𝑦))(𝑎𝑥))})
Distinct variable groups:   𝑓,𝑎,𝑔,,𝑟,𝑠,𝑥,𝑦   𝐵,𝑎,𝑓,𝑔,𝑟,𝑠,𝑥,𝑦   𝐶,𝑎,𝑓,𝑔,,𝑟,𝑠,𝑥,𝑦   𝐽,𝑎,𝑓,𝑔,𝑟,𝑠   𝐻,𝑎,𝑓,𝑔,,𝑟,𝑠   · ,𝑎,𝑓,𝑔,𝑟,𝑠   𝐷,𝑎,𝑓,𝑔,,𝑟,𝑠,𝑥,𝑦
Allowed substitution hints:   𝐵()   · (𝑥,𝑦,)   𝐻(𝑥,𝑦)   𝐽(𝑥,𝑦,)   𝑁(𝑥,𝑦,𝑓,𝑔,,𝑠,𝑟,𝑎)

Proof of Theorem natfval
Dummy variables 𝑡 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 natfval.1 . 2 𝑁 = (𝐶 Nat 𝐷)
2 oveq12 7414 . . . . 5 ((𝑡 = 𝐶𝑢 = 𝐷) → (𝑡 Func 𝑢) = (𝐶 Func 𝐷))
3 simpl 482 . . . . . . . . . . . 12 ((𝑡 = 𝐶𝑢 = 𝐷) → 𝑡 = 𝐶)
43fveq2d 6880 . . . . . . . . . . 11 ((𝑡 = 𝐶𝑢 = 𝐷) → (Base‘𝑡) = (Base‘𝐶))
5 natfval.b . . . . . . . . . . 11 𝐵 = (Base‘𝐶)
64, 5eqtr4di 2788 . . . . . . . . . 10 ((𝑡 = 𝐶𝑢 = 𝐷) → (Base‘𝑡) = 𝐵)
76ixpeq1d 8923 . . . . . . . . 9 ((𝑡 = 𝐶𝑢 = 𝐷) → X𝑥 ∈ (Base‘𝑡)((𝑟𝑥)(Hom ‘𝑢)(𝑠𝑥)) = X𝑥𝐵 ((𝑟𝑥)(Hom ‘𝑢)(𝑠𝑥)))
8 simpr 484 . . . . . . . . . . . . 13 ((𝑡 = 𝐶𝑢 = 𝐷) → 𝑢 = 𝐷)
98fveq2d 6880 . . . . . . . . . . . 12 ((𝑡 = 𝐶𝑢 = 𝐷) → (Hom ‘𝑢) = (Hom ‘𝐷))
10 natfval.j . . . . . . . . . . . 12 𝐽 = (Hom ‘𝐷)
119, 10eqtr4di 2788 . . . . . . . . . . 11 ((𝑡 = 𝐶𝑢 = 𝐷) → (Hom ‘𝑢) = 𝐽)
1211oveqd 7422 . . . . . . . . . 10 ((𝑡 = 𝐶𝑢 = 𝐷) → ((𝑟𝑥)(Hom ‘𝑢)(𝑠𝑥)) = ((𝑟𝑥)𝐽(𝑠𝑥)))
1312ixpeq2dv 8927 . . . . . . . . 9 ((𝑡 = 𝐶𝑢 = 𝐷) → X𝑥𝐵 ((𝑟𝑥)(Hom ‘𝑢)(𝑠𝑥)) = X𝑥𝐵 ((𝑟𝑥)𝐽(𝑠𝑥)))
147, 13eqtrd 2770 . . . . . . . 8 ((𝑡 = 𝐶𝑢 = 𝐷) → X𝑥 ∈ (Base‘𝑡)((𝑟𝑥)(Hom ‘𝑢)(𝑠𝑥)) = X𝑥𝐵 ((𝑟𝑥)𝐽(𝑠𝑥)))
153fveq2d 6880 . . . . . . . . . . . . 13 ((𝑡 = 𝐶𝑢 = 𝐷) → (Hom ‘𝑡) = (Hom ‘𝐶))
16 natfval.h . . . . . . . . . . . . 13 𝐻 = (Hom ‘𝐶)
1715, 16eqtr4di 2788 . . . . . . . . . . . 12 ((𝑡 = 𝐶𝑢 = 𝐷) → (Hom ‘𝑡) = 𝐻)
1817oveqd 7422 . . . . . . . . . . 11 ((𝑡 = 𝐶𝑢 = 𝐷) → (𝑥(Hom ‘𝑡)𝑦) = (𝑥𝐻𝑦))
198fveq2d 6880 . . . . . . . . . . . . . . 15 ((𝑡 = 𝐶𝑢 = 𝐷) → (comp‘𝑢) = (comp‘𝐷))
20 natfval.o . . . . . . . . . . . . . . 15 · = (comp‘𝐷)
2119, 20eqtr4di 2788 . . . . . . . . . . . . . 14 ((𝑡 = 𝐶𝑢 = 𝐷) → (comp‘𝑢) = · )
2221oveqd 7422 . . . . . . . . . . . . 13 ((𝑡 = 𝐶𝑢 = 𝐷) → (⟨(𝑟𝑥), (𝑟𝑦)⟩(comp‘𝑢)(𝑠𝑦)) = (⟨(𝑟𝑥), (𝑟𝑦)⟩ · (𝑠𝑦)))
2322oveqd 7422 . . . . . . . . . . . 12 ((𝑡 = 𝐶𝑢 = 𝐷) → ((𝑎𝑦)(⟨(𝑟𝑥), (𝑟𝑦)⟩(comp‘𝑢)(𝑠𝑦))((𝑥(2nd𝑓)𝑦)‘)) = ((𝑎𝑦)(⟨(𝑟𝑥), (𝑟𝑦)⟩ · (𝑠𝑦))((𝑥(2nd𝑓)𝑦)‘)))
2421oveqd 7422 . . . . . . . . . . . . 13 ((𝑡 = 𝐶𝑢 = 𝐷) → (⟨(𝑟𝑥), (𝑠𝑥)⟩(comp‘𝑢)(𝑠𝑦)) = (⟨(𝑟𝑥), (𝑠𝑥)⟩ · (𝑠𝑦)))
2524oveqd 7422 . . . . . . . . . . . 12 ((𝑡 = 𝐶𝑢 = 𝐷) → (((𝑥(2nd𝑔)𝑦)‘)(⟨(𝑟𝑥), (𝑠𝑥)⟩(comp‘𝑢)(𝑠𝑦))(𝑎𝑥)) = (((𝑥(2nd𝑔)𝑦)‘)(⟨(𝑟𝑥), (𝑠𝑥)⟩ · (𝑠𝑦))(𝑎𝑥)))
2623, 25eqeq12d 2751 . . . . . . . . . . 11 ((𝑡 = 𝐶𝑢 = 𝐷) → (((𝑎𝑦)(⟨(𝑟𝑥), (𝑟𝑦)⟩(comp‘𝑢)(𝑠𝑦))((𝑥(2nd𝑓)𝑦)‘)) = (((𝑥(2nd𝑔)𝑦)‘)(⟨(𝑟𝑥), (𝑠𝑥)⟩(comp‘𝑢)(𝑠𝑦))(𝑎𝑥)) ↔ ((𝑎𝑦)(⟨(𝑟𝑥), (𝑟𝑦)⟩ · (𝑠𝑦))((𝑥(2nd𝑓)𝑦)‘)) = (((𝑥(2nd𝑔)𝑦)‘)(⟨(𝑟𝑥), (𝑠𝑥)⟩ · (𝑠𝑦))(𝑎𝑥))))
2718, 26raleqbidv 3325 . . . . . . . . . 10 ((𝑡 = 𝐶𝑢 = 𝐷) → (∀ ∈ (𝑥(Hom ‘𝑡)𝑦)((𝑎𝑦)(⟨(𝑟𝑥), (𝑟𝑦)⟩(comp‘𝑢)(𝑠𝑦))((𝑥(2nd𝑓)𝑦)‘)) = (((𝑥(2nd𝑔)𝑦)‘)(⟨(𝑟𝑥), (𝑠𝑥)⟩(comp‘𝑢)(𝑠𝑦))(𝑎𝑥)) ↔ ∀ ∈ (𝑥𝐻𝑦)((𝑎𝑦)(⟨(𝑟𝑥), (𝑟𝑦)⟩ · (𝑠𝑦))((𝑥(2nd𝑓)𝑦)‘)) = (((𝑥(2nd𝑔)𝑦)‘)(⟨(𝑟𝑥), (𝑠𝑥)⟩ · (𝑠𝑦))(𝑎𝑥))))
286, 27raleqbidv 3325 . . . . . . . . 9 ((𝑡 = 𝐶𝑢 = 𝐷) → (∀𝑦 ∈ (Base‘𝑡)∀ ∈ (𝑥(Hom ‘𝑡)𝑦)((𝑎𝑦)(⟨(𝑟𝑥), (𝑟𝑦)⟩(comp‘𝑢)(𝑠𝑦))((𝑥(2nd𝑓)𝑦)‘)) = (((𝑥(2nd𝑔)𝑦)‘)(⟨(𝑟𝑥), (𝑠𝑥)⟩(comp‘𝑢)(𝑠𝑦))(𝑎𝑥)) ↔ ∀𝑦𝐵 ∈ (𝑥𝐻𝑦)((𝑎𝑦)(⟨(𝑟𝑥), (𝑟𝑦)⟩ · (𝑠𝑦))((𝑥(2nd𝑓)𝑦)‘)) = (((𝑥(2nd𝑔)𝑦)‘)(⟨(𝑟𝑥), (𝑠𝑥)⟩ · (𝑠𝑦))(𝑎𝑥))))
296, 28raleqbidv 3325 . . . . . . . 8 ((𝑡 = 𝐶𝑢 = 𝐷) → (∀𝑥 ∈ (Base‘𝑡)∀𝑦 ∈ (Base‘𝑡)∀ ∈ (𝑥(Hom ‘𝑡)𝑦)((𝑎𝑦)(⟨(𝑟𝑥), (𝑟𝑦)⟩(comp‘𝑢)(𝑠𝑦))((𝑥(2nd𝑓)𝑦)‘)) = (((𝑥(2nd𝑔)𝑦)‘)(⟨(𝑟𝑥), (𝑠𝑥)⟩(comp‘𝑢)(𝑠𝑦))(𝑎𝑥)) ↔ ∀𝑥𝐵𝑦𝐵 ∈ (𝑥𝐻𝑦)((𝑎𝑦)(⟨(𝑟𝑥), (𝑟𝑦)⟩ · (𝑠𝑦))((𝑥(2nd𝑓)𝑦)‘)) = (((𝑥(2nd𝑔)𝑦)‘)(⟨(𝑟𝑥), (𝑠𝑥)⟩ · (𝑠𝑦))(𝑎𝑥))))
3014, 29rabeqbidv 3434 . . . . . . 7 ((𝑡 = 𝐶𝑢 = 𝐷) → {𝑎X𝑥 ∈ (Base‘𝑡)((𝑟𝑥)(Hom ‘𝑢)(𝑠𝑥)) ∣ ∀𝑥 ∈ (Base‘𝑡)∀𝑦 ∈ (Base‘𝑡)∀ ∈ (𝑥(Hom ‘𝑡)𝑦)((𝑎𝑦)(⟨(𝑟𝑥), (𝑟𝑦)⟩(comp‘𝑢)(𝑠𝑦))((𝑥(2nd𝑓)𝑦)‘)) = (((𝑥(2nd𝑔)𝑦)‘)(⟨(𝑟𝑥), (𝑠𝑥)⟩(comp‘𝑢)(𝑠𝑦))(𝑎𝑥))} = {𝑎X𝑥𝐵 ((𝑟𝑥)𝐽(𝑠𝑥)) ∣ ∀𝑥𝐵𝑦𝐵 ∈ (𝑥𝐻𝑦)((𝑎𝑦)(⟨(𝑟𝑥), (𝑟𝑦)⟩ · (𝑠𝑦))((𝑥(2nd𝑓)𝑦)‘)) = (((𝑥(2nd𝑔)𝑦)‘)(⟨(𝑟𝑥), (𝑠𝑥)⟩ · (𝑠𝑦))(𝑎𝑥))})
3130csbeq2dv 3881 . . . . . 6 ((𝑡 = 𝐶𝑢 = 𝐷) → (1st𝑔) / 𝑠{𝑎X𝑥 ∈ (Base‘𝑡)((𝑟𝑥)(Hom ‘𝑢)(𝑠𝑥)) ∣ ∀𝑥 ∈ (Base‘𝑡)∀𝑦 ∈ (Base‘𝑡)∀ ∈ (𝑥(Hom ‘𝑡)𝑦)((𝑎𝑦)(⟨(𝑟𝑥), (𝑟𝑦)⟩(comp‘𝑢)(𝑠𝑦))((𝑥(2nd𝑓)𝑦)‘)) = (((𝑥(2nd𝑔)𝑦)‘)(⟨(𝑟𝑥), (𝑠𝑥)⟩(comp‘𝑢)(𝑠𝑦))(𝑎𝑥))} = (1st𝑔) / 𝑠{𝑎X𝑥𝐵 ((𝑟𝑥)𝐽(𝑠𝑥)) ∣ ∀𝑥𝐵𝑦𝐵 ∈ (𝑥𝐻𝑦)((𝑎𝑦)(⟨(𝑟𝑥), (𝑟𝑦)⟩ · (𝑠𝑦))((𝑥(2nd𝑓)𝑦)‘)) = (((𝑥(2nd𝑔)𝑦)‘)(⟨(𝑟𝑥), (𝑠𝑥)⟩ · (𝑠𝑦))(𝑎𝑥))})
3231csbeq2dv 3881 . . . . 5 ((𝑡 = 𝐶𝑢 = 𝐷) → (1st𝑓) / 𝑟(1st𝑔) / 𝑠{𝑎X𝑥 ∈ (Base‘𝑡)((𝑟𝑥)(Hom ‘𝑢)(𝑠𝑥)) ∣ ∀𝑥 ∈ (Base‘𝑡)∀𝑦 ∈ (Base‘𝑡)∀ ∈ (𝑥(Hom ‘𝑡)𝑦)((𝑎𝑦)(⟨(𝑟𝑥), (𝑟𝑦)⟩(comp‘𝑢)(𝑠𝑦))((𝑥(2nd𝑓)𝑦)‘)) = (((𝑥(2nd𝑔)𝑦)‘)(⟨(𝑟𝑥), (𝑠𝑥)⟩(comp‘𝑢)(𝑠𝑦))(𝑎𝑥))} = (1st𝑓) / 𝑟(1st𝑔) / 𝑠{𝑎X𝑥𝐵 ((𝑟𝑥)𝐽(𝑠𝑥)) ∣ ∀𝑥𝐵𝑦𝐵 ∈ (𝑥𝐻𝑦)((𝑎𝑦)(⟨(𝑟𝑥), (𝑟𝑦)⟩ · (𝑠𝑦))((𝑥(2nd𝑓)𝑦)‘)) = (((𝑥(2nd𝑔)𝑦)‘)(⟨(𝑟𝑥), (𝑠𝑥)⟩ · (𝑠𝑦))(𝑎𝑥))})
332, 2, 32mpoeq123dv 7482 . . . 4 ((𝑡 = 𝐶𝑢 = 𝐷) → (𝑓 ∈ (𝑡 Func 𝑢), 𝑔 ∈ (𝑡 Func 𝑢) ↦ (1st𝑓) / 𝑟(1st𝑔) / 𝑠{𝑎X𝑥 ∈ (Base‘𝑡)((𝑟𝑥)(Hom ‘𝑢)(𝑠𝑥)) ∣ ∀𝑥 ∈ (Base‘𝑡)∀𝑦 ∈ (Base‘𝑡)∀ ∈ (𝑥(Hom ‘𝑡)𝑦)((𝑎𝑦)(⟨(𝑟𝑥), (𝑟𝑦)⟩(comp‘𝑢)(𝑠𝑦))((𝑥(2nd𝑓)𝑦)‘)) = (((𝑥(2nd𝑔)𝑦)‘)(⟨(𝑟𝑥), (𝑠𝑥)⟩(comp‘𝑢)(𝑠𝑦))(𝑎𝑥))}) = (𝑓 ∈ (𝐶 Func 𝐷), 𝑔 ∈ (𝐶 Func 𝐷) ↦ (1st𝑓) / 𝑟(1st𝑔) / 𝑠{𝑎X𝑥𝐵 ((𝑟𝑥)𝐽(𝑠𝑥)) ∣ ∀𝑥𝐵𝑦𝐵 ∈ (𝑥𝐻𝑦)((𝑎𝑦)(⟨(𝑟𝑥), (𝑟𝑦)⟩ · (𝑠𝑦))((𝑥(2nd𝑓)𝑦)‘)) = (((𝑥(2nd𝑔)𝑦)‘)(⟨(𝑟𝑥), (𝑠𝑥)⟩ · (𝑠𝑦))(𝑎𝑥))}))
34 df-nat 17959 . . . 4 Nat = (𝑡 ∈ Cat, 𝑢 ∈ Cat ↦ (𝑓 ∈ (𝑡 Func 𝑢), 𝑔 ∈ (𝑡 Func 𝑢) ↦ (1st𝑓) / 𝑟(1st𝑔) / 𝑠{𝑎X𝑥 ∈ (Base‘𝑡)((𝑟𝑥)(Hom ‘𝑢)(𝑠𝑥)) ∣ ∀𝑥 ∈ (Base‘𝑡)∀𝑦 ∈ (Base‘𝑡)∀ ∈ (𝑥(Hom ‘𝑡)𝑦)((𝑎𝑦)(⟨(𝑟𝑥), (𝑟𝑦)⟩(comp‘𝑢)(𝑠𝑦))((𝑥(2nd𝑓)𝑦)‘)) = (((𝑥(2nd𝑔)𝑦)‘)(⟨(𝑟𝑥), (𝑠𝑥)⟩(comp‘𝑢)(𝑠𝑦))(𝑎𝑥))}))
35 ovex 7438 . . . . 5 (𝐶 Func 𝐷) ∈ V
3635, 35mpoex 8078 . . . 4 (𝑓 ∈ (𝐶 Func 𝐷), 𝑔 ∈ (𝐶 Func 𝐷) ↦ (1st𝑓) / 𝑟(1st𝑔) / 𝑠{𝑎X𝑥𝐵 ((𝑟𝑥)𝐽(𝑠𝑥)) ∣ ∀𝑥𝐵𝑦𝐵 ∈ (𝑥𝐻𝑦)((𝑎𝑦)(⟨(𝑟𝑥), (𝑟𝑦)⟩ · (𝑠𝑦))((𝑥(2nd𝑓)𝑦)‘)) = (((𝑥(2nd𝑔)𝑦)‘)(⟨(𝑟𝑥), (𝑠𝑥)⟩ · (𝑠𝑦))(𝑎𝑥))}) ∈ V
3733, 34, 36ovmpoa 7562 . . 3 ((𝐶 ∈ Cat ∧ 𝐷 ∈ Cat) → (𝐶 Nat 𝐷) = (𝑓 ∈ (𝐶 Func 𝐷), 𝑔 ∈ (𝐶 Func 𝐷) ↦ (1st𝑓) / 𝑟(1st𝑔) / 𝑠{𝑎X𝑥𝐵 ((𝑟𝑥)𝐽(𝑠𝑥)) ∣ ∀𝑥𝐵𝑦𝐵 ∈ (𝑥𝐻𝑦)((𝑎𝑦)(⟨(𝑟𝑥), (𝑟𝑦)⟩ · (𝑠𝑦))((𝑥(2nd𝑓)𝑦)‘)) = (((𝑥(2nd𝑔)𝑦)‘)(⟨(𝑟𝑥), (𝑠𝑥)⟩ · (𝑠𝑦))(𝑎𝑥))}))
3834mpondm0 7647 . . . 4 (¬ (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat) → (𝐶 Nat 𝐷) = ∅)
39 funcrcl 17876 . . . . . . . 8 (𝑓 ∈ (𝐶 Func 𝐷) → (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat))
4039con3i 154 . . . . . . 7 (¬ (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat) → ¬ 𝑓 ∈ (𝐶 Func 𝐷))
4140eq0rdv 4382 . . . . . 6 (¬ (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat) → (𝐶 Func 𝐷) = ∅)
4241olcd 874 . . . . 5 (¬ (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat) → ((𝐶 Func 𝐷) = ∅ ∨ (𝐶 Func 𝐷) = ∅))
43 0mpo0 7490 . . . . 5 (((𝐶 Func 𝐷) = ∅ ∨ (𝐶 Func 𝐷) = ∅) → (𝑓 ∈ (𝐶 Func 𝐷), 𝑔 ∈ (𝐶 Func 𝐷) ↦ (1st𝑓) / 𝑟(1st𝑔) / 𝑠{𝑎X𝑥𝐵 ((𝑟𝑥)𝐽(𝑠𝑥)) ∣ ∀𝑥𝐵𝑦𝐵 ∈ (𝑥𝐻𝑦)((𝑎𝑦)(⟨(𝑟𝑥), (𝑟𝑦)⟩ · (𝑠𝑦))((𝑥(2nd𝑓)𝑦)‘)) = (((𝑥(2nd𝑔)𝑦)‘)(⟨(𝑟𝑥), (𝑠𝑥)⟩ · (𝑠𝑦))(𝑎𝑥))}) = ∅)
4442, 43syl 17 . . . 4 (¬ (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat) → (𝑓 ∈ (𝐶 Func 𝐷), 𝑔 ∈ (𝐶 Func 𝐷) ↦ (1st𝑓) / 𝑟(1st𝑔) / 𝑠{𝑎X𝑥𝐵 ((𝑟𝑥)𝐽(𝑠𝑥)) ∣ ∀𝑥𝐵𝑦𝐵 ∈ (𝑥𝐻𝑦)((𝑎𝑦)(⟨(𝑟𝑥), (𝑟𝑦)⟩ · (𝑠𝑦))((𝑥(2nd𝑓)𝑦)‘)) = (((𝑥(2nd𝑔)𝑦)‘)(⟨(𝑟𝑥), (𝑠𝑥)⟩ · (𝑠𝑦))(𝑎𝑥))}) = ∅)
4538, 44eqtr4d 2773 . . 3 (¬ (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat) → (𝐶 Nat 𝐷) = (𝑓 ∈ (𝐶 Func 𝐷), 𝑔 ∈ (𝐶 Func 𝐷) ↦ (1st𝑓) / 𝑟(1st𝑔) / 𝑠{𝑎X𝑥𝐵 ((𝑟𝑥)𝐽(𝑠𝑥)) ∣ ∀𝑥𝐵𝑦𝐵 ∈ (𝑥𝐻𝑦)((𝑎𝑦)(⟨(𝑟𝑥), (𝑟𝑦)⟩ · (𝑠𝑦))((𝑥(2nd𝑓)𝑦)‘)) = (((𝑥(2nd𝑔)𝑦)‘)(⟨(𝑟𝑥), (𝑠𝑥)⟩ · (𝑠𝑦))(𝑎𝑥))}))
4637, 45pm2.61i 182 . 2 (𝐶 Nat 𝐷) = (𝑓 ∈ (𝐶 Func 𝐷), 𝑔 ∈ (𝐶 Func 𝐷) ↦ (1st𝑓) / 𝑟(1st𝑔) / 𝑠{𝑎X𝑥𝐵 ((𝑟𝑥)𝐽(𝑠𝑥)) ∣ ∀𝑥𝐵𝑦𝐵 ∈ (𝑥𝐻𝑦)((𝑎𝑦)(⟨(𝑟𝑥), (𝑟𝑦)⟩ · (𝑠𝑦))((𝑥(2nd𝑓)𝑦)‘)) = (((𝑥(2nd𝑔)𝑦)‘)(⟨(𝑟𝑥), (𝑠𝑥)⟩ · (𝑠𝑦))(𝑎𝑥))})
471, 46eqtri 2758 1 𝑁 = (𝑓 ∈ (𝐶 Func 𝐷), 𝑔 ∈ (𝐶 Func 𝐷) ↦ (1st𝑓) / 𝑟(1st𝑔) / 𝑠{𝑎X𝑥𝐵 ((𝑟𝑥)𝐽(𝑠𝑥)) ∣ ∀𝑥𝐵𝑦𝐵 ∈ (𝑥𝐻𝑦)((𝑎𝑦)(⟨(𝑟𝑥), (𝑟𝑦)⟩ · (𝑠𝑦))((𝑥(2nd𝑓)𝑦)‘)) = (((𝑥(2nd𝑔)𝑦)‘)(⟨(𝑟𝑥), (𝑠𝑥)⟩ · (𝑠𝑦))(𝑎𝑥))})
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 395  wo 847   = wceq 1540  wcel 2108  wral 3051  {crab 3415  csb 3874  c0 4308  cop 4607  cfv 6531  (class class class)co 7405  cmpo 7407  1st c1st 7986  2nd c2nd 7987  Xcixp 8911  Basecbs 17228  Hom chom 17282  compcco 17283  Catccat 17676   Func cfunc 17867   Nat cnat 17957
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-ov 7408  df-oprab 7409  df-mpo 7410  df-1st 7988  df-2nd 7989  df-ixp 8912  df-func 17871  df-nat 17959
This theorem is referenced by:  isnat  17963  natffn  17965  natrcl  17966  wunnat  17972  natpropd  17992
  Copyright terms: Public domain W3C validator