Home | Metamath
Proof Explorer Theorem List (p. 245 of 466) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | Metamath Proof Explorer
(1-29289) |
Hilbert Space Explorer
(29290-30812) |
Users' Mathboxes
(30813-46532) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | tchnmfval 24401* | The norm of a subcomplex pre-Hilbert space augmented with norm. (Contributed by Mario Carneiro, 8-Oct-2015.) |
⊢ 𝐺 = (toℂPreHil‘𝑊) & ⊢ 𝑁 = (norm‘𝐺) & ⊢ 𝑉 = (Base‘𝑊) & ⊢ , = (·𝑖‘𝑊) ⇒ ⊢ (𝑊 ∈ Grp → 𝑁 = (𝑥 ∈ 𝑉 ↦ (√‘(𝑥 , 𝑥)))) | ||
Theorem | tcphnmval 24402 | The norm of a subcomplex pre-Hilbert space augmented with norm. (Contributed by Mario Carneiro, 8-Oct-2015.) |
⊢ 𝐺 = (toℂPreHil‘𝑊) & ⊢ 𝑁 = (norm‘𝐺) & ⊢ 𝑉 = (Base‘𝑊) & ⊢ , = (·𝑖‘𝑊) ⇒ ⊢ ((𝑊 ∈ Grp ∧ 𝑋 ∈ 𝑉) → (𝑁‘𝑋) = (√‘(𝑋 , 𝑋))) | ||
Theorem | cphtcphnm 24403 | The norm of a norm-augmented subcomplex pre-Hilbert space is the same as the original norm on it. (Contributed by Mario Carneiro, 11-Oct-2015.) |
⊢ 𝐺 = (toℂPreHil‘𝑊) & ⊢ 𝑁 = (norm‘𝑊) ⇒ ⊢ (𝑊 ∈ ℂPreHil → 𝑁 = (norm‘𝐺)) | ||
Theorem | tcphds 24404 | The distance of a pre-Hilbert space augmented with norm. (Contributed by Thierry Arnoux, 30-Jun-2019.) |
⊢ 𝐺 = (toℂPreHil‘𝑊) & ⊢ 𝑁 = (norm‘𝐺) & ⊢ − = (-g‘𝑊) ⇒ ⊢ (𝑊 ∈ Grp → (𝑁 ∘ − ) = (dist‘𝐺)) | ||
Theorem | phclm 24405 | A pre-Hilbert space whose field of scalars is a restriction of the field of complex numbers is a subcomplex module. TODO: redundant hypotheses. (Contributed by Mario Carneiro, 16-Oct-2015.) |
⊢ 𝐺 = (toℂPreHil‘𝑊) & ⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ PreHil) & ⊢ (𝜑 → 𝐹 = (ℂfld ↾s 𝐾)) ⇒ ⊢ (𝜑 → 𝑊 ∈ ℂMod) | ||
Theorem | tcphcphlem3 24406 | Lemma for tcphcph 24410: real closure of an inner product of a vector with itself. (Contributed by Mario Carneiro, 10-Oct-2015.) |
⊢ 𝐺 = (toℂPreHil‘𝑊) & ⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ PreHil) & ⊢ (𝜑 → 𝐹 = (ℂfld ↾s 𝐾)) & ⊢ , = (·𝑖‘𝑊) ⇒ ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑉) → (𝑋 , 𝑋) ∈ ℝ) | ||
Theorem | ipcau2 24407* | The Cauchy-Schwarz inequality for a subcomplex pre-Hilbert space built from a pre-Hilbert space with certain properties. The main theorem is ipcau 24411. (Contributed by Mario Carneiro, 11-Oct-2015.) |
⊢ 𝐺 = (toℂPreHil‘𝑊) & ⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ PreHil) & ⊢ (𝜑 → 𝐹 = (ℂfld ↾s 𝐾)) & ⊢ , = (·𝑖‘𝑊) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐾 ∧ 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥)) → (√‘𝑥) ∈ 𝐾) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉) → 0 ≤ (𝑥 , 𝑥)) & ⊢ 𝐾 = (Base‘𝐹) & ⊢ 𝑁 = (norm‘𝐺) & ⊢ 𝐶 = ((𝑌 , 𝑋) / (𝑌 , 𝑌)) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝑌 ∈ 𝑉) ⇒ ⊢ (𝜑 → (abs‘(𝑋 , 𝑌)) ≤ ((𝑁‘𝑋) · (𝑁‘𝑌))) | ||
Theorem | tcphcphlem1 24408* | Lemma for tcphcph 24410: the triangle inequality. (Contributed by Mario Carneiro, 8-Oct-2015.) |
⊢ 𝐺 = (toℂPreHil‘𝑊) & ⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ PreHil) & ⊢ (𝜑 → 𝐹 = (ℂfld ↾s 𝐾)) & ⊢ , = (·𝑖‘𝑊) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐾 ∧ 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥)) → (√‘𝑥) ∈ 𝐾) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉) → 0 ≤ (𝑥 , 𝑥)) & ⊢ 𝐾 = (Base‘𝐹) & ⊢ − = (-g‘𝑊) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝑌 ∈ 𝑉) ⇒ ⊢ (𝜑 → (√‘((𝑋 − 𝑌) , (𝑋 − 𝑌))) ≤ ((√‘(𝑋 , 𝑋)) + (√‘(𝑌 , 𝑌)))) | ||
Theorem | tcphcphlem2 24409* | Lemma for tcphcph 24410: homogeneity. (Contributed by Mario Carneiro, 8-Oct-2015.) |
⊢ 𝐺 = (toℂPreHil‘𝑊) & ⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ PreHil) & ⊢ (𝜑 → 𝐹 = (ℂfld ↾s 𝐾)) & ⊢ , = (·𝑖‘𝑊) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐾 ∧ 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥)) → (√‘𝑥) ∈ 𝐾) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉) → 0 ≤ (𝑥 , 𝑥)) & ⊢ 𝐾 = (Base‘𝐹) & ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ (𝜑 → 𝑋 ∈ 𝐾) & ⊢ (𝜑 → 𝑌 ∈ 𝑉) ⇒ ⊢ (𝜑 → (√‘((𝑋 · 𝑌) , (𝑋 · 𝑌))) = ((abs‘𝑋) · (√‘(𝑌 , 𝑌)))) | ||
Theorem | tcphcph 24410* | The standard definition of a norm turns any pre-Hilbert space over a subfield of ℂfld closed under square roots of nonnegative reals into a subcomplex pre-Hilbert space (which allows access to a norm, metric, and topology). (Contributed by Mario Carneiro, 11-Oct-2015.) |
⊢ 𝐺 = (toℂPreHil‘𝑊) & ⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ PreHil) & ⊢ (𝜑 → 𝐹 = (ℂfld ↾s 𝐾)) & ⊢ , = (·𝑖‘𝑊) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐾 ∧ 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥)) → (√‘𝑥) ∈ 𝐾) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉) → 0 ≤ (𝑥 , 𝑥)) ⇒ ⊢ (𝜑 → 𝐺 ∈ ℂPreHil) | ||
Theorem | ipcau 24411 | The Cauchy-Schwarz inequality for a subcomplex pre-Hilbert space. Part of Lemma 3.2-1(a) of [Kreyszig] p. 137. This is Metamath 100 proof #78. (Contributed by NM, 12-Jan-2008.) (Revised by Mario Carneiro, 11-Oct-2015.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ , = (·𝑖‘𝑊) & ⊢ 𝑁 = (norm‘𝑊) ⇒ ⊢ ((𝑊 ∈ ℂPreHil ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → (abs‘(𝑋 , 𝑌)) ≤ ((𝑁‘𝑋) · (𝑁‘𝑌))) | ||
Theorem | nmparlem 24412 | Lemma for nmpar 24413. (Contributed by Mario Carneiro, 7-Oct-2015.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ + = (+g‘𝑊) & ⊢ − = (-g‘𝑊) & ⊢ 𝑁 = (norm‘𝑊) & ⊢ , = (·𝑖‘𝑊) & ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝐹) & ⊢ (𝜑 → 𝑊 ∈ ℂPreHil) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ 𝑉) ⇒ ⊢ (𝜑 → (((𝑁‘(𝐴 + 𝐵))↑2) + ((𝑁‘(𝐴 − 𝐵))↑2)) = (2 · (((𝑁‘𝐴)↑2) + ((𝑁‘𝐵)↑2)))) | ||
Theorem | nmpar 24413 | A subcomplex pre-Hilbert space satisfies the parallelogram law. (Contributed by Mario Carneiro, 7-Oct-2015.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ + = (+g‘𝑊) & ⊢ − = (-g‘𝑊) & ⊢ 𝑁 = (norm‘𝑊) ⇒ ⊢ ((𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → (((𝑁‘(𝐴 + 𝐵))↑2) + ((𝑁‘(𝐴 − 𝐵))↑2)) = (2 · (((𝑁‘𝐴)↑2) + ((𝑁‘𝐵)↑2)))) | ||
Theorem | cphipval2 24414 | Value of the inner product expressed by the norm defined by it. (Contributed by NM, 31-Jan-2007.) (Revised by AV, 18-Oct-2021.) |
⊢ 𝑋 = (Base‘𝑊) & ⊢ + = (+g‘𝑊) & ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ 𝑁 = (norm‘𝑊) & ⊢ , = (·𝑖‘𝑊) & ⊢ − = (-g‘𝑊) & ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝐹) ⇒ ⊢ (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴 , 𝐵) = (((((𝑁‘(𝐴 + 𝐵))↑2) − ((𝑁‘(𝐴 − 𝐵))↑2)) + (i · (((𝑁‘(𝐴 + (i · 𝐵)))↑2) − ((𝑁‘(𝐴 − (i · 𝐵)))↑2)))) / 4)) | ||
Theorem | 4cphipval2 24415 | Four times the inner product value cphipval2 24414. (Contributed by NM, 1-Feb-2008.) (Revised by AV, 18-Oct-2021.) |
⊢ 𝑋 = (Base‘𝑊) & ⊢ + = (+g‘𝑊) & ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ 𝑁 = (norm‘𝑊) & ⊢ , = (·𝑖‘𝑊) & ⊢ − = (-g‘𝑊) & ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝐹) ⇒ ⊢ (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (4 · (𝐴 , 𝐵)) = ((((𝑁‘(𝐴 + 𝐵))↑2) − ((𝑁‘(𝐴 − 𝐵))↑2)) + (i · (((𝑁‘(𝐴 + (i · 𝐵)))↑2) − ((𝑁‘(𝐴 − (i · 𝐵)))↑2))))) | ||
Theorem | cphipval 24416* | Value of the inner product expressed by a sum of terms with the norm defined by the inner product. Equation 6.45 of [Ponnusamy] p. 361. (Contributed by NM, 31-Jan-2007.) (Revised by AV, 18-Oct-2021.) |
⊢ 𝑋 = (Base‘𝑊) & ⊢ + = (+g‘𝑊) & ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ 𝑁 = (norm‘𝑊) & ⊢ , = (·𝑖‘𝑊) & ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝐹) ⇒ ⊢ (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴 , 𝐵) = (Σ𝑘 ∈ (1...4)((i↑𝑘) · ((𝑁‘(𝐴 + ((i↑𝑘) · 𝐵)))↑2)) / 4)) | ||
Theorem | ipcnlem2 24417 | The inner product operation of a subcomplex pre-Hilbert space is continuous. (Contributed by Mario Carneiro, 13-Oct-2015.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ , = (·𝑖‘𝑊) & ⊢ 𝐷 = (dist‘𝑊) & ⊢ 𝑁 = (norm‘𝑊) & ⊢ 𝑇 = ((𝑅 / 2) / ((𝑁‘𝐴) + 1)) & ⊢ 𝑈 = ((𝑅 / 2) / ((𝑁‘𝐵) + 𝑇)) & ⊢ (𝜑 → 𝑊 ∈ ℂPreHil) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → 𝑅 ∈ ℝ+) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝑌 ∈ 𝑉) & ⊢ (𝜑 → (𝐴𝐷𝑋) < 𝑈) & ⊢ (𝜑 → (𝐵𝐷𝑌) < 𝑇) ⇒ ⊢ (𝜑 → (abs‘((𝐴 , 𝐵) − (𝑋 , 𝑌))) < 𝑅) | ||
Theorem | ipcnlem1 24418* | The inner product operation of a subcomplex pre-Hilbert space is continuous. (Contributed by Mario Carneiro, 13-Oct-2015.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ , = (·𝑖‘𝑊) & ⊢ 𝐷 = (dist‘𝑊) & ⊢ 𝑁 = (norm‘𝑊) & ⊢ 𝑇 = ((𝑅 / 2) / ((𝑁‘𝐴) + 1)) & ⊢ 𝑈 = ((𝑅 / 2) / ((𝑁‘𝐵) + 𝑇)) & ⊢ (𝜑 → 𝑊 ∈ ℂPreHil) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → 𝑅 ∈ ℝ+) ⇒ ⊢ (𝜑 → ∃𝑟 ∈ ℝ+ ∀𝑥 ∈ 𝑉 ∀𝑦 ∈ 𝑉 (((𝐴𝐷𝑥) < 𝑟 ∧ (𝐵𝐷𝑦) < 𝑟) → (abs‘((𝐴 , 𝐵) − (𝑥 , 𝑦))) < 𝑅)) | ||
Theorem | ipcn 24419 | The inner product operation of a subcomplex pre-Hilbert space is continuous. (Contributed by Mario Carneiro, 13-Oct-2015.) |
⊢ , = (·if‘𝑊) & ⊢ 𝐽 = (TopOpen‘𝑊) & ⊢ 𝐾 = (TopOpen‘ℂfld) ⇒ ⊢ (𝑊 ∈ ℂPreHil → , ∈ ((𝐽 ×t 𝐽) Cn 𝐾)) | ||
Theorem | cnmpt1ip 24420* | Continuity of inner product; analogue of cnmpt12f 22826 which cannot be used directly because ·𝑖 is not a function. (Contributed by Mario Carneiro, 13-Oct-2015.) |
⊢ 𝐽 = (TopOpen‘𝑊) & ⊢ 𝐶 = (TopOpen‘ℂfld) & ⊢ , = (·𝑖‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ ℂPreHil) & ⊢ (𝜑 → 𝐾 ∈ (TopOn‘𝑋)) & ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐴) ∈ (𝐾 Cn 𝐽)) & ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐵) ∈ (𝐾 Cn 𝐽)) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ (𝐴 , 𝐵)) ∈ (𝐾 Cn 𝐶)) | ||
Theorem | cnmpt2ip 24421* | Continuity of inner product; analogue of cnmpt22f 22835 which cannot be used directly because ·𝑖 is not a function. (Contributed by Mario Carneiro, 13-Oct-2015.) |
⊢ 𝐽 = (TopOpen‘𝑊) & ⊢ 𝐶 = (TopOpen‘ℂfld) & ⊢ , = (·𝑖‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ ℂPreHil) & ⊢ (𝜑 → 𝐾 ∈ (TopOn‘𝑋)) & ⊢ (𝜑 → 𝐿 ∈ (TopOn‘𝑌)) & ⊢ (𝜑 → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐴) ∈ ((𝐾 ×t 𝐿) Cn 𝐽)) & ⊢ (𝜑 → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐵) ∈ ((𝐾 ×t 𝐿) Cn 𝐽)) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ (𝐴 , 𝐵)) ∈ ((𝐾 ×t 𝐿) Cn 𝐶)) | ||
Theorem | csscld 24422 | A "closed subspace" in a subcomplex pre-Hilbert space is actually closed in the topology induced by the norm, thus justifying the terminology "closed subspace". (Contributed by Mario Carneiro, 13-Oct-2015.) |
⊢ 𝐶 = (ClSubSp‘𝑊) & ⊢ 𝐽 = (TopOpen‘𝑊) ⇒ ⊢ ((𝑊 ∈ ℂPreHil ∧ 𝑆 ∈ 𝐶) → 𝑆 ∈ (Clsd‘𝐽)) | ||
Theorem | clsocv 24423 | The orthogonal complement of the closure of a subset is the same as the orthogonal complement of the subset itself. (Contributed by Mario Carneiro, 13-Oct-2015.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝑂 = (ocv‘𝑊) & ⊢ 𝐽 = (TopOpen‘𝑊) ⇒ ⊢ ((𝑊 ∈ ℂPreHil ∧ 𝑆 ⊆ 𝑉) → (𝑂‘((cls‘𝐽)‘𝑆)) = (𝑂‘𝑆)) | ||
Theorem | cphsscph 24424 | A subspace of a subcomplex pre-Hilbert space is a subcomplex pre-Hilbert space. (Contributed by NM, 1-Feb-2008.) (Revised by AV, 25-Sep-2022.) |
⊢ 𝑋 = (𝑊 ↾s 𝑈) & ⊢ 𝑆 = (LSubSp‘𝑊) ⇒ ⊢ ((𝑊 ∈ ℂPreHil ∧ 𝑈 ∈ 𝑆) → 𝑋 ∈ ℂPreHil) | ||
Syntax | ccfil 24425 | Extend class notation with the class of Cauchy filters. |
class CauFil | ||
Syntax | ccau 24426 | Extend class notation with the class of Cauchy sequences. |
class Cau | ||
Syntax | ccmet 24427 | Extend class notation with the class of complete metrics. |
class CMet | ||
Definition | df-cfil 24428* | Define the set of Cauchy filters on a given extended metric space. A Cauchy filter is a filter on the set such that for every 0 < 𝑥 there is an element of the filter whose metric diameter is less than 𝑥. (Contributed by Mario Carneiro, 13-Oct-2015.) |
⊢ CauFil = (𝑑 ∈ ∪ ran ∞Met ↦ {𝑓 ∈ (Fil‘dom dom 𝑑) ∣ ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ 𝑓 (𝑑 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥)}) | ||
Definition | df-cau 24429* | Define the set of Cauchy sequences on a given extended metric space. (Contributed by NM, 8-Sep-2006.) |
⊢ Cau = (𝑑 ∈ ∪ ran ∞Met ↦ {𝑓 ∈ (dom dom 𝑑 ↑pm ℂ) ∣ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ ℤ (𝑓 ↾ (ℤ≥‘𝑗)):(ℤ≥‘𝑗)⟶((𝑓‘𝑗)(ball‘𝑑)𝑥)}) | ||
Definition | df-cmet 24430* | Define the set of complete metrics on a given set. (Contributed by Mario Carneiro, 1-May-2014.) |
⊢ CMet = (𝑥 ∈ V ↦ {𝑑 ∈ (Met‘𝑥) ∣ ∀𝑓 ∈ (CauFil‘𝑑)((MetOpen‘𝑑) fLim 𝑓) ≠ ∅}) | ||
Theorem | lmmbr 24431* | Express the binary relation "sequence 𝐹 converges to point 𝑃 " in a metric space. Definition 1.4-1 of [Kreyszig] p. 25. The condition 𝐹 ⊆ (ℂ × 𝑋) allows us to use objects more general than sequences when convenient; see the comment in df-lm 22389. (Contributed by NM, 7-Dec-2006.) (Revised by Mario Carneiro, 1-May-2014.) |
⊢ 𝐽 = (MetOpen‘𝐷) & ⊢ (𝜑 → 𝐷 ∈ (∞Met‘𝑋)) ⇒ ⊢ (𝜑 → (𝐹(⇝𝑡‘𝐽)𝑃 ↔ (𝐹 ∈ (𝑋 ↑pm ℂ) ∧ 𝑃 ∈ 𝑋 ∧ ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ ran ℤ≥(𝐹 ↾ 𝑦):𝑦⟶(𝑃(ball‘𝐷)𝑥)))) | ||
Theorem | lmmbr2 24432* | Express the binary relation "sequence 𝐹 converges to point 𝑃 " in a metric space. Definition 1.4-1 of [Kreyszig] p. 25. The condition 𝐹 ⊆ (ℂ × 𝑋) allows us to use objects more general than sequences when convenient; see the comment in df-lm 22389. (Contributed by NM, 7-Dec-2006.) (Revised by Mario Carneiro, 1-May-2014.) |
⊢ 𝐽 = (MetOpen‘𝐷) & ⊢ (𝜑 → 𝐷 ∈ (∞Met‘𝑋)) ⇒ ⊢ (𝜑 → (𝐹(⇝𝑡‘𝐽)𝑃 ↔ (𝐹 ∈ (𝑋 ↑pm ℂ) ∧ 𝑃 ∈ 𝑋 ∧ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋 ∧ ((𝐹‘𝑘)𝐷𝑃) < 𝑥)))) | ||
Theorem | lmmbr3 24433* | Express the binary relation "sequence 𝐹 converges to point 𝑃 " in a metric space using an arbitrary upper set of integers. (Contributed by NM, 19-Dec-2006.) (Revised by Mario Carneiro, 1-May-2014.) |
⊢ 𝐽 = (MetOpen‘𝐷) & ⊢ (𝜑 → 𝐷 ∈ (∞Met‘𝑋)) & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) ⇒ ⊢ (𝜑 → (𝐹(⇝𝑡‘𝐽)𝑃 ↔ (𝐹 ∈ (𝑋 ↑pm ℂ) ∧ 𝑃 ∈ 𝑋 ∧ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋 ∧ ((𝐹‘𝑘)𝐷𝑃) < 𝑥)))) | ||
Theorem | lmmcvg 24434* | Convergence property of a converging sequence. (Contributed by NM, 1-Jun-2007.) (Revised by Mario Carneiro, 1-May-2014.) |
⊢ 𝐽 = (MetOpen‘𝐷) & ⊢ (𝜑 → 𝐷 ∈ (∞Met‘𝑋)) & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = 𝐴) & ⊢ (𝜑 → 𝐹(⇝𝑡‘𝐽)𝑃) & ⊢ (𝜑 → 𝑅 ∈ ℝ+) ⇒ ⊢ (𝜑 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐴 ∈ 𝑋 ∧ (𝐴𝐷𝑃) < 𝑅)) | ||
Theorem | lmmbrf 24435* | Express the binary relation "sequence 𝐹 converges to point 𝑃 " in a metric space using an arbitrary upper set of integers. This version of lmmbr2 24432 presupposes that 𝐹 is a function. (Contributed by NM, 20-Jul-2007.) (Revised by Mario Carneiro, 1-May-2014.) |
⊢ 𝐽 = (MetOpen‘𝐷) & ⊢ (𝜑 → 𝐷 ∈ (∞Met‘𝑋)) & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = 𝐴) & ⊢ (𝜑 → 𝐹:𝑍⟶𝑋) ⇒ ⊢ (𝜑 → (𝐹(⇝𝑡‘𝐽)𝑃 ↔ (𝑃 ∈ 𝑋 ∧ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐴𝐷𝑃) < 𝑥))) | ||
Theorem | lmnn 24436* | A condition that implies convergence. (Contributed by NM, 8-Jun-2007.) (Revised by Mario Carneiro, 1-May-2014.) |
⊢ 𝐽 = (MetOpen‘𝐷) & ⊢ (𝜑 → 𝐷 ∈ (∞Met‘𝑋)) & ⊢ (𝜑 → 𝑃 ∈ 𝑋) & ⊢ (𝜑 → 𝐹:ℕ⟶𝑋) & ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((𝐹‘𝑘)𝐷𝑃) < (1 / 𝑘)) ⇒ ⊢ (𝜑 → 𝐹(⇝𝑡‘𝐽)𝑃) | ||
Theorem | cfilfval 24437* | The set of Cauchy filters on a metric space. (Contributed by Mario Carneiro, 13-Oct-2015.) |
⊢ (𝐷 ∈ (∞Met‘𝑋) → (CauFil‘𝐷) = {𝑓 ∈ (Fil‘𝑋) ∣ ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ 𝑓 (𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥)}) | ||
Theorem | iscfil 24438* | The property of being a Cauchy filter. (Contributed by Mario Carneiro, 13-Oct-2015.) |
⊢ (𝐷 ∈ (∞Met‘𝑋) → (𝐹 ∈ (CauFil‘𝐷) ↔ (𝐹 ∈ (Fil‘𝑋) ∧ ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ 𝐹 (𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥)))) | ||
Theorem | iscfil2 24439* | The property of being a Cauchy filter. (Contributed by Mario Carneiro, 13-Oct-2015.) |
⊢ (𝐷 ∈ (∞Met‘𝑋) → (𝐹 ∈ (CauFil‘𝐷) ↔ (𝐹 ∈ (Fil‘𝑋) ∧ ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ 𝐹 ∀𝑧 ∈ 𝑦 ∀𝑤 ∈ 𝑦 (𝑧𝐷𝑤) < 𝑥))) | ||
Theorem | cfilfil 24440 | A Cauchy filter is a filter. (Contributed by Mario Carneiro, 13-Oct-2015.) |
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (CauFil‘𝐷)) → 𝐹 ∈ (Fil‘𝑋)) | ||
Theorem | cfili 24441* | Property of a Cauchy filter. (Contributed by Mario Carneiro, 13-Oct-2015.) |
⊢ ((𝐹 ∈ (CauFil‘𝐷) ∧ 𝑅 ∈ ℝ+) → ∃𝑥 ∈ 𝐹 ∀𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 (𝑦𝐷𝑧) < 𝑅) | ||
Theorem | cfil3i 24442* | A Cauchy filter contains balls of any pre-chosen size. (Contributed by Mario Carneiro, 15-Oct-2015.) |
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (CauFil‘𝐷) ∧ 𝑅 ∈ ℝ+) → ∃𝑥 ∈ 𝑋 (𝑥(ball‘𝐷)𝑅) ∈ 𝐹) | ||
Theorem | cfilss 24443 | A filter finer than a Cauchy filter is Cauchy. (Contributed by Mario Carneiro, 13-Oct-2015.) |
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (CauFil‘𝐷)) ∧ (𝐺 ∈ (Fil‘𝑋) ∧ 𝐹 ⊆ 𝐺)) → 𝐺 ∈ (CauFil‘𝐷)) | ||
Theorem | fgcfil 24444* | The Cauchy filter condition for a filter base. (Contributed by Mario Carneiro, 13-Oct-2015.) |
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑋)) → ((𝑋filGen𝐵) ∈ (CauFil‘𝐷) ↔ ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝑦 ∀𝑤 ∈ 𝑦 (𝑧𝐷𝑤) < 𝑥)) | ||
Theorem | fmcfil 24445* | The Cauchy filter condition for a filter map. (Contributed by Mario Carneiro, 13-Oct-2015.) |
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌⟶𝑋) → (((𝑋 FilMap 𝐹)‘𝐵) ∈ (CauFil‘𝐷) ↔ ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝑦 ∀𝑤 ∈ 𝑦 ((𝐹‘𝑧)𝐷(𝐹‘𝑤)) < 𝑥)) | ||
Theorem | iscfil3 24446* | A filter is Cauchy iff it contains a ball of any chosen size. (Contributed by Mario Carneiro, 15-Oct-2015.) |
⊢ (𝐷 ∈ (∞Met‘𝑋) → (𝐹 ∈ (CauFil‘𝐷) ↔ (𝐹 ∈ (Fil‘𝑋) ∧ ∀𝑟 ∈ ℝ+ ∃𝑥 ∈ 𝑋 (𝑥(ball‘𝐷)𝑟) ∈ 𝐹))) | ||
Theorem | cfilfcls 24447 | Similar to ultrafilters (uffclsflim 23191), the cluster points and limit points of a Cauchy filter coincide. (Contributed by Mario Carneiro, 15-Oct-2015.) |
⊢ 𝐽 = (MetOpen‘𝐷) & ⊢ 𝑋 = dom dom 𝐷 ⇒ ⊢ (𝐹 ∈ (CauFil‘𝐷) → (𝐽 fClus 𝐹) = (𝐽 fLim 𝐹)) | ||
Theorem | caufval 24448* | The set of Cauchy sequences on a metric space. (Contributed by NM, 8-Sep-2006.) (Revised by Mario Carneiro, 5-Sep-2015.) |
⊢ (𝐷 ∈ (∞Met‘𝑋) → (Cau‘𝐷) = {𝑓 ∈ (𝑋 ↑pm ℂ) ∣ ∀𝑥 ∈ ℝ+ ∃𝑘 ∈ ℤ (𝑓 ↾ (ℤ≥‘𝑘)):(ℤ≥‘𝑘)⟶((𝑓‘𝑘)(ball‘𝐷)𝑥)}) | ||
Theorem | iscau 24449* | Express the property "𝐹 is a Cauchy sequence of metric 𝐷". Part of Definition 1.4-3 of [Kreyszig] p. 28. The condition 𝐹 ⊆ (ℂ × 𝑋) allows us to use objects more general than sequences when convenient; see the comment in df-lm 22389. (Contributed by NM, 7-Dec-2006.) (Revised by Mario Carneiro, 14-Nov-2013.) |
⊢ (𝐷 ∈ (∞Met‘𝑋) → (𝐹 ∈ (Cau‘𝐷) ↔ (𝐹 ∈ (𝑋 ↑pm ℂ) ∧ ∀𝑥 ∈ ℝ+ ∃𝑘 ∈ ℤ (𝐹 ↾ (ℤ≥‘𝑘)):(ℤ≥‘𝑘)⟶((𝐹‘𝑘)(ball‘𝐷)𝑥)))) | ||
Theorem | iscau2 24450* | Express the property "𝐹 is a Cauchy sequence of metric 𝐷 " using an arbitrary upper set of integers. (Contributed by NM, 19-Dec-2006.) (Revised by Mario Carneiro, 14-Nov-2013.) |
⊢ (𝐷 ∈ (∞Met‘𝑋) → (𝐹 ∈ (Cau‘𝐷) ↔ (𝐹 ∈ (𝑋 ↑pm ℂ) ∧ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋 ∧ ((𝐹‘𝑘)𝐷(𝐹‘𝑗)) < 𝑥)))) | ||
Theorem | iscau3 24451* | Express the Cauchy sequence property in the more conventional three-quantifier form. (Contributed by NM, 19-Dec-2006.) (Revised by Mario Carneiro, 14-Nov-2013.) |
⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝐷 ∈ (∞Met‘𝑋)) & ⊢ (𝜑 → 𝑀 ∈ ℤ) ⇒ ⊢ (𝜑 → (𝐹 ∈ (Cau‘𝐷) ↔ (𝐹 ∈ (𝑋 ↑pm ℂ) ∧ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋 ∧ ∀𝑚 ∈ (ℤ≥‘𝑘)((𝐹‘𝑘)𝐷(𝐹‘𝑚)) < 𝑥)))) | ||
Theorem | iscau4 24452* | Express the property "𝐹 is a Cauchy sequence of metric 𝐷 " using an arbitrary upper set of integers. (Contributed by NM, 19-Dec-2006.) (Revised by Mario Carneiro, 23-Dec-2013.) |
⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝐷 ∈ (∞Met‘𝑋)) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = 𝐴) & ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (𝐹‘𝑗) = 𝐵) ⇒ ⊢ (𝜑 → (𝐹 ∈ (Cau‘𝐷) ↔ (𝐹 ∈ (𝑋 ↑pm ℂ) ∧ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ 𝐴 ∈ 𝑋 ∧ (𝐴𝐷𝐵) < 𝑥)))) | ||
Theorem | iscauf 24453* | Express the property "𝐹 is a Cauchy sequence of metric 𝐷 " presupposing 𝐹 is a function. (Contributed by NM, 24-Jul-2007.) (Revised by Mario Carneiro, 23-Dec-2013.) |
⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝐷 ∈ (∞Met‘𝑋)) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = 𝐴) & ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (𝐹‘𝑗) = 𝐵) & ⊢ (𝜑 → 𝐹:𝑍⟶𝑋) ⇒ ⊢ (𝜑 → (𝐹 ∈ (Cau‘𝐷) ↔ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐵𝐷𝐴) < 𝑥)) | ||
Theorem | caun0 24454 | A metric with a Cauchy sequence cannot be empty. (Contributed by NM, 19-Dec-2006.) (Revised by Mario Carneiro, 24-Dec-2013.) |
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (Cau‘𝐷)) → 𝑋 ≠ ∅) | ||
Theorem | caufpm 24455 | Inclusion of a Cauchy sequence, under our definition. (Contributed by NM, 7-Dec-2006.) (Revised by Mario Carneiro, 24-Dec-2013.) |
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (Cau‘𝐷)) → 𝐹 ∈ (𝑋 ↑pm ℂ)) | ||
Theorem | caucfil 24456 | A Cauchy sequence predicate can be expressed in terms of the Cauchy filter predicate for a suitably chosen filter. (Contributed by Mario Carneiro, 13-Oct-2015.) |
⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ 𝐿 = ((𝑋 FilMap 𝐹)‘(ℤ≥ “ 𝑍)) ⇒ ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶𝑋) → (𝐹 ∈ (Cau‘𝐷) ↔ 𝐿 ∈ (CauFil‘𝐷))) | ||
Theorem | iscmet 24457* | The property "𝐷 is a complete metric." meaning all Cauchy filters converge to a point in the space. (Contributed by Mario Carneiro, 1-May-2014.) (Revised by Mario Carneiro, 13-Oct-2015.) |
⊢ 𝐽 = (MetOpen‘𝐷) ⇒ ⊢ (𝐷 ∈ (CMet‘𝑋) ↔ (𝐷 ∈ (Met‘𝑋) ∧ ∀𝑓 ∈ (CauFil‘𝐷)(𝐽 fLim 𝑓) ≠ ∅)) | ||
Theorem | cmetcvg 24458 | The convergence of a Cauchy filter in a complete metric space. (Contributed by Mario Carneiro, 14-Oct-2015.) |
⊢ 𝐽 = (MetOpen‘𝐷) ⇒ ⊢ ((𝐷 ∈ (CMet‘𝑋) ∧ 𝐹 ∈ (CauFil‘𝐷)) → (𝐽 fLim 𝐹) ≠ ∅) | ||
Theorem | cmetmet 24459 | A complete metric space is a metric space. (Contributed by NM, 18-Dec-2006.) (Revised by Mario Carneiro, 29-Jan-2014.) |
⊢ (𝐷 ∈ (CMet‘𝑋) → 𝐷 ∈ (Met‘𝑋)) | ||
Theorem | cmetmeti 24460 | A complete metric space is a metric space. (Contributed by NM, 26-Oct-2007.) |
⊢ 𝐷 ∈ (CMet‘𝑋) ⇒ ⊢ 𝐷 ∈ (Met‘𝑋) | ||
Theorem | cmetcaulem 24461* | Lemma for cmetcau 24462. (Contributed by Mario Carneiro, 14-Oct-2015.) |
⊢ 𝐽 = (MetOpen‘𝐷) & ⊢ (𝜑 → 𝐷 ∈ (CMet‘𝑋)) & ⊢ (𝜑 → 𝑃 ∈ 𝑋) & ⊢ (𝜑 → 𝐹 ∈ (Cau‘𝐷)) & ⊢ 𝐺 = (𝑥 ∈ ℕ ↦ if(𝑥 ∈ dom 𝐹, (𝐹‘𝑥), 𝑃)) ⇒ ⊢ (𝜑 → 𝐹 ∈ dom (⇝𝑡‘𝐽)) | ||
Theorem | cmetcau 24462 | The convergence of a Cauchy sequence in a complete metric space. (Contributed by NM, 19-Dec-2006.) (Revised by Mario Carneiro, 14-Oct-2015.) |
⊢ 𝐽 = (MetOpen‘𝐷) ⇒ ⊢ ((𝐷 ∈ (CMet‘𝑋) ∧ 𝐹 ∈ (Cau‘𝐷)) → 𝐹 ∈ dom (⇝𝑡‘𝐽)) | ||
Theorem | iscmet3lem3 24463* | Lemma for iscmet3 24466. (Contributed by Mario Carneiro, 15-Oct-2015.) |
⊢ 𝑍 = (ℤ≥‘𝑀) ⇒ ⊢ ((𝑀 ∈ ℤ ∧ 𝑅 ∈ ℝ+) → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)((1 / 2)↑𝑘) < 𝑅) | ||
Theorem | iscmet3lem1 24464* | Lemma for iscmet3 24466. (Contributed by Mario Carneiro, 15-Oct-2015.) |
⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ 𝐽 = (MetOpen‘𝐷) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐷 ∈ (Met‘𝑋)) & ⊢ (𝜑 → 𝐹:𝑍⟶𝑋) & ⊢ (𝜑 → ∀𝑘 ∈ ℤ ∀𝑢 ∈ (𝑆‘𝑘)∀𝑣 ∈ (𝑆‘𝑘)(𝑢𝐷𝑣) < ((1 / 2)↑𝑘)) & ⊢ (𝜑 → ∀𝑘 ∈ 𝑍 ∀𝑛 ∈ (𝑀...𝑘)(𝐹‘𝑘) ∈ (𝑆‘𝑛)) ⇒ ⊢ (𝜑 → 𝐹 ∈ (Cau‘𝐷)) | ||
Theorem | iscmet3lem2 24465* | Lemma for iscmet3 24466. (Contributed by Mario Carneiro, 15-Oct-2015.) |
⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ 𝐽 = (MetOpen‘𝐷) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐷 ∈ (Met‘𝑋)) & ⊢ (𝜑 → 𝐹:𝑍⟶𝑋) & ⊢ (𝜑 → ∀𝑘 ∈ ℤ ∀𝑢 ∈ (𝑆‘𝑘)∀𝑣 ∈ (𝑆‘𝑘)(𝑢𝐷𝑣) < ((1 / 2)↑𝑘)) & ⊢ (𝜑 → ∀𝑘 ∈ 𝑍 ∀𝑛 ∈ (𝑀...𝑘)(𝐹‘𝑘) ∈ (𝑆‘𝑛)) & ⊢ (𝜑 → 𝐺 ∈ (Fil‘𝑋)) & ⊢ (𝜑 → 𝑆:ℤ⟶𝐺) & ⊢ (𝜑 → 𝐹 ∈ dom (⇝𝑡‘𝐽)) ⇒ ⊢ (𝜑 → (𝐽 fLim 𝐺) ≠ ∅) | ||
Theorem | iscmet3 24466* | The property "𝐷 is a complete metric" expressed in terms of functions on ℕ (or any other upper integer set). Thus, we only have to look at functions on ℕ, and not all possible Cauchy filters, to determine completeness. (The proof uses countable choice.) (Contributed by NM, 18-Dec-2006.) (Revised by Mario Carneiro, 5-May-2014.) |
⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ 𝐽 = (MetOpen‘𝐷) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐷 ∈ (Met‘𝑋)) ⇒ ⊢ (𝜑 → (𝐷 ∈ (CMet‘𝑋) ↔ ∀𝑓 ∈ (Cau‘𝐷)(𝑓:𝑍⟶𝑋 → 𝑓 ∈ dom (⇝𝑡‘𝐽)))) | ||
Theorem | iscmet2 24467 | A metric 𝐷 is complete iff all Cauchy sequences converge to a point in the space. The proof uses countable choice. Part of Definition 1.4-3 of [Kreyszig] p. 28. (Contributed by NM, 7-Sep-2006.) (Revised by Mario Carneiro, 15-Oct-2015.) |
⊢ 𝐽 = (MetOpen‘𝐷) ⇒ ⊢ (𝐷 ∈ (CMet‘𝑋) ↔ (𝐷 ∈ (Met‘𝑋) ∧ (Cau‘𝐷) ⊆ dom (⇝𝑡‘𝐽))) | ||
Theorem | cfilresi 24468 | A Cauchy filter on a metric subspace extends to a Cauchy filter in the larger space. (Contributed by Mario Carneiro, 15-Oct-2015.) |
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (CauFil‘(𝐷 ↾ (𝑌 × 𝑌)))) → (𝑋filGen𝐹) ∈ (CauFil‘𝐷)) | ||
Theorem | cfilres 24469 | Cauchy filter on a metric subspace. (Contributed by Mario Carneiro, 15-Oct-2015.) |
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌 ∈ 𝐹) → (𝐹 ∈ (CauFil‘𝐷) ↔ (𝐹 ↾t 𝑌) ∈ (CauFil‘(𝐷 ↾ (𝑌 × 𝑌))))) | ||
Theorem | caussi 24470 | Cauchy sequence on a metric subspace. (Contributed by NM, 30-Jan-2008.) (Revised by Mario Carneiro, 30-Dec-2013.) |
⊢ (𝐷 ∈ (∞Met‘𝑋) → (Cau‘(𝐷 ↾ (𝑌 × 𝑌))) ⊆ (Cau‘𝐷)) | ||
Theorem | causs 24471 | Cauchy sequence on a metric subspace. (Contributed by NM, 29-Jan-2008.) (Revised by Mario Carneiro, 30-Dec-2013.) |
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹:ℕ⟶𝑌) → (𝐹 ∈ (Cau‘𝐷) ↔ 𝐹 ∈ (Cau‘(𝐷 ↾ (𝑌 × 𝑌))))) | ||
Theorem | equivcfil 24472* | If the metric 𝐷 is "strongly finer" than 𝐶 (meaning that there is a positive real constant 𝑅 such that 𝐶(𝑥, 𝑦) ≤ 𝑅 · 𝐷(𝑥, 𝑦)), all the 𝐷-Cauchy filters are also 𝐶-Cauchy. (Using this theorem twice in each direction states that if two metrics are strongly equivalent, then they have the same Cauchy sequences.) (Contributed by Mario Carneiro, 14-Sep-2015.) |
⊢ (𝜑 → 𝐶 ∈ (Met‘𝑋)) & ⊢ (𝜑 → 𝐷 ∈ (Met‘𝑋)) & ⊢ (𝜑 → 𝑅 ∈ ℝ+) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → (𝑥𝐶𝑦) ≤ (𝑅 · (𝑥𝐷𝑦))) ⇒ ⊢ (𝜑 → (CauFil‘𝐷) ⊆ (CauFil‘𝐶)) | ||
Theorem | equivcau 24473* | If the metric 𝐷 is "strongly finer" than 𝐶 (meaning that there is a positive real constant 𝑅 such that 𝐶(𝑥, 𝑦) ≤ 𝑅 · 𝐷(𝑥, 𝑦)), all the 𝐷-Cauchy sequences are also 𝐶-Cauchy. (Using this theorem twice in each direction states that if two metrics are strongly equivalent, then they have the same Cauchy sequences.) (Contributed by Mario Carneiro, 14-Sep-2015.) |
⊢ (𝜑 → 𝐶 ∈ (Met‘𝑋)) & ⊢ (𝜑 → 𝐷 ∈ (Met‘𝑋)) & ⊢ (𝜑 → 𝑅 ∈ ℝ+) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → (𝑥𝐶𝑦) ≤ (𝑅 · (𝑥𝐷𝑦))) ⇒ ⊢ (𝜑 → (Cau‘𝐷) ⊆ (Cau‘𝐶)) | ||
Theorem | lmle 24474* | If the distance from each member of a converging sequence to a given point is less than or equal to a given amount, so is the convergence value. (Contributed by NM, 23-Dec-2007.) (Proof shortened by Mario Carneiro, 1-May-2014.) |
⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ 𝐽 = (MetOpen‘𝐷) & ⊢ (𝜑 → 𝐷 ∈ (∞Met‘𝑋)) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐹(⇝𝑡‘𝐽)𝑃) & ⊢ (𝜑 → 𝑄 ∈ 𝑋) & ⊢ (𝜑 → 𝑅 ∈ ℝ*) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝑄𝐷(𝐹‘𝑘)) ≤ 𝑅) ⇒ ⊢ (𝜑 → (𝑄𝐷𝑃) ≤ 𝑅) | ||
Theorem | nglmle 24475* | If the norm of each member of a converging sequence is less than or equal to a given amount, so is the norm of the convergence value. (Contributed by NM, 25-Dec-2007.) (Revised by AV, 16-Oct-2021.) |
⊢ 𝑋 = (Base‘𝐺) & ⊢ 𝐷 = ((dist‘𝐺) ↾ (𝑋 × 𝑋)) & ⊢ 𝐽 = (MetOpen‘𝐷) & ⊢ 𝑁 = (norm‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ NrmGrp) & ⊢ (𝜑 → 𝐹:ℕ⟶𝑋) & ⊢ (𝜑 → 𝐹(⇝𝑡‘𝐽)𝑃) & ⊢ (𝜑 → 𝑅 ∈ ℝ*) & ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝑁‘(𝐹‘𝑘)) ≤ 𝑅) ⇒ ⊢ (𝜑 → (𝑁‘𝑃) ≤ 𝑅) | ||
Theorem | lmclim 24476 | Relate a limit on the metric space of complex numbers to our complex number limit notation. (Contributed by NM, 9-Dec-2006.) (Revised by Mario Carneiro, 1-May-2014.) |
⊢ 𝐽 = (TopOpen‘ℂfld) & ⊢ 𝑍 = (ℤ≥‘𝑀) ⇒ ⊢ ((𝑀 ∈ ℤ ∧ 𝑍 ⊆ dom 𝐹) → (𝐹(⇝𝑡‘𝐽)𝑃 ↔ (𝐹 ∈ (ℂ ↑pm ℂ) ∧ 𝐹 ⇝ 𝑃))) | ||
Theorem | lmclimf 24477 | Relate a limit on the metric space of complex numbers to our complex number limit notation. (Contributed by NM, 24-Jul-2007.) (Revised by Mario Carneiro, 1-May-2014.) |
⊢ 𝐽 = (TopOpen‘ℂfld) & ⊢ 𝑍 = (ℤ≥‘𝑀) ⇒ ⊢ ((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℂ) → (𝐹(⇝𝑡‘𝐽)𝑃 ↔ 𝐹 ⇝ 𝑃)) | ||
Theorem | metelcls 24478* | A point belongs to the closure of a subset iff there is a sequence in the subset converging to it. Theorem 1.4-6(a) of [Kreyszig] p. 30. This proof uses countable choice ax-cc 10200. The statement can be generalized to first-countable spaces, not just metrizable spaces. (Contributed by NM, 8-Nov-2007.) (Proof shortened by Mario Carneiro, 1-May-2015.) |
⊢ 𝐽 = (MetOpen‘𝐷) & ⊢ (𝜑 → 𝐷 ∈ (∞Met‘𝑋)) & ⊢ (𝜑 → 𝑆 ⊆ 𝑋) ⇒ ⊢ (𝜑 → (𝑃 ∈ ((cls‘𝐽)‘𝑆) ↔ ∃𝑓(𝑓:ℕ⟶𝑆 ∧ 𝑓(⇝𝑡‘𝐽)𝑃))) | ||
Theorem | metcld 24479* | A subset of a metric space is closed iff every convergent sequence on it converges to a point in the subset. Theorem 1.4-6(b) of [Kreyszig] p. 30. (Contributed by NM, 11-Nov-2007.) (Revised by Mario Carneiro, 1-May-2014.) |
⊢ 𝐽 = (MetOpen‘𝐷) ⇒ ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆 ⊆ 𝑋) → (𝑆 ∈ (Clsd‘𝐽) ↔ ∀𝑥∀𝑓((𝑓:ℕ⟶𝑆 ∧ 𝑓(⇝𝑡‘𝐽)𝑥) → 𝑥 ∈ 𝑆))) | ||
Theorem | metcld2 24480 | A subset of a metric space is closed iff every convergent sequence on it converges to a point in the subset. Theorem 1.4-6(b) of [Kreyszig] p. 30. (Contributed by Mario Carneiro, 1-May-2014.) |
⊢ 𝐽 = (MetOpen‘𝐷) ⇒ ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆 ⊆ 𝑋) → (𝑆 ∈ (Clsd‘𝐽) ↔ ((⇝𝑡‘𝐽) “ (𝑆 ↑m ℕ)) ⊆ 𝑆)) | ||
Theorem | caubl 24481* | Sufficient condition to ensure a sequence of nested balls is Cauchy. (Contributed by Mario Carneiro, 18-Jan-2014.) (Revised by Mario Carneiro, 1-May-2014.) |
⊢ (𝜑 → 𝐷 ∈ (∞Met‘𝑋)) & ⊢ (𝜑 → 𝐹:ℕ⟶(𝑋 × ℝ+)) & ⊢ (𝜑 → ∀𝑛 ∈ ℕ ((ball‘𝐷)‘(𝐹‘(𝑛 + 1))) ⊆ ((ball‘𝐷)‘(𝐹‘𝑛))) & ⊢ (𝜑 → ∀𝑟 ∈ ℝ+ ∃𝑛 ∈ ℕ (2nd ‘(𝐹‘𝑛)) < 𝑟) ⇒ ⊢ (𝜑 → (1st ∘ 𝐹) ∈ (Cau‘𝐷)) | ||
Theorem | caublcls 24482* | The convergent point of a sequence of nested balls is in the closures of any of the balls (i.e. it is in the intersection of the closures). Indeed, it is the only point in the intersection because a metric space is Hausdorff, but we don't prove this here. (Contributed by Mario Carneiro, 21-Jan-2014.) (Revised by Mario Carneiro, 1-May-2014.) |
⊢ (𝜑 → 𝐷 ∈ (∞Met‘𝑋)) & ⊢ (𝜑 → 𝐹:ℕ⟶(𝑋 × ℝ+)) & ⊢ (𝜑 → ∀𝑛 ∈ ℕ ((ball‘𝐷)‘(𝐹‘(𝑛 + 1))) ⊆ ((ball‘𝐷)‘(𝐹‘𝑛))) & ⊢ 𝐽 = (MetOpen‘𝐷) ⇒ ⊢ ((𝜑 ∧ (1st ∘ 𝐹)(⇝𝑡‘𝐽)𝑃 ∧ 𝐴 ∈ ℕ) → 𝑃 ∈ ((cls‘𝐽)‘((ball‘𝐷)‘(𝐹‘𝐴)))) | ||
Theorem | metcnp4 24483* | Two ways to say a mapping from metric 𝐶 to metric 𝐷 is continuous at point 𝑃. Theorem 14-4.3 of [Gleason] p. 240. (Contributed by NM, 17-May-2007.) (Revised by Mario Carneiro, 4-May-2014.) |
⊢ 𝐽 = (MetOpen‘𝐶) & ⊢ 𝐾 = (MetOpen‘𝐷) & ⊢ (𝜑 → 𝐶 ∈ (∞Met‘𝑋)) & ⊢ (𝜑 → 𝐷 ∈ (∞Met‘𝑌)) & ⊢ (𝜑 → 𝑃 ∈ 𝑋) ⇒ ⊢ (𝜑 → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ↔ (𝐹:𝑋⟶𝑌 ∧ ∀𝑓((𝑓:ℕ⟶𝑋 ∧ 𝑓(⇝𝑡‘𝐽)𝑃) → (𝐹 ∘ 𝑓)(⇝𝑡‘𝐾)(𝐹‘𝑃))))) | ||
Theorem | metcn4 24484* | Two ways to say a mapping from metric 𝐶 to metric 𝐷 is continuous. Theorem 10.3 of [Munkres] p. 128. (Contributed by NM, 13-Jun-2007.) (Revised by Mario Carneiro, 4-May-2014.) |
⊢ 𝐽 = (MetOpen‘𝐶) & ⊢ 𝐾 = (MetOpen‘𝐷) & ⊢ (𝜑 → 𝐶 ∈ (∞Met‘𝑋)) & ⊢ (𝜑 → 𝐷 ∈ (∞Met‘𝑌)) & ⊢ (𝜑 → 𝐹:𝑋⟶𝑌) ⇒ ⊢ (𝜑 → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ ∀𝑓(𝑓:ℕ⟶𝑋 → ∀𝑥(𝑓(⇝𝑡‘𝐽)𝑥 → (𝐹 ∘ 𝑓)(⇝𝑡‘𝐾)(𝐹‘𝑥))))) | ||
Theorem | iscmet3i 24485* | Properties that determine a complete metric space. (Contributed by NM, 15-Apr-2007.) (Revised by Mario Carneiro, 5-May-2014.) |
⊢ 𝐽 = (MetOpen‘𝐷) & ⊢ 𝐷 ∈ (Met‘𝑋) & ⊢ ((𝑓 ∈ (Cau‘𝐷) ∧ 𝑓:ℕ⟶𝑋) → 𝑓 ∈ dom (⇝𝑡‘𝐽)) ⇒ ⊢ 𝐷 ∈ (CMet‘𝑋) | ||
Theorem | lmcau 24486 | Every convergent sequence in a metric space is a Cauchy sequence. Theorem 1.4-5 of [Kreyszig] p. 28. (Contributed by NM, 29-Jan-2008.) (Proof shortened by Mario Carneiro, 5-May-2014.) |
⊢ 𝐽 = (MetOpen‘𝐷) ⇒ ⊢ (𝐷 ∈ (∞Met‘𝑋) → dom (⇝𝑡‘𝐽) ⊆ (Cau‘𝐷)) | ||
Theorem | flimcfil 24487 | Every convergent filter in a metric space is a Cauchy filter. (Contributed by Mario Carneiro, 15-Oct-2015.) |
⊢ 𝐽 = (MetOpen‘𝐷) ⇒ ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴 ∈ (𝐽 fLim 𝐹)) → 𝐹 ∈ (CauFil‘𝐷)) | ||
Theorem | metsscmetcld 24488 | A complete subspace of a metric space is closed in the parent space. Formerly part of proof for cmetss 24489. (Contributed by NM, 28-Jan-2008.) (Revised by Mario Carneiro, 15-Oct-2015.) (Revised by AV, 9-Oct-2022.) |
⊢ 𝐽 = (MetOpen‘𝐷) ⇒ ⊢ ((𝐷 ∈ (Met‘𝑋) ∧ (𝐷 ↾ (𝑌 × 𝑌)) ∈ (CMet‘𝑌)) → 𝑌 ∈ (Clsd‘𝐽)) | ||
Theorem | cmetss 24489 | A subspace of a complete metric space is complete iff it is closed in the parent space. Theorem 1.4-7 of [Kreyszig] p. 30. (Contributed by NM, 28-Jan-2008.) (Revised by Mario Carneiro, 15-Oct-2015.) (Proof shortened by AV, 9-Oct-2022.) |
⊢ 𝐽 = (MetOpen‘𝐷) ⇒ ⊢ (𝐷 ∈ (CMet‘𝑋) → ((𝐷 ↾ (𝑌 × 𝑌)) ∈ (CMet‘𝑌) ↔ 𝑌 ∈ (Clsd‘𝐽))) | ||
Theorem | equivcmet 24490* | If two metrics are strongly equivalent, one is complete iff the other is. Unlike equivcau 24473, metss2 23677, this theorem does not have a one-directional form - it is possible for a metric 𝐶 that is strongly finer than the complete metric 𝐷 to be incomplete and vice versa. Consider 𝐷 = the metric on ℝ induced by the usual homeomorphism from (0, 1) against the usual metric 𝐶 on ℝ and against the discrete metric 𝐸 on ℝ. Then both 𝐶 and 𝐸 are complete but 𝐷 is not, and 𝐶 is strongly finer than 𝐷, which is strongly finer than 𝐸. (Contributed by Mario Carneiro, 15-Sep-2015.) |
⊢ (𝜑 → 𝐶 ∈ (Met‘𝑋)) & ⊢ (𝜑 → 𝐷 ∈ (Met‘𝑋)) & ⊢ (𝜑 → 𝑅 ∈ ℝ+) & ⊢ (𝜑 → 𝑆 ∈ ℝ+) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → (𝑥𝐶𝑦) ≤ (𝑅 · (𝑥𝐷𝑦))) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → (𝑥𝐷𝑦) ≤ (𝑆 · (𝑥𝐶𝑦))) ⇒ ⊢ (𝜑 → (𝐶 ∈ (CMet‘𝑋) ↔ 𝐷 ∈ (CMet‘𝑋))) | ||
Theorem | relcmpcmet 24491* | If 𝐷 is a metric space such that all the balls of some fixed size are relatively compact, then 𝐷 is complete. (Contributed by Mario Carneiro, 15-Oct-2015.) |
⊢ 𝐽 = (MetOpen‘𝐷) & ⊢ (𝜑 → 𝐷 ∈ (Met‘𝑋)) & ⊢ (𝜑 → 𝑅 ∈ ℝ+) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (𝐽 ↾t ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅))) ∈ Comp) ⇒ ⊢ (𝜑 → 𝐷 ∈ (CMet‘𝑋)) | ||
Theorem | cmpcmet 24492 | A compact metric space is complete. One half of heibor 35988. (Contributed by Mario Carneiro, 15-Oct-2015.) |
⊢ 𝐽 = (MetOpen‘𝐷) & ⊢ (𝜑 → 𝐷 ∈ (Met‘𝑋)) & ⊢ (𝜑 → 𝐽 ∈ Comp) ⇒ ⊢ (𝜑 → 𝐷 ∈ (CMet‘𝑋)) | ||
Theorem | cfilucfil3 24493 | Given a metric 𝐷 and a uniform structure generated by that metric, Cauchy filter bases on that uniform structure are exactly the Cauchy filters for the metric. (Contributed by Thierry Arnoux, 15-Dec-2017.) (Revised by Thierry Arnoux, 11-Feb-2018.) |
⊢ ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (∞Met‘𝑋)) → ((𝐶 ∈ (Fil‘𝑋) ∧ 𝐶 ∈ (CauFilu‘(metUnif‘𝐷))) ↔ 𝐶 ∈ (CauFil‘𝐷))) | ||
Theorem | cfilucfil4 24494 | Given a metric 𝐷 and a uniform structure generated by that metric, Cauchy filter bases on that uniform structure are exactly the Cauchy filters for the metric. (Contributed by Thierry Arnoux, 15-Dec-2017.) (Revised by Thierry Arnoux, 11-Feb-2018.) |
⊢ ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (∞Met‘𝑋) ∧ 𝐶 ∈ (Fil‘𝑋)) → (𝐶 ∈ (CauFilu‘(metUnif‘𝐷)) ↔ 𝐶 ∈ (CauFil‘𝐷))) | ||
Theorem | cncmet 24495 | The set of complex numbers is a complete metric space under the absolute value metric. (Contributed by NM, 20-Dec-2006.) (Revised by Mario Carneiro, 15-Oct-2015.) |
⊢ 𝐷 = (abs ∘ − ) ⇒ ⊢ 𝐷 ∈ (CMet‘ℂ) | ||
Theorem | recmet 24496 | The real numbers are a complete metric space. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 12-Sep-2015.) |
⊢ ((abs ∘ − ) ↾ (ℝ × ℝ)) ∈ (CMet‘ℝ) | ||
Theorem | bcthlem1 24497* | Lemma for bcth 24502. Substitutions for the function 𝐹. (Contributed by Mario Carneiro, 9-Jan-2014.) |
⊢ 𝐽 = (MetOpen‘𝐷) & ⊢ (𝜑 → 𝐷 ∈ (CMet‘𝑋)) & ⊢ 𝐹 = (𝑘 ∈ ℕ, 𝑧 ∈ (𝑋 × ℝ+) ↦ {〈𝑥, 𝑟〉 ∣ ((𝑥 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+) ∧ (𝑟 < (1 / 𝑘) ∧ ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑟)) ⊆ (((ball‘𝐷)‘𝑧) ∖ (𝑀‘𝑘))))}) ⇒ ⊢ ((𝜑 ∧ (𝐴 ∈ ℕ ∧ 𝐵 ∈ (𝑋 × ℝ+))) → (𝐶 ∈ (𝐴𝐹𝐵) ↔ (𝐶 ∈ (𝑋 × ℝ+) ∧ (2nd ‘𝐶) < (1 / 𝐴) ∧ ((cls‘𝐽)‘((ball‘𝐷)‘𝐶)) ⊆ (((ball‘𝐷)‘𝐵) ∖ (𝑀‘𝐴))))) | ||
Theorem | bcthlem2 24498* | Lemma for bcth 24502. The balls in the sequence form an inclusion chain. (Contributed by Mario Carneiro, 7-Jan-2014.) |
⊢ 𝐽 = (MetOpen‘𝐷) & ⊢ (𝜑 → 𝐷 ∈ (CMet‘𝑋)) & ⊢ 𝐹 = (𝑘 ∈ ℕ, 𝑧 ∈ (𝑋 × ℝ+) ↦ {〈𝑥, 𝑟〉 ∣ ((𝑥 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+) ∧ (𝑟 < (1 / 𝑘) ∧ ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑟)) ⊆ (((ball‘𝐷)‘𝑧) ∖ (𝑀‘𝑘))))}) & ⊢ (𝜑 → 𝑀:ℕ⟶(Clsd‘𝐽)) & ⊢ (𝜑 → 𝑅 ∈ ℝ+) & ⊢ (𝜑 → 𝐶 ∈ 𝑋) & ⊢ (𝜑 → 𝑔:ℕ⟶(𝑋 × ℝ+)) & ⊢ (𝜑 → (𝑔‘1) = 〈𝐶, 𝑅〉) & ⊢ (𝜑 → ∀𝑘 ∈ ℕ (𝑔‘(𝑘 + 1)) ∈ (𝑘𝐹(𝑔‘𝑘))) ⇒ ⊢ (𝜑 → ∀𝑛 ∈ ℕ ((ball‘𝐷)‘(𝑔‘(𝑛 + 1))) ⊆ ((ball‘𝐷)‘(𝑔‘𝑛))) | ||
Theorem | bcthlem3 24499* | Lemma for bcth 24502. The limit point of the centers in the sequence is in the intersection of every ball in the sequence. (Contributed by Mario Carneiro, 7-Jan-2014.) |
⊢ 𝐽 = (MetOpen‘𝐷) & ⊢ (𝜑 → 𝐷 ∈ (CMet‘𝑋)) & ⊢ 𝐹 = (𝑘 ∈ ℕ, 𝑧 ∈ (𝑋 × ℝ+) ↦ {〈𝑥, 𝑟〉 ∣ ((𝑥 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+) ∧ (𝑟 < (1 / 𝑘) ∧ ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑟)) ⊆ (((ball‘𝐷)‘𝑧) ∖ (𝑀‘𝑘))))}) & ⊢ (𝜑 → 𝑀:ℕ⟶(Clsd‘𝐽)) & ⊢ (𝜑 → 𝑅 ∈ ℝ+) & ⊢ (𝜑 → 𝐶 ∈ 𝑋) & ⊢ (𝜑 → 𝑔:ℕ⟶(𝑋 × ℝ+)) & ⊢ (𝜑 → (𝑔‘1) = 〈𝐶, 𝑅〉) & ⊢ (𝜑 → ∀𝑘 ∈ ℕ (𝑔‘(𝑘 + 1)) ∈ (𝑘𝐹(𝑔‘𝑘))) ⇒ ⊢ ((𝜑 ∧ (1st ∘ 𝑔)(⇝𝑡‘𝐽)𝑥 ∧ 𝐴 ∈ ℕ) → 𝑥 ∈ ((ball‘𝐷)‘(𝑔‘𝐴))) | ||
Theorem | bcthlem4 24500* | Lemma for bcth 24502. Given any open ball (𝐶(ball‘𝐷)𝑅) as starting point (and in particular, a ball in int(∪ ran 𝑀)), the limit point 𝑥 of the centers of the induced sequence of balls 𝑔 is outside ∪ ran 𝑀. Note that a set 𝐴 has empty interior iff every nonempty open set 𝑈 contains points outside 𝐴, i.e. (𝑈 ∖ 𝐴) ≠ ∅. (Contributed by Mario Carneiro, 7-Jan-2014.) |
⊢ 𝐽 = (MetOpen‘𝐷) & ⊢ (𝜑 → 𝐷 ∈ (CMet‘𝑋)) & ⊢ 𝐹 = (𝑘 ∈ ℕ, 𝑧 ∈ (𝑋 × ℝ+) ↦ {〈𝑥, 𝑟〉 ∣ ((𝑥 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+) ∧ (𝑟 < (1 / 𝑘) ∧ ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑟)) ⊆ (((ball‘𝐷)‘𝑧) ∖ (𝑀‘𝑘))))}) & ⊢ (𝜑 → 𝑀:ℕ⟶(Clsd‘𝐽)) & ⊢ (𝜑 → 𝑅 ∈ ℝ+) & ⊢ (𝜑 → 𝐶 ∈ 𝑋) & ⊢ (𝜑 → 𝑔:ℕ⟶(𝑋 × ℝ+)) & ⊢ (𝜑 → (𝑔‘1) = 〈𝐶, 𝑅〉) & ⊢ (𝜑 → ∀𝑘 ∈ ℕ (𝑔‘(𝑘 + 1)) ∈ (𝑘𝐹(𝑔‘𝑘))) ⇒ ⊢ (𝜑 → ((𝐶(ball‘𝐷)𝑅) ∖ ∪ ran 𝑀) ≠ ∅) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |