MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isngp Structured version   Visualization version   GIF version

Theorem isngp 24500
Description: The property of being a normed group. (Contributed by Mario Carneiro, 2-Oct-2015.)
Hypotheses
Ref Expression
isngp.n 𝑁 = (norm‘𝐺)
isngp.z = (-g𝐺)
isngp.d 𝐷 = (dist‘𝐺)
Assertion
Ref Expression
isngp (𝐺 ∈ NrmGrp ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp ∧ (𝑁 ) ⊆ 𝐷))

Proof of Theorem isngp
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 elin 3921 . . 3 (𝐺 ∈ (Grp ∩ MetSp) ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp))
21anbi1i 624 . 2 ((𝐺 ∈ (Grp ∩ MetSp) ∧ (𝑁 ) ⊆ 𝐷) ↔ ((𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp) ∧ (𝑁 ) ⊆ 𝐷))
3 fveq2 6826 . . . . . 6 (𝑔 = 𝐺 → (norm‘𝑔) = (norm‘𝐺))
4 isngp.n . . . . . 6 𝑁 = (norm‘𝐺)
53, 4eqtr4di 2782 . . . . 5 (𝑔 = 𝐺 → (norm‘𝑔) = 𝑁)
6 fveq2 6826 . . . . . 6 (𝑔 = 𝐺 → (-g𝑔) = (-g𝐺))
7 isngp.z . . . . . 6 = (-g𝐺)
86, 7eqtr4di 2782 . . . . 5 (𝑔 = 𝐺 → (-g𝑔) = )
95, 8coeq12d 5811 . . . 4 (𝑔 = 𝐺 → ((norm‘𝑔) ∘ (-g𝑔)) = (𝑁 ))
10 fveq2 6826 . . . . 5 (𝑔 = 𝐺 → (dist‘𝑔) = (dist‘𝐺))
11 isngp.d . . . . 5 𝐷 = (dist‘𝐺)
1210, 11eqtr4di 2782 . . . 4 (𝑔 = 𝐺 → (dist‘𝑔) = 𝐷)
139, 12sseq12d 3971 . . 3 (𝑔 = 𝐺 → (((norm‘𝑔) ∘ (-g𝑔)) ⊆ (dist‘𝑔) ↔ (𝑁 ) ⊆ 𝐷))
14 df-ngp 24487 . . 3 NrmGrp = {𝑔 ∈ (Grp ∩ MetSp) ∣ ((norm‘𝑔) ∘ (-g𝑔)) ⊆ (dist‘𝑔)}
1513, 14elrab2 3653 . 2 (𝐺 ∈ NrmGrp ↔ (𝐺 ∈ (Grp ∩ MetSp) ∧ (𝑁 ) ⊆ 𝐷))
16 df-3an 1088 . 2 ((𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp ∧ (𝑁 ) ⊆ 𝐷) ↔ ((𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp) ∧ (𝑁 ) ⊆ 𝐷))
172, 15, 163bitr4i 303 1 (𝐺 ∈ NrmGrp ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp ∧ (𝑁 ) ⊆ 𝐷))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  cin 3904  wss 3905  ccom 5627  cfv 6486  distcds 17188  Grpcgrp 18830  -gcsg 18832  MetSpcms 24222  normcnm 24480  NrmGrpcngp 24481
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-rab 3397  df-v 3440  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-opab 5158  df-co 5632  df-iota 6442  df-fv 6494  df-ngp 24487
This theorem is referenced by:  isngp2  24501  ngpgrp  24503  ngpms  24504  tngngp2  24556  cnngp  24683  zhmnrg  33934
  Copyright terms: Public domain W3C validator