MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isngp Structured version   Visualization version   GIF version

Theorem isngp 24506
Description: The property of being a normed group. (Contributed by Mario Carneiro, 2-Oct-2015.)
Hypotheses
Ref Expression
isngp.n 𝑁 = (norm‘𝐺)
isngp.z = (-g𝐺)
isngp.d 𝐷 = (dist‘𝐺)
Assertion
Ref Expression
isngp (𝐺 ∈ NrmGrp ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp ∧ (𝑁 ) ⊆ 𝐷))

Proof of Theorem isngp
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 elin 3913 . . 3 (𝐺 ∈ (Grp ∩ MetSp) ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp))
21anbi1i 624 . 2 ((𝐺 ∈ (Grp ∩ MetSp) ∧ (𝑁 ) ⊆ 𝐷) ↔ ((𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp) ∧ (𝑁 ) ⊆ 𝐷))
3 fveq2 6817 . . . . . 6 (𝑔 = 𝐺 → (norm‘𝑔) = (norm‘𝐺))
4 isngp.n . . . . . 6 𝑁 = (norm‘𝐺)
53, 4eqtr4di 2784 . . . . 5 (𝑔 = 𝐺 → (norm‘𝑔) = 𝑁)
6 fveq2 6817 . . . . . 6 (𝑔 = 𝐺 → (-g𝑔) = (-g𝐺))
7 isngp.z . . . . . 6 = (-g𝐺)
86, 7eqtr4di 2784 . . . . 5 (𝑔 = 𝐺 → (-g𝑔) = )
95, 8coeq12d 5799 . . . 4 (𝑔 = 𝐺 → ((norm‘𝑔) ∘ (-g𝑔)) = (𝑁 ))
10 fveq2 6817 . . . . 5 (𝑔 = 𝐺 → (dist‘𝑔) = (dist‘𝐺))
11 isngp.d . . . . 5 𝐷 = (dist‘𝐺)
1210, 11eqtr4di 2784 . . . 4 (𝑔 = 𝐺 → (dist‘𝑔) = 𝐷)
139, 12sseq12d 3963 . . 3 (𝑔 = 𝐺 → (((norm‘𝑔) ∘ (-g𝑔)) ⊆ (dist‘𝑔) ↔ (𝑁 ) ⊆ 𝐷))
14 df-ngp 24493 . . 3 NrmGrp = {𝑔 ∈ (Grp ∩ MetSp) ∣ ((norm‘𝑔) ∘ (-g𝑔)) ⊆ (dist‘𝑔)}
1513, 14elrab2 3645 . 2 (𝐺 ∈ NrmGrp ↔ (𝐺 ∈ (Grp ∩ MetSp) ∧ (𝑁 ) ⊆ 𝐷))
16 df-3an 1088 . 2 ((𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp ∧ (𝑁 ) ⊆ 𝐷) ↔ ((𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp) ∧ (𝑁 ) ⊆ 𝐷))
172, 15, 163bitr4i 303 1 (𝐺 ∈ NrmGrp ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp ∧ (𝑁 ) ⊆ 𝐷))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2111  cin 3896  wss 3897  ccom 5615  cfv 6476  distcds 17165  Grpcgrp 18841  -gcsg 18843  MetSpcms 24228  normcnm 24486  NrmGrpcngp 24487
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4279  df-if 4471  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-br 5087  df-opab 5149  df-co 5620  df-iota 6432  df-fv 6484  df-ngp 24493
This theorem is referenced by:  isngp2  24507  ngpgrp  24509  ngpms  24510  tngngp2  24562  cnngp  24689  zhmnrg  33970
  Copyright terms: Public domain W3C validator