![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > isngp | Structured version Visualization version GIF version |
Description: The property of being a normed group. (Contributed by Mario Carneiro, 2-Oct-2015.) |
Ref | Expression |
---|---|
isngp.n | ⊢ 𝑁 = (norm‘𝐺) |
isngp.z | ⊢ − = (-g‘𝐺) |
isngp.d | ⊢ 𝐷 = (dist‘𝐺) |
Ref | Expression |
---|---|
isngp | ⊢ (𝐺 ∈ NrmGrp ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp ∧ (𝑁 ∘ − ) ⊆ 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elin 3960 | . . 3 ⊢ (𝐺 ∈ (Grp ∩ MetSp) ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp)) | |
2 | 1 | anbi1i 622 | . 2 ⊢ ((𝐺 ∈ (Grp ∩ MetSp) ∧ (𝑁 ∘ − ) ⊆ 𝐷) ↔ ((𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp) ∧ (𝑁 ∘ − ) ⊆ 𝐷)) |
3 | fveq2 6896 | . . . . . 6 ⊢ (𝑔 = 𝐺 → (norm‘𝑔) = (norm‘𝐺)) | |
4 | isngp.n | . . . . . 6 ⊢ 𝑁 = (norm‘𝐺) | |
5 | 3, 4 | eqtr4di 2783 | . . . . 5 ⊢ (𝑔 = 𝐺 → (norm‘𝑔) = 𝑁) |
6 | fveq2 6896 | . . . . . 6 ⊢ (𝑔 = 𝐺 → (-g‘𝑔) = (-g‘𝐺)) | |
7 | isngp.z | . . . . . 6 ⊢ − = (-g‘𝐺) | |
8 | 6, 7 | eqtr4di 2783 | . . . . 5 ⊢ (𝑔 = 𝐺 → (-g‘𝑔) = − ) |
9 | 5, 8 | coeq12d 5867 | . . . 4 ⊢ (𝑔 = 𝐺 → ((norm‘𝑔) ∘ (-g‘𝑔)) = (𝑁 ∘ − )) |
10 | fveq2 6896 | . . . . 5 ⊢ (𝑔 = 𝐺 → (dist‘𝑔) = (dist‘𝐺)) | |
11 | isngp.d | . . . . 5 ⊢ 𝐷 = (dist‘𝐺) | |
12 | 10, 11 | eqtr4di 2783 | . . . 4 ⊢ (𝑔 = 𝐺 → (dist‘𝑔) = 𝐷) |
13 | 9, 12 | sseq12d 4010 | . . 3 ⊢ (𝑔 = 𝐺 → (((norm‘𝑔) ∘ (-g‘𝑔)) ⊆ (dist‘𝑔) ↔ (𝑁 ∘ − ) ⊆ 𝐷)) |
14 | df-ngp 24536 | . . 3 ⊢ NrmGrp = {𝑔 ∈ (Grp ∩ MetSp) ∣ ((norm‘𝑔) ∘ (-g‘𝑔)) ⊆ (dist‘𝑔)} | |
15 | 13, 14 | elrab2 3682 | . 2 ⊢ (𝐺 ∈ NrmGrp ↔ (𝐺 ∈ (Grp ∩ MetSp) ∧ (𝑁 ∘ − ) ⊆ 𝐷)) |
16 | df-3an 1086 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp ∧ (𝑁 ∘ − ) ⊆ 𝐷) ↔ ((𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp) ∧ (𝑁 ∘ − ) ⊆ 𝐷)) | |
17 | 2, 15, 16 | 3bitr4i 302 | 1 ⊢ (𝐺 ∈ NrmGrp ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp ∧ (𝑁 ∘ − ) ⊆ 𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 394 ∧ w3a 1084 = wceq 1533 ∈ wcel 2098 ∩ cin 3943 ⊆ wss 3944 ∘ ccom 5682 ‘cfv 6549 distcds 17245 Grpcgrp 18898 -gcsg 18900 MetSpcms 24268 normcnm 24529 NrmGrpcngp 24530 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2696 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-clab 2703 df-cleq 2717 df-clel 2802 df-rab 3419 df-v 3463 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4323 df-if 4531 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4910 df-br 5150 df-opab 5212 df-co 5687 df-iota 6501 df-fv 6557 df-ngp 24536 |
This theorem is referenced by: isngp2 24550 ngpgrp 24552 ngpms 24553 tngngp2 24613 cnngp 24740 zhmnrg 33696 |
Copyright terms: Public domain | W3C validator |