Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > isngp | Structured version Visualization version GIF version |
Description: The property of being a normed group. (Contributed by Mario Carneiro, 2-Oct-2015.) |
Ref | Expression |
---|---|
isngp.n | ⊢ 𝑁 = (norm‘𝐺) |
isngp.z | ⊢ − = (-g‘𝐺) |
isngp.d | ⊢ 𝐷 = (dist‘𝐺) |
Ref | Expression |
---|---|
isngp | ⊢ (𝐺 ∈ NrmGrp ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp ∧ (𝑁 ∘ − ) ⊆ 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elin 3899 | . . 3 ⊢ (𝐺 ∈ (Grp ∩ MetSp) ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp)) | |
2 | 1 | anbi1i 623 | . 2 ⊢ ((𝐺 ∈ (Grp ∩ MetSp) ∧ (𝑁 ∘ − ) ⊆ 𝐷) ↔ ((𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp) ∧ (𝑁 ∘ − ) ⊆ 𝐷)) |
3 | fveq2 6756 | . . . . . 6 ⊢ (𝑔 = 𝐺 → (norm‘𝑔) = (norm‘𝐺)) | |
4 | isngp.n | . . . . . 6 ⊢ 𝑁 = (norm‘𝐺) | |
5 | 3, 4 | eqtr4di 2797 | . . . . 5 ⊢ (𝑔 = 𝐺 → (norm‘𝑔) = 𝑁) |
6 | fveq2 6756 | . . . . . 6 ⊢ (𝑔 = 𝐺 → (-g‘𝑔) = (-g‘𝐺)) | |
7 | isngp.z | . . . . . 6 ⊢ − = (-g‘𝐺) | |
8 | 6, 7 | eqtr4di 2797 | . . . . 5 ⊢ (𝑔 = 𝐺 → (-g‘𝑔) = − ) |
9 | 5, 8 | coeq12d 5762 | . . . 4 ⊢ (𝑔 = 𝐺 → ((norm‘𝑔) ∘ (-g‘𝑔)) = (𝑁 ∘ − )) |
10 | fveq2 6756 | . . . . 5 ⊢ (𝑔 = 𝐺 → (dist‘𝑔) = (dist‘𝐺)) | |
11 | isngp.d | . . . . 5 ⊢ 𝐷 = (dist‘𝐺) | |
12 | 10, 11 | eqtr4di 2797 | . . . 4 ⊢ (𝑔 = 𝐺 → (dist‘𝑔) = 𝐷) |
13 | 9, 12 | sseq12d 3950 | . . 3 ⊢ (𝑔 = 𝐺 → (((norm‘𝑔) ∘ (-g‘𝑔)) ⊆ (dist‘𝑔) ↔ (𝑁 ∘ − ) ⊆ 𝐷)) |
14 | df-ngp 23645 | . . 3 ⊢ NrmGrp = {𝑔 ∈ (Grp ∩ MetSp) ∣ ((norm‘𝑔) ∘ (-g‘𝑔)) ⊆ (dist‘𝑔)} | |
15 | 13, 14 | elrab2 3620 | . 2 ⊢ (𝐺 ∈ NrmGrp ↔ (𝐺 ∈ (Grp ∩ MetSp) ∧ (𝑁 ∘ − ) ⊆ 𝐷)) |
16 | df-3an 1087 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp ∧ (𝑁 ∘ − ) ⊆ 𝐷) ↔ ((𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp) ∧ (𝑁 ∘ − ) ⊆ 𝐷)) | |
17 | 2, 15, 16 | 3bitr4i 302 | 1 ⊢ (𝐺 ∈ NrmGrp ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp ∧ (𝑁 ∘ − ) ⊆ 𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 ∩ cin 3882 ⊆ wss 3883 ∘ ccom 5584 ‘cfv 6418 distcds 16897 Grpcgrp 18492 -gcsg 18494 MetSpcms 23379 normcnm 23638 NrmGrpcngp 23639 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-co 5589 df-iota 6376 df-fv 6426 df-ngp 23645 |
This theorem is referenced by: isngp2 23659 ngpgrp 23661 ngpms 23662 tngngp2 23722 cnngp 23849 zhmnrg 31817 |
Copyright terms: Public domain | W3C validator |