MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isngp Structured version   Visualization version   GIF version

Theorem isngp 24549
Description: The property of being a normed group. (Contributed by Mario Carneiro, 2-Oct-2015.)
Hypotheses
Ref Expression
isngp.n 𝑁 = (norm‘𝐺)
isngp.z = (-g𝐺)
isngp.d 𝐷 = (dist‘𝐺)
Assertion
Ref Expression
isngp (𝐺 ∈ NrmGrp ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp ∧ (𝑁 ) ⊆ 𝐷))

Proof of Theorem isngp
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 elin 3960 . . 3 (𝐺 ∈ (Grp ∩ MetSp) ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp))
21anbi1i 622 . 2 ((𝐺 ∈ (Grp ∩ MetSp) ∧ (𝑁 ) ⊆ 𝐷) ↔ ((𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp) ∧ (𝑁 ) ⊆ 𝐷))
3 fveq2 6896 . . . . . 6 (𝑔 = 𝐺 → (norm‘𝑔) = (norm‘𝐺))
4 isngp.n . . . . . 6 𝑁 = (norm‘𝐺)
53, 4eqtr4di 2783 . . . . 5 (𝑔 = 𝐺 → (norm‘𝑔) = 𝑁)
6 fveq2 6896 . . . . . 6 (𝑔 = 𝐺 → (-g𝑔) = (-g𝐺))
7 isngp.z . . . . . 6 = (-g𝐺)
86, 7eqtr4di 2783 . . . . 5 (𝑔 = 𝐺 → (-g𝑔) = )
95, 8coeq12d 5867 . . . 4 (𝑔 = 𝐺 → ((norm‘𝑔) ∘ (-g𝑔)) = (𝑁 ))
10 fveq2 6896 . . . . 5 (𝑔 = 𝐺 → (dist‘𝑔) = (dist‘𝐺))
11 isngp.d . . . . 5 𝐷 = (dist‘𝐺)
1210, 11eqtr4di 2783 . . . 4 (𝑔 = 𝐺 → (dist‘𝑔) = 𝐷)
139, 12sseq12d 4010 . . 3 (𝑔 = 𝐺 → (((norm‘𝑔) ∘ (-g𝑔)) ⊆ (dist‘𝑔) ↔ (𝑁 ) ⊆ 𝐷))
14 df-ngp 24536 . . 3 NrmGrp = {𝑔 ∈ (Grp ∩ MetSp) ∣ ((norm‘𝑔) ∘ (-g𝑔)) ⊆ (dist‘𝑔)}
1513, 14elrab2 3682 . 2 (𝐺 ∈ NrmGrp ↔ (𝐺 ∈ (Grp ∩ MetSp) ∧ (𝑁 ) ⊆ 𝐷))
16 df-3an 1086 . 2 ((𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp ∧ (𝑁 ) ⊆ 𝐷) ↔ ((𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp) ∧ (𝑁 ) ⊆ 𝐷))
172, 15, 163bitr4i 302 1 (𝐺 ∈ NrmGrp ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp ∧ (𝑁 ) ⊆ 𝐷))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 394  w3a 1084   = wceq 1533  wcel 2098  cin 3943  wss 3944  ccom 5682  cfv 6549  distcds 17245  Grpcgrp 18898  -gcsg 18900  MetSpcms 24268  normcnm 24529  NrmGrpcngp 24530
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2696
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-sb 2060  df-clab 2703  df-cleq 2717  df-clel 2802  df-rab 3419  df-v 3463  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4323  df-if 4531  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4910  df-br 5150  df-opab 5212  df-co 5687  df-iota 6501  df-fv 6557  df-ngp 24536
This theorem is referenced by:  isngp2  24550  ngpgrp  24552  ngpms  24553  tngngp2  24613  cnngp  24740  zhmnrg  33696
  Copyright terms: Public domain W3C validator