![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > isngp | Structured version Visualization version GIF version |
Description: The property of being a normed group. (Contributed by Mario Carneiro, 2-Oct-2015.) |
Ref | Expression |
---|---|
isngp.n | ⊢ 𝑁 = (norm‘𝐺) |
isngp.z | ⊢ − = (-g‘𝐺) |
isngp.d | ⊢ 𝐷 = (dist‘𝐺) |
Ref | Expression |
---|---|
isngp | ⊢ (𝐺 ∈ NrmGrp ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp ∧ (𝑁 ∘ − ) ⊆ 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elin 3992 | . . 3 ⊢ (𝐺 ∈ (Grp ∩ MetSp) ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp)) | |
2 | 1 | anbi1i 623 | . 2 ⊢ ((𝐺 ∈ (Grp ∩ MetSp) ∧ (𝑁 ∘ − ) ⊆ 𝐷) ↔ ((𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp) ∧ (𝑁 ∘ − ) ⊆ 𝐷)) |
3 | fveq2 6920 | . . . . . 6 ⊢ (𝑔 = 𝐺 → (norm‘𝑔) = (norm‘𝐺)) | |
4 | isngp.n | . . . . . 6 ⊢ 𝑁 = (norm‘𝐺) | |
5 | 3, 4 | eqtr4di 2798 | . . . . 5 ⊢ (𝑔 = 𝐺 → (norm‘𝑔) = 𝑁) |
6 | fveq2 6920 | . . . . . 6 ⊢ (𝑔 = 𝐺 → (-g‘𝑔) = (-g‘𝐺)) | |
7 | isngp.z | . . . . . 6 ⊢ − = (-g‘𝐺) | |
8 | 6, 7 | eqtr4di 2798 | . . . . 5 ⊢ (𝑔 = 𝐺 → (-g‘𝑔) = − ) |
9 | 5, 8 | coeq12d 5889 | . . . 4 ⊢ (𝑔 = 𝐺 → ((norm‘𝑔) ∘ (-g‘𝑔)) = (𝑁 ∘ − )) |
10 | fveq2 6920 | . . . . 5 ⊢ (𝑔 = 𝐺 → (dist‘𝑔) = (dist‘𝐺)) | |
11 | isngp.d | . . . . 5 ⊢ 𝐷 = (dist‘𝐺) | |
12 | 10, 11 | eqtr4di 2798 | . . . 4 ⊢ (𝑔 = 𝐺 → (dist‘𝑔) = 𝐷) |
13 | 9, 12 | sseq12d 4042 | . . 3 ⊢ (𝑔 = 𝐺 → (((norm‘𝑔) ∘ (-g‘𝑔)) ⊆ (dist‘𝑔) ↔ (𝑁 ∘ − ) ⊆ 𝐷)) |
14 | df-ngp 24617 | . . 3 ⊢ NrmGrp = {𝑔 ∈ (Grp ∩ MetSp) ∣ ((norm‘𝑔) ∘ (-g‘𝑔)) ⊆ (dist‘𝑔)} | |
15 | 13, 14 | elrab2 3711 | . 2 ⊢ (𝐺 ∈ NrmGrp ↔ (𝐺 ∈ (Grp ∩ MetSp) ∧ (𝑁 ∘ − ) ⊆ 𝐷)) |
16 | df-3an 1089 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp ∧ (𝑁 ∘ − ) ⊆ 𝐷) ↔ ((𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp) ∧ (𝑁 ∘ − ) ⊆ 𝐷)) | |
17 | 2, 15, 16 | 3bitr4i 303 | 1 ⊢ (𝐺 ∈ NrmGrp ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp ∧ (𝑁 ∘ − ) ⊆ 𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∧ wa 395 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 ∩ cin 3975 ⊆ wss 3976 ∘ ccom 5704 ‘cfv 6573 distcds 17320 Grpcgrp 18973 -gcsg 18975 MetSpcms 24349 normcnm 24610 NrmGrpcngp 24611 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-co 5709 df-iota 6525 df-fv 6581 df-ngp 24617 |
This theorem is referenced by: isngp2 24631 ngpgrp 24633 ngpms 24634 tngngp2 24694 cnngp 24821 zhmnrg 33913 |
Copyright terms: Public domain | W3C validator |