| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > isngp | Structured version Visualization version GIF version | ||
| Description: The property of being a normed group. (Contributed by Mario Carneiro, 2-Oct-2015.) |
| Ref | Expression |
|---|---|
| isngp.n | ⊢ 𝑁 = (norm‘𝐺) |
| isngp.z | ⊢ − = (-g‘𝐺) |
| isngp.d | ⊢ 𝐷 = (dist‘𝐺) |
| Ref | Expression |
|---|---|
| isngp | ⊢ (𝐺 ∈ NrmGrp ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp ∧ (𝑁 ∘ − ) ⊆ 𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elin 3914 | . . 3 ⊢ (𝐺 ∈ (Grp ∩ MetSp) ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp)) | |
| 2 | 1 | anbi1i 624 | . 2 ⊢ ((𝐺 ∈ (Grp ∩ MetSp) ∧ (𝑁 ∘ − ) ⊆ 𝐷) ↔ ((𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp) ∧ (𝑁 ∘ − ) ⊆ 𝐷)) |
| 3 | fveq2 6831 | . . . . . 6 ⊢ (𝑔 = 𝐺 → (norm‘𝑔) = (norm‘𝐺)) | |
| 4 | isngp.n | . . . . . 6 ⊢ 𝑁 = (norm‘𝐺) | |
| 5 | 3, 4 | eqtr4di 2786 | . . . . 5 ⊢ (𝑔 = 𝐺 → (norm‘𝑔) = 𝑁) |
| 6 | fveq2 6831 | . . . . . 6 ⊢ (𝑔 = 𝐺 → (-g‘𝑔) = (-g‘𝐺)) | |
| 7 | isngp.z | . . . . . 6 ⊢ − = (-g‘𝐺) | |
| 8 | 6, 7 | eqtr4di 2786 | . . . . 5 ⊢ (𝑔 = 𝐺 → (-g‘𝑔) = − ) |
| 9 | 5, 8 | coeq12d 5810 | . . . 4 ⊢ (𝑔 = 𝐺 → ((norm‘𝑔) ∘ (-g‘𝑔)) = (𝑁 ∘ − )) |
| 10 | fveq2 6831 | . . . . 5 ⊢ (𝑔 = 𝐺 → (dist‘𝑔) = (dist‘𝐺)) | |
| 11 | isngp.d | . . . . 5 ⊢ 𝐷 = (dist‘𝐺) | |
| 12 | 10, 11 | eqtr4di 2786 | . . . 4 ⊢ (𝑔 = 𝐺 → (dist‘𝑔) = 𝐷) |
| 13 | 9, 12 | sseq12d 3964 | . . 3 ⊢ (𝑔 = 𝐺 → (((norm‘𝑔) ∘ (-g‘𝑔)) ⊆ (dist‘𝑔) ↔ (𝑁 ∘ − ) ⊆ 𝐷)) |
| 14 | df-ngp 24518 | . . 3 ⊢ NrmGrp = {𝑔 ∈ (Grp ∩ MetSp) ∣ ((norm‘𝑔) ∘ (-g‘𝑔)) ⊆ (dist‘𝑔)} | |
| 15 | 13, 14 | elrab2 3646 | . 2 ⊢ (𝐺 ∈ NrmGrp ↔ (𝐺 ∈ (Grp ∩ MetSp) ∧ (𝑁 ∘ − ) ⊆ 𝐷)) |
| 16 | df-3an 1088 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp ∧ (𝑁 ∘ − ) ⊆ 𝐷) ↔ ((𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp) ∧ (𝑁 ∘ − ) ⊆ 𝐷)) | |
| 17 | 2, 15, 16 | 3bitr4i 303 | 1 ⊢ (𝐺 ∈ NrmGrp ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp ∧ (𝑁 ∘ − ) ⊆ 𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2113 ∩ cin 3897 ⊆ wss 3898 ∘ ccom 5625 ‘cfv 6489 distcds 17177 Grpcgrp 18854 -gcsg 18856 MetSpcms 24253 normcnm 24511 NrmGrpcngp 24512 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-opab 5158 df-co 5630 df-iota 6445 df-fv 6497 df-ngp 24518 |
| This theorem is referenced by: isngp2 24532 ngpgrp 24534 ngpms 24535 tngngp2 24587 cnngp 24714 zhmnrg 34050 |
| Copyright terms: Public domain | W3C validator |