MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  natfval Structured version   Visualization version   GIF version

Theorem natfval 17918
Description: Value of the function giving natural transformations between two categories. (Contributed by Mario Carneiro, 6-Jan-2017.) (Proof shortened by AV, 1-Mar-2024.)
Hypotheses
Ref Expression
natfval.1 𝑁 = (𝐶 Nat 𝐷)
natfval.b 𝐵 = (Base‘𝐶)
natfval.h 𝐻 = (Hom ‘𝐶)
natfval.j 𝐽 = (Hom ‘𝐷)
natfval.o · = (comp‘𝐷)
Assertion
Ref Expression
natfval 𝑁 = (𝑓 ∈ (𝐶 Func 𝐷), 𝑔 ∈ (𝐶 Func 𝐷) ↦ (1st𝑓) / 𝑟(1st𝑔) / 𝑠{𝑎X𝑥𝐵 ((𝑟𝑥)𝐽(𝑠𝑥)) ∣ ∀𝑥𝐵𝑦𝐵 ∈ (𝑥𝐻𝑦)((𝑎𝑦)(⟨(𝑟𝑥), (𝑟𝑦)⟩ · (𝑠𝑦))((𝑥(2nd𝑓)𝑦)‘)) = (((𝑥(2nd𝑔)𝑦)‘)(⟨(𝑟𝑥), (𝑠𝑥)⟩ · (𝑠𝑦))(𝑎𝑥))})
Distinct variable groups:   𝑓,𝑎,𝑔,,𝑟,𝑠,𝑥,𝑦   𝐵,𝑎,𝑓,𝑔,𝑟,𝑠,𝑥,𝑦   𝐶,𝑎,𝑓,𝑔,,𝑟,𝑠,𝑥,𝑦   𝐽,𝑎,𝑓,𝑔,𝑟,𝑠   𝐻,𝑎,𝑓,𝑔,,𝑟,𝑠   · ,𝑎,𝑓,𝑔,𝑟,𝑠   𝐷,𝑎,𝑓,𝑔,,𝑟,𝑠,𝑥,𝑦
Allowed substitution hints:   𝐵()   · (𝑥,𝑦,)   𝐻(𝑥,𝑦)   𝐽(𝑥,𝑦,)   𝑁(𝑥,𝑦,𝑓,𝑔,,𝑠,𝑟,𝑎)

Proof of Theorem natfval
Dummy variables 𝑡 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 natfval.1 . 2 𝑁 = (𝐶 Nat 𝐷)
2 oveq12 7399 . . . . 5 ((𝑡 = 𝐶𝑢 = 𝐷) → (𝑡 Func 𝑢) = (𝐶 Func 𝐷))
3 simpl 482 . . . . . . . . . . . 12 ((𝑡 = 𝐶𝑢 = 𝐷) → 𝑡 = 𝐶)
43fveq2d 6865 . . . . . . . . . . 11 ((𝑡 = 𝐶𝑢 = 𝐷) → (Base‘𝑡) = (Base‘𝐶))
5 natfval.b . . . . . . . . . . 11 𝐵 = (Base‘𝐶)
64, 5eqtr4di 2783 . . . . . . . . . 10 ((𝑡 = 𝐶𝑢 = 𝐷) → (Base‘𝑡) = 𝐵)
76ixpeq1d 8885 . . . . . . . . 9 ((𝑡 = 𝐶𝑢 = 𝐷) → X𝑥 ∈ (Base‘𝑡)((𝑟𝑥)(Hom ‘𝑢)(𝑠𝑥)) = X𝑥𝐵 ((𝑟𝑥)(Hom ‘𝑢)(𝑠𝑥)))
8 simpr 484 . . . . . . . . . . . . 13 ((𝑡 = 𝐶𝑢 = 𝐷) → 𝑢 = 𝐷)
98fveq2d 6865 . . . . . . . . . . . 12 ((𝑡 = 𝐶𝑢 = 𝐷) → (Hom ‘𝑢) = (Hom ‘𝐷))
10 natfval.j . . . . . . . . . . . 12 𝐽 = (Hom ‘𝐷)
119, 10eqtr4di 2783 . . . . . . . . . . 11 ((𝑡 = 𝐶𝑢 = 𝐷) → (Hom ‘𝑢) = 𝐽)
1211oveqd 7407 . . . . . . . . . 10 ((𝑡 = 𝐶𝑢 = 𝐷) → ((𝑟𝑥)(Hom ‘𝑢)(𝑠𝑥)) = ((𝑟𝑥)𝐽(𝑠𝑥)))
1312ixpeq2dv 8889 . . . . . . . . 9 ((𝑡 = 𝐶𝑢 = 𝐷) → X𝑥𝐵 ((𝑟𝑥)(Hom ‘𝑢)(𝑠𝑥)) = X𝑥𝐵 ((𝑟𝑥)𝐽(𝑠𝑥)))
147, 13eqtrd 2765 . . . . . . . 8 ((𝑡 = 𝐶𝑢 = 𝐷) → X𝑥 ∈ (Base‘𝑡)((𝑟𝑥)(Hom ‘𝑢)(𝑠𝑥)) = X𝑥𝐵 ((𝑟𝑥)𝐽(𝑠𝑥)))
153fveq2d 6865 . . . . . . . . . . . . 13 ((𝑡 = 𝐶𝑢 = 𝐷) → (Hom ‘𝑡) = (Hom ‘𝐶))
16 natfval.h . . . . . . . . . . . . 13 𝐻 = (Hom ‘𝐶)
1715, 16eqtr4di 2783 . . . . . . . . . . . 12 ((𝑡 = 𝐶𝑢 = 𝐷) → (Hom ‘𝑡) = 𝐻)
1817oveqd 7407 . . . . . . . . . . 11 ((𝑡 = 𝐶𝑢 = 𝐷) → (𝑥(Hom ‘𝑡)𝑦) = (𝑥𝐻𝑦))
198fveq2d 6865 . . . . . . . . . . . . . . 15 ((𝑡 = 𝐶𝑢 = 𝐷) → (comp‘𝑢) = (comp‘𝐷))
20 natfval.o . . . . . . . . . . . . . . 15 · = (comp‘𝐷)
2119, 20eqtr4di 2783 . . . . . . . . . . . . . 14 ((𝑡 = 𝐶𝑢 = 𝐷) → (comp‘𝑢) = · )
2221oveqd 7407 . . . . . . . . . . . . 13 ((𝑡 = 𝐶𝑢 = 𝐷) → (⟨(𝑟𝑥), (𝑟𝑦)⟩(comp‘𝑢)(𝑠𝑦)) = (⟨(𝑟𝑥), (𝑟𝑦)⟩ · (𝑠𝑦)))
2322oveqd 7407 . . . . . . . . . . . 12 ((𝑡 = 𝐶𝑢 = 𝐷) → ((𝑎𝑦)(⟨(𝑟𝑥), (𝑟𝑦)⟩(comp‘𝑢)(𝑠𝑦))((𝑥(2nd𝑓)𝑦)‘)) = ((𝑎𝑦)(⟨(𝑟𝑥), (𝑟𝑦)⟩ · (𝑠𝑦))((𝑥(2nd𝑓)𝑦)‘)))
2421oveqd 7407 . . . . . . . . . . . . 13 ((𝑡 = 𝐶𝑢 = 𝐷) → (⟨(𝑟𝑥), (𝑠𝑥)⟩(comp‘𝑢)(𝑠𝑦)) = (⟨(𝑟𝑥), (𝑠𝑥)⟩ · (𝑠𝑦)))
2524oveqd 7407 . . . . . . . . . . . 12 ((𝑡 = 𝐶𝑢 = 𝐷) → (((𝑥(2nd𝑔)𝑦)‘)(⟨(𝑟𝑥), (𝑠𝑥)⟩(comp‘𝑢)(𝑠𝑦))(𝑎𝑥)) = (((𝑥(2nd𝑔)𝑦)‘)(⟨(𝑟𝑥), (𝑠𝑥)⟩ · (𝑠𝑦))(𝑎𝑥)))
2623, 25eqeq12d 2746 . . . . . . . . . . 11 ((𝑡 = 𝐶𝑢 = 𝐷) → (((𝑎𝑦)(⟨(𝑟𝑥), (𝑟𝑦)⟩(comp‘𝑢)(𝑠𝑦))((𝑥(2nd𝑓)𝑦)‘)) = (((𝑥(2nd𝑔)𝑦)‘)(⟨(𝑟𝑥), (𝑠𝑥)⟩(comp‘𝑢)(𝑠𝑦))(𝑎𝑥)) ↔ ((𝑎𝑦)(⟨(𝑟𝑥), (𝑟𝑦)⟩ · (𝑠𝑦))((𝑥(2nd𝑓)𝑦)‘)) = (((𝑥(2nd𝑔)𝑦)‘)(⟨(𝑟𝑥), (𝑠𝑥)⟩ · (𝑠𝑦))(𝑎𝑥))))
2718, 26raleqbidv 3321 . . . . . . . . . 10 ((𝑡 = 𝐶𝑢 = 𝐷) → (∀ ∈ (𝑥(Hom ‘𝑡)𝑦)((𝑎𝑦)(⟨(𝑟𝑥), (𝑟𝑦)⟩(comp‘𝑢)(𝑠𝑦))((𝑥(2nd𝑓)𝑦)‘)) = (((𝑥(2nd𝑔)𝑦)‘)(⟨(𝑟𝑥), (𝑠𝑥)⟩(comp‘𝑢)(𝑠𝑦))(𝑎𝑥)) ↔ ∀ ∈ (𝑥𝐻𝑦)((𝑎𝑦)(⟨(𝑟𝑥), (𝑟𝑦)⟩ · (𝑠𝑦))((𝑥(2nd𝑓)𝑦)‘)) = (((𝑥(2nd𝑔)𝑦)‘)(⟨(𝑟𝑥), (𝑠𝑥)⟩ · (𝑠𝑦))(𝑎𝑥))))
286, 27raleqbidv 3321 . . . . . . . . 9 ((𝑡 = 𝐶𝑢 = 𝐷) → (∀𝑦 ∈ (Base‘𝑡)∀ ∈ (𝑥(Hom ‘𝑡)𝑦)((𝑎𝑦)(⟨(𝑟𝑥), (𝑟𝑦)⟩(comp‘𝑢)(𝑠𝑦))((𝑥(2nd𝑓)𝑦)‘)) = (((𝑥(2nd𝑔)𝑦)‘)(⟨(𝑟𝑥), (𝑠𝑥)⟩(comp‘𝑢)(𝑠𝑦))(𝑎𝑥)) ↔ ∀𝑦𝐵 ∈ (𝑥𝐻𝑦)((𝑎𝑦)(⟨(𝑟𝑥), (𝑟𝑦)⟩ · (𝑠𝑦))((𝑥(2nd𝑓)𝑦)‘)) = (((𝑥(2nd𝑔)𝑦)‘)(⟨(𝑟𝑥), (𝑠𝑥)⟩ · (𝑠𝑦))(𝑎𝑥))))
296, 28raleqbidv 3321 . . . . . . . 8 ((𝑡 = 𝐶𝑢 = 𝐷) → (∀𝑥 ∈ (Base‘𝑡)∀𝑦 ∈ (Base‘𝑡)∀ ∈ (𝑥(Hom ‘𝑡)𝑦)((𝑎𝑦)(⟨(𝑟𝑥), (𝑟𝑦)⟩(comp‘𝑢)(𝑠𝑦))((𝑥(2nd𝑓)𝑦)‘)) = (((𝑥(2nd𝑔)𝑦)‘)(⟨(𝑟𝑥), (𝑠𝑥)⟩(comp‘𝑢)(𝑠𝑦))(𝑎𝑥)) ↔ ∀𝑥𝐵𝑦𝐵 ∈ (𝑥𝐻𝑦)((𝑎𝑦)(⟨(𝑟𝑥), (𝑟𝑦)⟩ · (𝑠𝑦))((𝑥(2nd𝑓)𝑦)‘)) = (((𝑥(2nd𝑔)𝑦)‘)(⟨(𝑟𝑥), (𝑠𝑥)⟩ · (𝑠𝑦))(𝑎𝑥))))
3014, 29rabeqbidv 3427 . . . . . . 7 ((𝑡 = 𝐶𝑢 = 𝐷) → {𝑎X𝑥 ∈ (Base‘𝑡)((𝑟𝑥)(Hom ‘𝑢)(𝑠𝑥)) ∣ ∀𝑥 ∈ (Base‘𝑡)∀𝑦 ∈ (Base‘𝑡)∀ ∈ (𝑥(Hom ‘𝑡)𝑦)((𝑎𝑦)(⟨(𝑟𝑥), (𝑟𝑦)⟩(comp‘𝑢)(𝑠𝑦))((𝑥(2nd𝑓)𝑦)‘)) = (((𝑥(2nd𝑔)𝑦)‘)(⟨(𝑟𝑥), (𝑠𝑥)⟩(comp‘𝑢)(𝑠𝑦))(𝑎𝑥))} = {𝑎X𝑥𝐵 ((𝑟𝑥)𝐽(𝑠𝑥)) ∣ ∀𝑥𝐵𝑦𝐵 ∈ (𝑥𝐻𝑦)((𝑎𝑦)(⟨(𝑟𝑥), (𝑟𝑦)⟩ · (𝑠𝑦))((𝑥(2nd𝑓)𝑦)‘)) = (((𝑥(2nd𝑔)𝑦)‘)(⟨(𝑟𝑥), (𝑠𝑥)⟩ · (𝑠𝑦))(𝑎𝑥))})
3130csbeq2dv 3872 . . . . . 6 ((𝑡 = 𝐶𝑢 = 𝐷) → (1st𝑔) / 𝑠{𝑎X𝑥 ∈ (Base‘𝑡)((𝑟𝑥)(Hom ‘𝑢)(𝑠𝑥)) ∣ ∀𝑥 ∈ (Base‘𝑡)∀𝑦 ∈ (Base‘𝑡)∀ ∈ (𝑥(Hom ‘𝑡)𝑦)((𝑎𝑦)(⟨(𝑟𝑥), (𝑟𝑦)⟩(comp‘𝑢)(𝑠𝑦))((𝑥(2nd𝑓)𝑦)‘)) = (((𝑥(2nd𝑔)𝑦)‘)(⟨(𝑟𝑥), (𝑠𝑥)⟩(comp‘𝑢)(𝑠𝑦))(𝑎𝑥))} = (1st𝑔) / 𝑠{𝑎X𝑥𝐵 ((𝑟𝑥)𝐽(𝑠𝑥)) ∣ ∀𝑥𝐵𝑦𝐵 ∈ (𝑥𝐻𝑦)((𝑎𝑦)(⟨(𝑟𝑥), (𝑟𝑦)⟩ · (𝑠𝑦))((𝑥(2nd𝑓)𝑦)‘)) = (((𝑥(2nd𝑔)𝑦)‘)(⟨(𝑟𝑥), (𝑠𝑥)⟩ · (𝑠𝑦))(𝑎𝑥))})
3231csbeq2dv 3872 . . . . 5 ((𝑡 = 𝐶𝑢 = 𝐷) → (1st𝑓) / 𝑟(1st𝑔) / 𝑠{𝑎X𝑥 ∈ (Base‘𝑡)((𝑟𝑥)(Hom ‘𝑢)(𝑠𝑥)) ∣ ∀𝑥 ∈ (Base‘𝑡)∀𝑦 ∈ (Base‘𝑡)∀ ∈ (𝑥(Hom ‘𝑡)𝑦)((𝑎𝑦)(⟨(𝑟𝑥), (𝑟𝑦)⟩(comp‘𝑢)(𝑠𝑦))((𝑥(2nd𝑓)𝑦)‘)) = (((𝑥(2nd𝑔)𝑦)‘)(⟨(𝑟𝑥), (𝑠𝑥)⟩(comp‘𝑢)(𝑠𝑦))(𝑎𝑥))} = (1st𝑓) / 𝑟(1st𝑔) / 𝑠{𝑎X𝑥𝐵 ((𝑟𝑥)𝐽(𝑠𝑥)) ∣ ∀𝑥𝐵𝑦𝐵 ∈ (𝑥𝐻𝑦)((𝑎𝑦)(⟨(𝑟𝑥), (𝑟𝑦)⟩ · (𝑠𝑦))((𝑥(2nd𝑓)𝑦)‘)) = (((𝑥(2nd𝑔)𝑦)‘)(⟨(𝑟𝑥), (𝑠𝑥)⟩ · (𝑠𝑦))(𝑎𝑥))})
332, 2, 32mpoeq123dv 7467 . . . 4 ((𝑡 = 𝐶𝑢 = 𝐷) → (𝑓 ∈ (𝑡 Func 𝑢), 𝑔 ∈ (𝑡 Func 𝑢) ↦ (1st𝑓) / 𝑟(1st𝑔) / 𝑠{𝑎X𝑥 ∈ (Base‘𝑡)((𝑟𝑥)(Hom ‘𝑢)(𝑠𝑥)) ∣ ∀𝑥 ∈ (Base‘𝑡)∀𝑦 ∈ (Base‘𝑡)∀ ∈ (𝑥(Hom ‘𝑡)𝑦)((𝑎𝑦)(⟨(𝑟𝑥), (𝑟𝑦)⟩(comp‘𝑢)(𝑠𝑦))((𝑥(2nd𝑓)𝑦)‘)) = (((𝑥(2nd𝑔)𝑦)‘)(⟨(𝑟𝑥), (𝑠𝑥)⟩(comp‘𝑢)(𝑠𝑦))(𝑎𝑥))}) = (𝑓 ∈ (𝐶 Func 𝐷), 𝑔 ∈ (𝐶 Func 𝐷) ↦ (1st𝑓) / 𝑟(1st𝑔) / 𝑠{𝑎X𝑥𝐵 ((𝑟𝑥)𝐽(𝑠𝑥)) ∣ ∀𝑥𝐵𝑦𝐵 ∈ (𝑥𝐻𝑦)((𝑎𝑦)(⟨(𝑟𝑥), (𝑟𝑦)⟩ · (𝑠𝑦))((𝑥(2nd𝑓)𝑦)‘)) = (((𝑥(2nd𝑔)𝑦)‘)(⟨(𝑟𝑥), (𝑠𝑥)⟩ · (𝑠𝑦))(𝑎𝑥))}))
34 df-nat 17915 . . . 4 Nat = (𝑡 ∈ Cat, 𝑢 ∈ Cat ↦ (𝑓 ∈ (𝑡 Func 𝑢), 𝑔 ∈ (𝑡 Func 𝑢) ↦ (1st𝑓) / 𝑟(1st𝑔) / 𝑠{𝑎X𝑥 ∈ (Base‘𝑡)((𝑟𝑥)(Hom ‘𝑢)(𝑠𝑥)) ∣ ∀𝑥 ∈ (Base‘𝑡)∀𝑦 ∈ (Base‘𝑡)∀ ∈ (𝑥(Hom ‘𝑡)𝑦)((𝑎𝑦)(⟨(𝑟𝑥), (𝑟𝑦)⟩(comp‘𝑢)(𝑠𝑦))((𝑥(2nd𝑓)𝑦)‘)) = (((𝑥(2nd𝑔)𝑦)‘)(⟨(𝑟𝑥), (𝑠𝑥)⟩(comp‘𝑢)(𝑠𝑦))(𝑎𝑥))}))
35 ovex 7423 . . . . 5 (𝐶 Func 𝐷) ∈ V
3635, 35mpoex 8061 . . . 4 (𝑓 ∈ (𝐶 Func 𝐷), 𝑔 ∈ (𝐶 Func 𝐷) ↦ (1st𝑓) / 𝑟(1st𝑔) / 𝑠{𝑎X𝑥𝐵 ((𝑟𝑥)𝐽(𝑠𝑥)) ∣ ∀𝑥𝐵𝑦𝐵 ∈ (𝑥𝐻𝑦)((𝑎𝑦)(⟨(𝑟𝑥), (𝑟𝑦)⟩ · (𝑠𝑦))((𝑥(2nd𝑓)𝑦)‘)) = (((𝑥(2nd𝑔)𝑦)‘)(⟨(𝑟𝑥), (𝑠𝑥)⟩ · (𝑠𝑦))(𝑎𝑥))}) ∈ V
3733, 34, 36ovmpoa 7547 . . 3 ((𝐶 ∈ Cat ∧ 𝐷 ∈ Cat) → (𝐶 Nat 𝐷) = (𝑓 ∈ (𝐶 Func 𝐷), 𝑔 ∈ (𝐶 Func 𝐷) ↦ (1st𝑓) / 𝑟(1st𝑔) / 𝑠{𝑎X𝑥𝐵 ((𝑟𝑥)𝐽(𝑠𝑥)) ∣ ∀𝑥𝐵𝑦𝐵 ∈ (𝑥𝐻𝑦)((𝑎𝑦)(⟨(𝑟𝑥), (𝑟𝑦)⟩ · (𝑠𝑦))((𝑥(2nd𝑓)𝑦)‘)) = (((𝑥(2nd𝑔)𝑦)‘)(⟨(𝑟𝑥), (𝑠𝑥)⟩ · (𝑠𝑦))(𝑎𝑥))}))
3834mpondm0 7632 . . . 4 (¬ (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat) → (𝐶 Nat 𝐷) = ∅)
39 funcrcl 17832 . . . . . . . 8 (𝑓 ∈ (𝐶 Func 𝐷) → (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat))
4039con3i 154 . . . . . . 7 (¬ (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat) → ¬ 𝑓 ∈ (𝐶 Func 𝐷))
4140eq0rdv 4373 . . . . . 6 (¬ (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat) → (𝐶 Func 𝐷) = ∅)
4241olcd 874 . . . . 5 (¬ (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat) → ((𝐶 Func 𝐷) = ∅ ∨ (𝐶 Func 𝐷) = ∅))
43 0mpo0 7475 . . . . 5 (((𝐶 Func 𝐷) = ∅ ∨ (𝐶 Func 𝐷) = ∅) → (𝑓 ∈ (𝐶 Func 𝐷), 𝑔 ∈ (𝐶 Func 𝐷) ↦ (1st𝑓) / 𝑟(1st𝑔) / 𝑠{𝑎X𝑥𝐵 ((𝑟𝑥)𝐽(𝑠𝑥)) ∣ ∀𝑥𝐵𝑦𝐵 ∈ (𝑥𝐻𝑦)((𝑎𝑦)(⟨(𝑟𝑥), (𝑟𝑦)⟩ · (𝑠𝑦))((𝑥(2nd𝑓)𝑦)‘)) = (((𝑥(2nd𝑔)𝑦)‘)(⟨(𝑟𝑥), (𝑠𝑥)⟩ · (𝑠𝑦))(𝑎𝑥))}) = ∅)
4442, 43syl 17 . . . 4 (¬ (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat) → (𝑓 ∈ (𝐶 Func 𝐷), 𝑔 ∈ (𝐶 Func 𝐷) ↦ (1st𝑓) / 𝑟(1st𝑔) / 𝑠{𝑎X𝑥𝐵 ((𝑟𝑥)𝐽(𝑠𝑥)) ∣ ∀𝑥𝐵𝑦𝐵 ∈ (𝑥𝐻𝑦)((𝑎𝑦)(⟨(𝑟𝑥), (𝑟𝑦)⟩ · (𝑠𝑦))((𝑥(2nd𝑓)𝑦)‘)) = (((𝑥(2nd𝑔)𝑦)‘)(⟨(𝑟𝑥), (𝑠𝑥)⟩ · (𝑠𝑦))(𝑎𝑥))}) = ∅)
4538, 44eqtr4d 2768 . . 3 (¬ (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat) → (𝐶 Nat 𝐷) = (𝑓 ∈ (𝐶 Func 𝐷), 𝑔 ∈ (𝐶 Func 𝐷) ↦ (1st𝑓) / 𝑟(1st𝑔) / 𝑠{𝑎X𝑥𝐵 ((𝑟𝑥)𝐽(𝑠𝑥)) ∣ ∀𝑥𝐵𝑦𝐵 ∈ (𝑥𝐻𝑦)((𝑎𝑦)(⟨(𝑟𝑥), (𝑟𝑦)⟩ · (𝑠𝑦))((𝑥(2nd𝑓)𝑦)‘)) = (((𝑥(2nd𝑔)𝑦)‘)(⟨(𝑟𝑥), (𝑠𝑥)⟩ · (𝑠𝑦))(𝑎𝑥))}))
4637, 45pm2.61i 182 . 2 (𝐶 Nat 𝐷) = (𝑓 ∈ (𝐶 Func 𝐷), 𝑔 ∈ (𝐶 Func 𝐷) ↦ (1st𝑓) / 𝑟(1st𝑔) / 𝑠{𝑎X𝑥𝐵 ((𝑟𝑥)𝐽(𝑠𝑥)) ∣ ∀𝑥𝐵𝑦𝐵 ∈ (𝑥𝐻𝑦)((𝑎𝑦)(⟨(𝑟𝑥), (𝑟𝑦)⟩ · (𝑠𝑦))((𝑥(2nd𝑓)𝑦)‘)) = (((𝑥(2nd𝑔)𝑦)‘)(⟨(𝑟𝑥), (𝑠𝑥)⟩ · (𝑠𝑦))(𝑎𝑥))})
471, 46eqtri 2753 1 𝑁 = (𝑓 ∈ (𝐶 Func 𝐷), 𝑔 ∈ (𝐶 Func 𝐷) ↦ (1st𝑓) / 𝑟(1st𝑔) / 𝑠{𝑎X𝑥𝐵 ((𝑟𝑥)𝐽(𝑠𝑥)) ∣ ∀𝑥𝐵𝑦𝐵 ∈ (𝑥𝐻𝑦)((𝑎𝑦)(⟨(𝑟𝑥), (𝑟𝑦)⟩ · (𝑠𝑦))((𝑥(2nd𝑓)𝑦)‘)) = (((𝑥(2nd𝑔)𝑦)‘)(⟨(𝑟𝑥), (𝑠𝑥)⟩ · (𝑠𝑦))(𝑎𝑥))})
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 395  wo 847   = wceq 1540  wcel 2109  wral 3045  {crab 3408  csb 3865  c0 4299  cop 4598  cfv 6514  (class class class)co 7390  cmpo 7392  1st c1st 7969  2nd c2nd 7970  Xcixp 8873  Basecbs 17186  Hom chom 17238  compcco 17239  Catccat 17632   Func cfunc 17823   Nat cnat 17913
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-1st 7971  df-2nd 7972  df-ixp 8874  df-func 17827  df-nat 17915
This theorem is referenced by:  isnat  17919  natffn  17921  natrcl  17922  wunnat  17928  natpropd  17948
  Copyright terms: Public domain W3C validator