| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > isngp | Structured version Visualization version GIF version | ||
| Description: The property of being a normed group. (Contributed by Mario Carneiro, 2-Oct-2015.) |
| Ref | Expression |
|---|---|
| isngp.n | ⊢ 𝑁 = (norm‘𝐺) |
| isngp.z | ⊢ − = (-g‘𝐺) |
| isngp.d | ⊢ 𝐷 = (dist‘𝐺) |
| Ref | Expression |
|---|---|
| isngp | ⊢ (𝐺 ∈ NrmGrp ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp ∧ (𝑁 ∘ − ) ⊆ 𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elin 3933 | . . 3 ⊢ (𝐺 ∈ (Grp ∩ MetSp) ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp)) | |
| 2 | 1 | anbi1i 624 | . 2 ⊢ ((𝐺 ∈ (Grp ∩ MetSp) ∧ (𝑁 ∘ − ) ⊆ 𝐷) ↔ ((𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp) ∧ (𝑁 ∘ − ) ⊆ 𝐷)) |
| 3 | fveq2 6861 | . . . . . 6 ⊢ (𝑔 = 𝐺 → (norm‘𝑔) = (norm‘𝐺)) | |
| 4 | isngp.n | . . . . . 6 ⊢ 𝑁 = (norm‘𝐺) | |
| 5 | 3, 4 | eqtr4di 2783 | . . . . 5 ⊢ (𝑔 = 𝐺 → (norm‘𝑔) = 𝑁) |
| 6 | fveq2 6861 | . . . . . 6 ⊢ (𝑔 = 𝐺 → (-g‘𝑔) = (-g‘𝐺)) | |
| 7 | isngp.z | . . . . . 6 ⊢ − = (-g‘𝐺) | |
| 8 | 6, 7 | eqtr4di 2783 | . . . . 5 ⊢ (𝑔 = 𝐺 → (-g‘𝑔) = − ) |
| 9 | 5, 8 | coeq12d 5831 | . . . 4 ⊢ (𝑔 = 𝐺 → ((norm‘𝑔) ∘ (-g‘𝑔)) = (𝑁 ∘ − )) |
| 10 | fveq2 6861 | . . . . 5 ⊢ (𝑔 = 𝐺 → (dist‘𝑔) = (dist‘𝐺)) | |
| 11 | isngp.d | . . . . 5 ⊢ 𝐷 = (dist‘𝐺) | |
| 12 | 10, 11 | eqtr4di 2783 | . . . 4 ⊢ (𝑔 = 𝐺 → (dist‘𝑔) = 𝐷) |
| 13 | 9, 12 | sseq12d 3983 | . . 3 ⊢ (𝑔 = 𝐺 → (((norm‘𝑔) ∘ (-g‘𝑔)) ⊆ (dist‘𝑔) ↔ (𝑁 ∘ − ) ⊆ 𝐷)) |
| 14 | df-ngp 24478 | . . 3 ⊢ NrmGrp = {𝑔 ∈ (Grp ∩ MetSp) ∣ ((norm‘𝑔) ∘ (-g‘𝑔)) ⊆ (dist‘𝑔)} | |
| 15 | 13, 14 | elrab2 3665 | . 2 ⊢ (𝐺 ∈ NrmGrp ↔ (𝐺 ∈ (Grp ∩ MetSp) ∧ (𝑁 ∘ − ) ⊆ 𝐷)) |
| 16 | df-3an 1088 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp ∧ (𝑁 ∘ − ) ⊆ 𝐷) ↔ ((𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp) ∧ (𝑁 ∘ − ) ⊆ 𝐷)) | |
| 17 | 2, 15, 16 | 3bitr4i 303 | 1 ⊢ (𝐺 ∈ NrmGrp ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp ∧ (𝑁 ∘ − ) ⊆ 𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∩ cin 3916 ⊆ wss 3917 ∘ ccom 5645 ‘cfv 6514 distcds 17236 Grpcgrp 18872 -gcsg 18874 MetSpcms 24213 normcnm 24471 NrmGrpcngp 24472 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-co 5650 df-iota 6467 df-fv 6522 df-ngp 24478 |
| This theorem is referenced by: isngp2 24492 ngpgrp 24494 ngpms 24495 tngngp2 24547 cnngp 24674 zhmnrg 33962 |
| Copyright terms: Public domain | W3C validator |