Home | Metamath
Proof Explorer Theorem List (p. 245 of 464) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | Metamath Proof Explorer
(1-29181) |
Hilbert Space Explorer
(29182-30704) |
Users' Mathboxes
(30705-46395) |
Type | Label | Description |
---|---|---|
Statement | ||
Syntax | ccms 24401 | Extend class notation with the class of complete metric spaces. |
class CMetSp | ||
Syntax | cbn 24402 | Extend class notation with the class of Banach spaces. |
class Ban | ||
Syntax | chl 24403 | Extend class notation with the class of subcomplex Hilbert spaces. |
class ℂHil | ||
Definition | df-cms 24404* | Define the class of complete metric spaces. (Contributed by Mario Carneiro, 15-Oct-2015.) |
⊢ CMetSp = {𝑤 ∈ MetSp ∣ [(Base‘𝑤) / 𝑏]((dist‘𝑤) ↾ (𝑏 × 𝑏)) ∈ (CMet‘𝑏)} | ||
Definition | df-bn 24405 | Define the class of all Banach spaces. A Banach space is a normed vector space such that both the vector space and the scalar field are complete under their respective norm-induced metrics. (Contributed by NM, 5-Dec-2006.) (Revised by Mario Carneiro, 15-Oct-2015.) |
⊢ Ban = {𝑤 ∈ (NrmVec ∩ CMetSp) ∣ (Scalar‘𝑤) ∈ CMetSp} | ||
Definition | df-hl 24406 | Define the class of all subcomplex Hilbert spaces. A subcomplex Hilbert space is a Banach space which is also an inner product space over a subfield of the field of complex numbers closed under square roots of nonnegative reals. (Contributed by Steve Rodriguez, 28-Apr-2007.) |
⊢ ℂHil = (Ban ∩ ℂPreHil) | ||
Theorem | isbn 24407 | A Banach space is a normed vector space with a complete induced metric. (Contributed by NM, 5-Dec-2006.) (Revised by Mario Carneiro, 15-Oct-2015.) |
⊢ 𝐹 = (Scalar‘𝑊) ⇒ ⊢ (𝑊 ∈ Ban ↔ (𝑊 ∈ NrmVec ∧ 𝑊 ∈ CMetSp ∧ 𝐹 ∈ CMetSp)) | ||
Theorem | bnsca 24408 | The scalar field of a Banach space is complete. (Contributed by NM, 8-Sep-2007.) (Revised by Mario Carneiro, 15-Oct-2015.) |
⊢ 𝐹 = (Scalar‘𝑊) ⇒ ⊢ (𝑊 ∈ Ban → 𝐹 ∈ CMetSp) | ||
Theorem | bnnvc 24409 | A Banach space is a normed vector space. (Contributed by Mario Carneiro, 15-Oct-2015.) |
⊢ (𝑊 ∈ Ban → 𝑊 ∈ NrmVec) | ||
Theorem | bnnlm 24410 | A Banach space is a normed module. (Contributed by Mario Carneiro, 15-Oct-2015.) |
⊢ (𝑊 ∈ Ban → 𝑊 ∈ NrmMod) | ||
Theorem | bnngp 24411 | A Banach space is a normed group. (Contributed by Mario Carneiro, 15-Oct-2015.) |
⊢ (𝑊 ∈ Ban → 𝑊 ∈ NrmGrp) | ||
Theorem | bnlmod 24412 | A Banach space is a left module. (Contributed by Mario Carneiro, 15-Oct-2015.) |
⊢ (𝑊 ∈ Ban → 𝑊 ∈ LMod) | ||
Theorem | bncms 24413 | A Banach space is a complete metric space. (Contributed by Mario Carneiro, 15-Oct-2015.) |
⊢ (𝑊 ∈ Ban → 𝑊 ∈ CMetSp) | ||
Theorem | iscms 24414 | A complete metric space is a metric space with a complete metric. (Contributed by Mario Carneiro, 15-Oct-2015.) |
⊢ 𝑋 = (Base‘𝑀) & ⊢ 𝐷 = ((dist‘𝑀) ↾ (𝑋 × 𝑋)) ⇒ ⊢ (𝑀 ∈ CMetSp ↔ (𝑀 ∈ MetSp ∧ 𝐷 ∈ (CMet‘𝑋))) | ||
Theorem | cmscmet 24415 | The induced metric on a complete normed group is complete. (Contributed by Mario Carneiro, 15-Oct-2015.) |
⊢ 𝑋 = (Base‘𝑀) & ⊢ 𝐷 = ((dist‘𝑀) ↾ (𝑋 × 𝑋)) ⇒ ⊢ (𝑀 ∈ CMetSp → 𝐷 ∈ (CMet‘𝑋)) | ||
Theorem | bncmet 24416 | The induced metric on Banach space is complete. (Contributed by NM, 8-Sep-2007.) (Revised by Mario Carneiro, 15-Oct-2015.) |
⊢ 𝑋 = (Base‘𝑀) & ⊢ 𝐷 = ((dist‘𝑀) ↾ (𝑋 × 𝑋)) ⇒ ⊢ (𝑀 ∈ Ban → 𝐷 ∈ (CMet‘𝑋)) | ||
Theorem | cmsms 24417 | A complete metric space is a metric space. (Contributed by Mario Carneiro, 15-Oct-2015.) |
⊢ (𝐺 ∈ CMetSp → 𝐺 ∈ MetSp) | ||
Theorem | cmspropd 24418 | Property deduction for a complete metric space. (Contributed by Mario Carneiro, 15-Oct-2015.) |
⊢ (𝜑 → 𝐵 = (Base‘𝐾)) & ⊢ (𝜑 → 𝐵 = (Base‘𝐿)) & ⊢ (𝜑 → ((dist‘𝐾) ↾ (𝐵 × 𝐵)) = ((dist‘𝐿) ↾ (𝐵 × 𝐵))) & ⊢ (𝜑 → (TopOpen‘𝐾) = (TopOpen‘𝐿)) ⇒ ⊢ (𝜑 → (𝐾 ∈ CMetSp ↔ 𝐿 ∈ CMetSp)) | ||
Theorem | cmssmscld 24419 | The restriction of a metric space is closed if it is complete. (Contributed by AV, 9-Oct-2022.) |
⊢ 𝐾 = (𝑀 ↾s 𝐴) & ⊢ 𝑋 = (Base‘𝑀) & ⊢ 𝐽 = (TopOpen‘𝑀) ⇒ ⊢ ((𝑀 ∈ MetSp ∧ 𝐴 ⊆ 𝑋 ∧ 𝐾 ∈ CMetSp) → 𝐴 ∈ (Clsd‘𝐽)) | ||
Theorem | cmsss 24420 | The restriction of a complete metric space is complete iff it is closed. (Contributed by Mario Carneiro, 15-Oct-2015.) |
⊢ 𝐾 = (𝑀 ↾s 𝐴) & ⊢ 𝑋 = (Base‘𝑀) & ⊢ 𝐽 = (TopOpen‘𝑀) ⇒ ⊢ ((𝑀 ∈ CMetSp ∧ 𝐴 ⊆ 𝑋) → (𝐾 ∈ CMetSp ↔ 𝐴 ∈ (Clsd‘𝐽))) | ||
Theorem | lssbn 24421 | A subspace of a Banach space is a Banach space iff it is closed. (Contributed by Mario Carneiro, 15-Oct-2015.) |
⊢ 𝑋 = (𝑊 ↾s 𝑈) & ⊢ 𝑆 = (LSubSp‘𝑊) & ⊢ 𝐽 = (TopOpen‘𝑊) ⇒ ⊢ ((𝑊 ∈ Ban ∧ 𝑈 ∈ 𝑆) → (𝑋 ∈ Ban ↔ 𝑈 ∈ (Clsd‘𝐽))) | ||
Theorem | cmetcusp1 24422 | If the uniform set of a complete metric space is the uniform structure generated by its metric, then it is a complete uniform space. (Contributed by Thierry Arnoux, 15-Dec-2017.) |
⊢ 𝑋 = (Base‘𝐹) & ⊢ 𝐷 = ((dist‘𝐹) ↾ (𝑋 × 𝑋)) & ⊢ 𝑈 = (UnifSt‘𝐹) ⇒ ⊢ ((𝑋 ≠ ∅ ∧ 𝐹 ∈ CMetSp ∧ 𝑈 = (metUnif‘𝐷)) → 𝐹 ∈ CUnifSp) | ||
Theorem | cmetcusp 24423 | The uniform space generated by a complete metric is a complete uniform space. (Contributed by Thierry Arnoux, 5-Dec-2017.) |
⊢ ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (CMet‘𝑋)) → (toUnifSp‘(metUnif‘𝐷)) ∈ CUnifSp) | ||
Theorem | cncms 24424 | The field of complex numbers is a complete metric space. (Contributed by Mario Carneiro, 15-Oct-2015.) |
⊢ ℂfld ∈ CMetSp | ||
Theorem | cnflduss 24425 | The uniform structure of the complex numbers. (Contributed by Thierry Arnoux, 17-Dec-2017.) (Revised by Thierry Arnoux, 11-Mar-2018.) |
⊢ 𝑈 = (UnifSt‘ℂfld) ⇒ ⊢ 𝑈 = (metUnif‘(abs ∘ − )) | ||
Theorem | cnfldcusp 24426 | The field of complex numbers is a complete uniform space. (Contributed by Thierry Arnoux, 17-Dec-2017.) |
⊢ ℂfld ∈ CUnifSp | ||
Theorem | resscdrg 24427 | The real numbers are a subset of any complete subfield in the complex numbers. (Contributed by Mario Carneiro, 15-Oct-2015.) |
⊢ 𝐹 = (ℂfld ↾s 𝐾) ⇒ ⊢ ((𝐾 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ DivRing ∧ 𝐹 ∈ CMetSp) → ℝ ⊆ 𝐾) | ||
Theorem | cncdrg 24428 | The only complete subfields of the complex numbers are ℝ and ℂ. (Contributed by Mario Carneiro, 15-Oct-2015.) |
⊢ 𝐹 = (ℂfld ↾s 𝐾) ⇒ ⊢ ((𝐾 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ DivRing ∧ 𝐹 ∈ CMetSp) → 𝐾 ∈ {ℝ, ℂ}) | ||
Theorem | srabn 24429 | The subring algebra over a complete normed ring is a Banach space iff the subring is a closed division ring. (Contributed by Mario Carneiro, 15-Oct-2015.) |
⊢ 𝐴 = ((subringAlg ‘𝑊)‘𝑆) & ⊢ 𝐽 = (TopOpen‘𝑊) ⇒ ⊢ ((𝑊 ∈ NrmRing ∧ 𝑊 ∈ CMetSp ∧ 𝑆 ∈ (SubRing‘𝑊)) → (𝐴 ∈ Ban ↔ (𝑆 ∈ (Clsd‘𝐽) ∧ (𝑊 ↾s 𝑆) ∈ DivRing))) | ||
Theorem | rlmbn 24430 | The ring module over a complete normed division ring is a Banach space. (Contributed by Mario Carneiro, 15-Oct-2015.) |
⊢ ((𝑅 ∈ NrmRing ∧ 𝑅 ∈ DivRing ∧ 𝑅 ∈ CMetSp) → (ringLMod‘𝑅) ∈ Ban) | ||
Theorem | ishl 24431 | The predicate "is a subcomplex Hilbert space". A Hilbert space is a Banach space which is also an inner product space, i.e. whose norm satisfies the parallelogram law. (Contributed by Steve Rodriguez, 28-Apr-2007.) (Revised by Mario Carneiro, 15-Oct-2015.) |
⊢ (𝑊 ∈ ℂHil ↔ (𝑊 ∈ Ban ∧ 𝑊 ∈ ℂPreHil)) | ||
Theorem | hlbn 24432 | Every subcomplex Hilbert space is a Banach space. (Contributed by Steve Rodriguez, 28-Apr-2007.) |
⊢ (𝑊 ∈ ℂHil → 𝑊 ∈ Ban) | ||
Theorem | hlcph 24433 | Every subcomplex Hilbert space is a subcomplex pre-Hilbert space. (Contributed by Mario Carneiro, 15-Oct-2015.) |
⊢ (𝑊 ∈ ℂHil → 𝑊 ∈ ℂPreHil) | ||
Theorem | hlphl 24434 | Every subcomplex Hilbert space is an inner product space (also called a pre-Hilbert space). (Contributed by NM, 28-Apr-2007.) (Revised by Mario Carneiro, 15-Oct-2015.) |
⊢ (𝑊 ∈ ℂHil → 𝑊 ∈ PreHil) | ||
Theorem | hlcms 24435 | Every subcomplex Hilbert space is a complete metric space. (Contributed by Mario Carneiro, 17-Oct-2015.) |
⊢ (𝑊 ∈ ℂHil → 𝑊 ∈ CMetSp) | ||
Theorem | hlprlem 24436 | Lemma for hlpr 24438. (Contributed by Mario Carneiro, 15-Oct-2015.) |
⊢ 𝐹 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝐹) ⇒ ⊢ (𝑊 ∈ ℂHil → (𝐾 ∈ (SubRing‘ℂfld) ∧ (ℂfld ↾s 𝐾) ∈ DivRing ∧ (ℂfld ↾s 𝐾) ∈ CMetSp)) | ||
Theorem | hlress 24437 | The scalar field of a subcomplex Hilbert space contains ℝ. (Contributed by Mario Carneiro, 8-Oct-2015.) |
⊢ 𝐹 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝐹) ⇒ ⊢ (𝑊 ∈ ℂHil → ℝ ⊆ 𝐾) | ||
Theorem | hlpr 24438 | The scalar field of a subcomplex Hilbert space is either ℝ or ℂ. (Contributed by Mario Carneiro, 15-Oct-2015.) |
⊢ 𝐹 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝐹) ⇒ ⊢ (𝑊 ∈ ℂHil → 𝐾 ∈ {ℝ, ℂ}) | ||
Theorem | ishl2 24439 | A Hilbert space is a complete subcomplex pre-Hilbert space over ℝ or ℂ. (Contributed by Mario Carneiro, 15-Oct-2015.) |
⊢ 𝐹 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝐹) ⇒ ⊢ (𝑊 ∈ ℂHil ↔ (𝑊 ∈ CMetSp ∧ 𝑊 ∈ ℂPreHil ∧ 𝐾 ∈ {ℝ, ℂ})) | ||
Theorem | cphssphl 24440 | A Banach subspace of a subcomplex pre-Hilbert space is a subcomplex Hilbert space. (Contributed by NM, 11-Apr-2008.) (Revised by AV, 25-Sep-2022.) |
⊢ 𝑋 = (𝑊 ↾s 𝑈) & ⊢ 𝑆 = (LSubSp‘𝑊) ⇒ ⊢ ((𝑊 ∈ ℂPreHil ∧ 𝑈 ∈ 𝑆 ∧ 𝑋 ∈ Ban) → 𝑋 ∈ ℂHil) | ||
Theorem | cmslssbn 24441 | A complete linear subspace of a normed vector space is a Banach space. We furthermore have to assume that the field of scalars is complete since this is a requirement in the current definition of Banach spaces df-bn 24405. (Contributed by AV, 8-Oct-2022.) |
⊢ 𝑋 = (𝑊 ↾s 𝑈) & ⊢ 𝑆 = (LSubSp‘𝑊) ⇒ ⊢ (((𝑊 ∈ NrmVec ∧ (Scalar‘𝑊) ∈ CMetSp) ∧ (𝑋 ∈ CMetSp ∧ 𝑈 ∈ 𝑆)) → 𝑋 ∈ Ban) | ||
Theorem | cmscsscms 24442 | A closed subspace of a complete metric space which is also a subcomplex pre-Hilbert space is a complete metric space. Remark: the assumption that the Banach space must be a (subcomplex) pre-Hilbert space is required because the definition of ClSubSp is based on an inner product. If ClSubSp was generalized to arbitrary topological spaces (or at least topological modules), this assumption could be omitted. (Contributed by AV, 8-Oct-2022.) |
⊢ 𝑋 = (𝑊 ↾s 𝑈) & ⊢ 𝑆 = (ClSubSp‘𝑊) ⇒ ⊢ (((𝑊 ∈ CMetSp ∧ 𝑊 ∈ ℂPreHil) ∧ 𝑈 ∈ 𝑆) → 𝑋 ∈ CMetSp) | ||
Theorem | bncssbn 24443 | A closed subspace of a Banach space which is also a subcomplex pre-Hilbert space is a Banach space. Remark: the assumption that the Banach space must be a (subcomplex) pre-Hilbert space is required because the definition of ClSubSp is based on an inner product. If ClSubSp was generalized for arbitrary topological spaces, this assuption could be omitted. (Contributed by AV, 8-Oct-2022.) |
⊢ 𝑋 = (𝑊 ↾s 𝑈) & ⊢ 𝑆 = (ClSubSp‘𝑊) ⇒ ⊢ (((𝑊 ∈ Ban ∧ 𝑊 ∈ ℂPreHil) ∧ 𝑈 ∈ 𝑆) → 𝑋 ∈ Ban) | ||
Theorem | cssbn 24444 | A complete subspace of a normed vector space with a complete scalar field is a Banach space. Remark: In contrast to ClSubSp, a complete subspace is defined by "a linear subspace in which all Cauchy sequences converge to a point in the subspace". This is closer to the original, but deprecated definition Cℋ (df-ch 29484) of closed subspaces of a Hilbert space. It may be superseded by cmslssbn 24441. (Contributed by NM, 10-Apr-2008.) (Revised by AV, 6-Oct-2022.) |
⊢ 𝑋 = (𝑊 ↾s 𝑈) & ⊢ 𝑆 = (LSubSp‘𝑊) & ⊢ 𝐷 = ((dist‘𝑊) ↾ (𝑈 × 𝑈)) ⇒ ⊢ (((𝑊 ∈ NrmVec ∧ (Scalar‘𝑊) ∈ CMetSp ∧ 𝑈 ∈ 𝑆) ∧ (Cau‘𝐷) ⊆ dom (⇝𝑡‘(MetOpen‘𝐷))) → 𝑋 ∈ Ban) | ||
Theorem | csschl 24445 | A complete subspace of a complex pre-Hilbert space is a complex Hilbert space. Remarks: (a) In contrast to ClSubSp, a complete subspace is defined by "a linear subspace in which all Cauchy sequences converge to a point in the subspace". This is closer to the original, but deprecated definition Cℋ (df-ch 29484) of closed subspaces of a Hilbert space. (b) This theorem does not hold for arbitrary subcomplex (pre-)Hilbert spaces, because the scalar field as restriction of the field of the complex numbers need not be closed. (Contributed by NM, 10-Apr-2008.) (Revised by AV, 6-Oct-2022.) |
⊢ 𝑋 = (𝑊 ↾s 𝑈) & ⊢ 𝑆 = (LSubSp‘𝑊) & ⊢ 𝐷 = ((dist‘𝑊) ↾ (𝑈 × 𝑈)) & ⊢ (Scalar‘𝑊) = ℂfld ⇒ ⊢ ((𝑊 ∈ ℂPreHil ∧ 𝑈 ∈ 𝑆 ∧ (Cau‘𝐷) ⊆ dom (⇝𝑡‘(MetOpen‘𝐷))) → (𝑋 ∈ ℂHil ∧ (Scalar‘𝑋) = ℂfld)) | ||
Theorem | cmslsschl 24446 | A complete linear subspace of a subcomplex Hilbert space is a subcomplex Hilbert space. (Contributed by AV, 8-Oct-2022.) |
⊢ 𝑋 = (𝑊 ↾s 𝑈) & ⊢ 𝑆 = (LSubSp‘𝑊) ⇒ ⊢ ((𝑊 ∈ ℂHil ∧ 𝑋 ∈ CMetSp ∧ 𝑈 ∈ 𝑆) → 𝑋 ∈ ℂHil) | ||
Theorem | chlcsschl 24447 | A closed subspace of a subcomplex Hilbert space is a subcomplex Hilbert space. (Contributed by NM, 10-Apr-2008.) (Revised by AV, 8-Oct-2022.) |
⊢ 𝑋 = (𝑊 ↾s 𝑈) & ⊢ 𝑆 = (ClSubSp‘𝑊) ⇒ ⊢ ((𝑊 ∈ ℂHil ∧ 𝑈 ∈ 𝑆) → 𝑋 ∈ ℂHil) | ||
Theorem | retopn 24448 | The topology of the real numbers. (Contributed by Thierry Arnoux, 30-Jun-2019.) |
⊢ (topGen‘ran (,)) = (TopOpen‘ℝfld) | ||
Theorem | recms 24449 | The real numbers form a complete metric space. (Contributed by Thierry Arnoux, 1-Nov-2017.) |
⊢ ℝfld ∈ CMetSp | ||
Theorem | reust 24450 | The Uniform structure of the real numbers. (Contributed by Thierry Arnoux, 14-Feb-2018.) |
⊢ (UnifSt‘ℝfld) = (metUnif‘((dist‘ℝfld) ↾ (ℝ × ℝ))) | ||
Theorem | recusp 24451 | The real numbers form a complete uniform space. (Contributed by Thierry Arnoux, 17-Dec-2017.) |
⊢ ℝfld ∈ CUnifSp | ||
Syntax | crrx 24452 | Extend class notation with generalized real Euclidean spaces. |
class ℝ^ | ||
Syntax | cehl 24453 | Extend class notation with real Euclidean spaces. |
class 𝔼hil | ||
Definition | df-rrx 24454 | Define the function associating with a set the free real vector space on that set, equipped with the natural inner product and norm. This is the direct sum of copies of the field of real numbers indexed by that set. We call it here a "generalized real Euclidean space", but note that it need not be complete (for instance if the given set is infinite countable). (Contributed by Thierry Arnoux, 16-Jun-2019.) |
⊢ ℝ^ = (𝑖 ∈ V ↦ (toℂPreHil‘(ℝfld freeLMod 𝑖))) | ||
Definition | df-ehl 24455 | Define a function generating the real Euclidean spaces of finite dimension. The case 𝑛 = 0 corresponds to a space of dimension 0, that is, limited to a neutral element (see ehl0 24486). Members of this family of spaces are Hilbert spaces, as shown in - ehlhl . (Contributed by Thierry Arnoux, 16-Jun-2019.) |
⊢ 𝔼hil = (𝑛 ∈ ℕ0 ↦ (ℝ^‘(1...𝑛))) | ||
Theorem | rrxval 24456 | Value of the generalized Euclidean space. (Contributed by Thierry Arnoux, 16-Jun-2019.) |
⊢ 𝐻 = (ℝ^‘𝐼) ⇒ ⊢ (𝐼 ∈ 𝑉 → 𝐻 = (toℂPreHil‘(ℝfld freeLMod 𝐼))) | ||
Theorem | rrxbase 24457* | The base of the generalized real Euclidean space is the set of functions with finite support. (Contributed by Thierry Arnoux, 16-Jun-2019.) (Proof shortened by AV, 22-Jul-2019.) |
⊢ 𝐻 = (ℝ^‘𝐼) & ⊢ 𝐵 = (Base‘𝐻) ⇒ ⊢ (𝐼 ∈ 𝑉 → 𝐵 = {𝑓 ∈ (ℝ ↑m 𝐼) ∣ 𝑓 finSupp 0}) | ||
Theorem | rrxprds 24458 | Expand the definition of the generalized real Euclidean spaces. (Contributed by Thierry Arnoux, 16-Jun-2019.) |
⊢ 𝐻 = (ℝ^‘𝐼) & ⊢ 𝐵 = (Base‘𝐻) ⇒ ⊢ (𝐼 ∈ 𝑉 → 𝐻 = (toℂPreHil‘((ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)})) ↾s 𝐵))) | ||
Theorem | rrxip 24459* | The inner product of the generalized real Euclidean spaces. (Contributed by Thierry Arnoux, 16-Jun-2019.) |
⊢ 𝐻 = (ℝ^‘𝐼) & ⊢ 𝐵 = (Base‘𝐻) ⇒ ⊢ (𝐼 ∈ 𝑉 → (𝑓 ∈ (ℝ ↑m 𝐼), 𝑔 ∈ (ℝ ↑m 𝐼) ↦ (ℝfld Σg (𝑥 ∈ 𝐼 ↦ ((𝑓‘𝑥) · (𝑔‘𝑥))))) = (·𝑖‘𝐻)) | ||
Theorem | rrxnm 24460* | The norm of the generalized real Euclidean spaces. (Contributed by Thierry Arnoux, 16-Jun-2019.) |
⊢ 𝐻 = (ℝ^‘𝐼) & ⊢ 𝐵 = (Base‘𝐻) ⇒ ⊢ (𝐼 ∈ 𝑉 → (𝑓 ∈ 𝐵 ↦ (√‘(ℝfld Σg (𝑥 ∈ 𝐼 ↦ ((𝑓‘𝑥)↑2))))) = (norm‘𝐻)) | ||
Theorem | rrxcph 24461 | Generalized Euclidean real spaces are subcomplex pre-Hilbert spaces. (Contributed by Thierry Arnoux, 23-Jun-2019.) (Proof shortened by AV, 22-Jul-2019.) |
⊢ 𝐻 = (ℝ^‘𝐼) & ⊢ 𝐵 = (Base‘𝐻) ⇒ ⊢ (𝐼 ∈ 𝑉 → 𝐻 ∈ ℂPreHil) | ||
Theorem | rrxds 24462* | The distance over generalized Euclidean spaces. Compare with df-rrn 35911. (Contributed by Thierry Arnoux, 20-Jun-2019.) (Proof shortened by AV, 20-Jul-2019.) |
⊢ 𝐻 = (ℝ^‘𝐼) & ⊢ 𝐵 = (Base‘𝐻) ⇒ ⊢ (𝐼 ∈ 𝑉 → (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ (√‘(ℝfld Σg (𝑥 ∈ 𝐼 ↦ (((𝑓‘𝑥) − (𝑔‘𝑥))↑2))))) = (dist‘𝐻)) | ||
Theorem | rrxvsca 24463 | The scalar product over generalized Euclidean spaces is the componentwise real number multiplication. (Contributed by Thierry Arnoux, 18-Jan-2023.) |
⊢ 𝐻 = (ℝ^‘𝐼) & ⊢ 𝐵 = (Base‘𝐻) & ⊢ ∙ = ( ·𝑠 ‘𝐻) & ⊢ (𝜑 → 𝐼 ∈ 𝑉) & ⊢ (𝜑 → 𝐽 ∈ 𝐼) & ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝑋 ∈ (Base‘𝐻)) ⇒ ⊢ (𝜑 → ((𝐴 ∙ 𝑋)‘𝐽) = (𝐴 · (𝑋‘𝐽))) | ||
Theorem | rrxplusgvscavalb 24464* | The result of the addition combined with scalar multiplication in a generalized Euclidean space is defined by its coordinate-wise operations. (Contributed by AV, 21-Jan-2023.) |
⊢ 𝐻 = (ℝ^‘𝐼) & ⊢ 𝐵 = (Base‘𝐻) & ⊢ ∙ = ( ·𝑠 ‘𝐻) & ⊢ (𝜑 → 𝐼 ∈ 𝑉) & ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝑍 ∈ 𝐵) & ⊢ ✚ = (+g‘𝐻) & ⊢ (𝜑 → 𝐶 ∈ ℝ) ⇒ ⊢ (𝜑 → (𝑍 = ((𝐴 ∙ 𝑋) ✚ (𝐶 ∙ 𝑌)) ↔ ∀𝑖 ∈ 𝐼 (𝑍‘𝑖) = ((𝐴 · (𝑋‘𝑖)) + (𝐶 · (𝑌‘𝑖))))) | ||
Theorem | rrxsca 24465 | The field of real numbers is the scalar field of the generalized real Euclidean space. (Contributed by AV, 15-Jan-2023.) |
⊢ 𝐻 = (ℝ^‘𝐼) ⇒ ⊢ (𝐼 ∈ 𝑉 → (Scalar‘𝐻) = ℝfld) | ||
Theorem | rrx0 24466 | The zero ("origin") in a generalized real Euclidean space. (Contributed by AV, 11-Feb-2023.) |
⊢ 𝐻 = (ℝ^‘𝐼) & ⊢ 0 = (𝐼 × {0}) ⇒ ⊢ (𝐼 ∈ 𝑉 → (0g‘𝐻) = 0 ) | ||
Theorem | rrx0el 24467 | The zero ("origin") in a generalized real Euclidean space is an element of its base set. (Contributed by AV, 11-Feb-2023.) |
⊢ 0 = (𝐼 × {0}) & ⊢ 𝑃 = (ℝ ↑m 𝐼) ⇒ ⊢ (𝐼 ∈ 𝑉 → 0 ∈ 𝑃) | ||
Theorem | csbren 24468* | Cauchy-Schwarz-Bunjakovsky inequality for R^n. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 4-Jun-2014.) |
⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐶 ∈ ℝ) ⇒ ⊢ (𝜑 → (Σ𝑘 ∈ 𝐴 (𝐵 · 𝐶)↑2) ≤ (Σ𝑘 ∈ 𝐴 (𝐵↑2) · Σ𝑘 ∈ 𝐴 (𝐶↑2))) | ||
Theorem | trirn 24469* | Triangle inequality in R^n. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 4-Jun-2014.) |
⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐶 ∈ ℝ) ⇒ ⊢ (𝜑 → (√‘Σ𝑘 ∈ 𝐴 ((𝐵 + 𝐶)↑2)) ≤ ((√‘Σ𝑘 ∈ 𝐴 (𝐵↑2)) + (√‘Σ𝑘 ∈ 𝐴 (𝐶↑2)))) | ||
Theorem | rrxf 24470* | Euclidean vectors as functions. (Contributed by Thierry Arnoux, 7-Jul-2019.) |
⊢ 𝑋 = {ℎ ∈ (ℝ ↑m 𝐼) ∣ ℎ finSupp 0} & ⊢ (𝜑 → 𝐹 ∈ 𝑋) ⇒ ⊢ (𝜑 → 𝐹:𝐼⟶ℝ) | ||
Theorem | rrxfsupp 24471* | Euclidean vectors are of finite support. (Contributed by Thierry Arnoux, 7-Jul-2019.) |
⊢ 𝑋 = {ℎ ∈ (ℝ ↑m 𝐼) ∣ ℎ finSupp 0} & ⊢ (𝜑 → 𝐹 ∈ 𝑋) ⇒ ⊢ (𝜑 → (𝐹 supp 0) ∈ Fin) | ||
Theorem | rrxsuppss 24472* | Support of Euclidean vectors. (Contributed by Thierry Arnoux, 7-Jul-2019.) |
⊢ 𝑋 = {ℎ ∈ (ℝ ↑m 𝐼) ∣ ℎ finSupp 0} & ⊢ (𝜑 → 𝐹 ∈ 𝑋) ⇒ ⊢ (𝜑 → (𝐹 supp 0) ⊆ 𝐼) | ||
Theorem | rrxmvallem 24473* | Support of the function used for building the distance . (Contributed by Thierry Arnoux, 30-Jun-2019.) |
⊢ 𝑋 = {ℎ ∈ (ℝ ↑m 𝐼) ∣ ℎ finSupp 0} ⇒ ⊢ ((𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋) → ((𝑘 ∈ 𝐼 ↦ (((𝐹‘𝑘) − (𝐺‘𝑘))↑2)) supp 0) ⊆ ((𝐹 supp 0) ∪ (𝐺 supp 0))) | ||
Theorem | rrxmval 24474* | The value of the Euclidean metric. Compare with rrnmval 35913. (Contributed by Thierry Arnoux, 30-Jun-2019.) |
⊢ 𝑋 = {ℎ ∈ (ℝ ↑m 𝐼) ∣ ℎ finSupp 0} & ⊢ 𝐷 = (dist‘(ℝ^‘𝐼)) ⇒ ⊢ ((𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋) → (𝐹𝐷𝐺) = (√‘Σ𝑘 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))(((𝐹‘𝑘) − (𝐺‘𝑘))↑2))) | ||
Theorem | rrxmfval 24475* | The value of the Euclidean metric. Compare with rrnval 35912. (Contributed by Thierry Arnoux, 30-Jun-2019.) |
⊢ 𝑋 = {ℎ ∈ (ℝ ↑m 𝐼) ∣ ℎ finSupp 0} & ⊢ 𝐷 = (dist‘(ℝ^‘𝐼)) ⇒ ⊢ (𝐼 ∈ 𝑉 → 𝐷 = (𝑓 ∈ 𝑋, 𝑔 ∈ 𝑋 ↦ (√‘Σ𝑘 ∈ ((𝑓 supp 0) ∪ (𝑔 supp 0))(((𝑓‘𝑘) − (𝑔‘𝑘))↑2)))) | ||
Theorem | rrxmetlem 24476* | Lemma for rrxmet 24477. (Contributed by Thierry Arnoux, 5-Jul-2019.) |
⊢ 𝑋 = {ℎ ∈ (ℝ ↑m 𝐼) ∣ ℎ finSupp 0} & ⊢ 𝐷 = (dist‘(ℝ^‘𝐼)) & ⊢ (𝜑 → 𝐼 ∈ 𝑉) & ⊢ (𝜑 → 𝐹 ∈ 𝑋) & ⊢ (𝜑 → 𝐺 ∈ 𝑋) & ⊢ (𝜑 → 𝐴 ⊆ 𝐼) & ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ (𝜑 → ((𝐹 supp 0) ∪ (𝐺 supp 0)) ⊆ 𝐴) ⇒ ⊢ (𝜑 → Σ𝑘 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))(((𝐹‘𝑘) − (𝐺‘𝑘))↑2) = Σ𝑘 ∈ 𝐴 (((𝐹‘𝑘) − (𝐺‘𝑘))↑2)) | ||
Theorem | rrxmet 24477* | Euclidean space is a metric space. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 5-Jun-2014.) (Revised by Thierry Arnoux, 30-Jun-2019.) |
⊢ 𝑋 = {ℎ ∈ (ℝ ↑m 𝐼) ∣ ℎ finSupp 0} & ⊢ 𝐷 = (dist‘(ℝ^‘𝐼)) ⇒ ⊢ (𝐼 ∈ 𝑉 → 𝐷 ∈ (Met‘𝑋)) | ||
Theorem | rrxdstprj1 24478* | The distance between two points in Euclidean space is greater than the distance between the projections onto one coordinate. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 13-Sep-2015.) (Revised by Thierry Arnoux, 7-Jul-2019.) |
⊢ 𝑋 = {ℎ ∈ (ℝ ↑m 𝐼) ∣ ℎ finSupp 0} & ⊢ 𝐷 = (dist‘(ℝ^‘𝐼)) & ⊢ 𝑀 = ((abs ∘ − ) ↾ (ℝ × ℝ)) ⇒ ⊢ (((𝐼 ∈ 𝑉 ∧ 𝐴 ∈ 𝐼) ∧ (𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋)) → ((𝐹‘𝐴)𝑀(𝐺‘𝐴)) ≤ (𝐹𝐷𝐺)) | ||
Theorem | rrxbasefi 24479 | The base of the generalized real Euclidean space, when the dimension of the space is finite. This justifies the use of (ℝ ↑m 𝑋) for the development of the Lebesgue measure theory for n-dimensional real numbers. (Contributed by Glauco Siliprandi, 24-Dec-2020.) |
⊢ (𝜑 → 𝑋 ∈ Fin) & ⊢ 𝐻 = (ℝ^‘𝑋) & ⊢ 𝐵 = (Base‘𝐻) ⇒ ⊢ (𝜑 → 𝐵 = (ℝ ↑m 𝑋)) | ||
Theorem | rrxdsfi 24480* | The distance over generalized Euclidean spaces. Finite dimensional case. (Contributed by Glauco Siliprandi, 24-Dec-2020.) |
⊢ 𝐻 = (ℝ^‘𝐼) & ⊢ 𝐵 = (ℝ ↑m 𝐼) ⇒ ⊢ (𝐼 ∈ Fin → (dist‘𝐻) = (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ (√‘Σ𝑘 ∈ 𝐼 (((𝑓‘𝑘) − (𝑔‘𝑘))↑2)))) | ||
Theorem | rrxmetfi 24481 | Euclidean space is a metric space. Finite dimensional version. (Contributed by Glauco Siliprandi, 24-Dec-2020.) |
⊢ 𝐷 = (dist‘(ℝ^‘𝐼)) ⇒ ⊢ (𝐼 ∈ Fin → 𝐷 ∈ (Met‘(ℝ ↑m 𝐼))) | ||
Theorem | rrxdsfival 24482* | The value of the Euclidean distance function in a generalized real Euclidean space of finite dimension. (Contributed by AV, 15-Jan-2023.) |
⊢ 𝑋 = (ℝ ↑m 𝐼) & ⊢ 𝐷 = (dist‘(ℝ^‘𝐼)) ⇒ ⊢ ((𝐼 ∈ Fin ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋) → (𝐹𝐷𝐺) = (√‘Σ𝑘 ∈ 𝐼 (((𝐹‘𝑘) − (𝐺‘𝑘))↑2))) | ||
Theorem | ehlval 24483 | Value of the Euclidean space of dimension 𝑁. (Contributed by Thierry Arnoux, 16-Jun-2019.) |
⊢ 𝐸 = (𝔼hil‘𝑁) ⇒ ⊢ (𝑁 ∈ ℕ0 → 𝐸 = (ℝ^‘(1...𝑁))) | ||
Theorem | ehlbase 24484 | The base of the Euclidean space is the set of n-tuples of real numbers. (Contributed by Thierry Arnoux, 16-Jun-2019.) |
⊢ 𝐸 = (𝔼hil‘𝑁) ⇒ ⊢ (𝑁 ∈ ℕ0 → (ℝ ↑m (1...𝑁)) = (Base‘𝐸)) | ||
Theorem | ehl0base 24485 | The base of the Euclidean space of dimension 0 consists only of one element, the empty set. (Contributed by AV, 12-Feb-2023.) |
⊢ 𝐸 = (𝔼hil‘0) ⇒ ⊢ (Base‘𝐸) = {∅} | ||
Theorem | ehl0 24486 | The Euclidean space of dimension 0 consists of the neutral element only. (Contributed by AV, 12-Feb-2023.) |
⊢ 𝐸 = (𝔼hil‘0) & ⊢ 0 = (0g‘𝐸) ⇒ ⊢ (Base‘𝐸) = { 0 } | ||
Theorem | ehleudis 24487* | The Euclidean distance function in a real Euclidean space of finite dimension. (Contributed by AV, 15-Jan-2023.) |
⊢ 𝐼 = (1...𝑁) & ⊢ 𝐸 = (𝔼hil‘𝑁) & ⊢ 𝑋 = (ℝ ↑m 𝐼) & ⊢ 𝐷 = (dist‘𝐸) ⇒ ⊢ (𝑁 ∈ ℕ0 → 𝐷 = (𝑓 ∈ 𝑋, 𝑔 ∈ 𝑋 ↦ (√‘Σ𝑘 ∈ 𝐼 (((𝑓‘𝑘) − (𝑔‘𝑘))↑2)))) | ||
Theorem | ehleudisval 24488* | The value of the Euclidean distance function in a real Euclidean space of finite dimension. (Contributed by AV, 15-Jan-2023.) |
⊢ 𝐼 = (1...𝑁) & ⊢ 𝐸 = (𝔼hil‘𝑁) & ⊢ 𝑋 = (ℝ ↑m 𝐼) & ⊢ 𝐷 = (dist‘𝐸) ⇒ ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋) → (𝐹𝐷𝐺) = (√‘Σ𝑘 ∈ 𝐼 (((𝐹‘𝑘) − (𝐺‘𝑘))↑2))) | ||
Theorem | ehl1eudis 24489* | The Euclidean distance function in a real Euclidean space of dimension 1. (Contributed by AV, 16-Jan-2023.) |
⊢ 𝐸 = (𝔼hil‘1) & ⊢ 𝑋 = (ℝ ↑m {1}) & ⊢ 𝐷 = (dist‘𝐸) ⇒ ⊢ 𝐷 = (𝑓 ∈ 𝑋, 𝑔 ∈ 𝑋 ↦ (abs‘((𝑓‘1) − (𝑔‘1)))) | ||
Theorem | ehl1eudisval 24490 | The value of the Euclidean distance function in a real Euclidean space of dimension 1. (Contributed by AV, 16-Jan-2023.) |
⊢ 𝐸 = (𝔼hil‘1) & ⊢ 𝑋 = (ℝ ↑m {1}) & ⊢ 𝐷 = (dist‘𝐸) ⇒ ⊢ ((𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋) → (𝐹𝐷𝐺) = (abs‘((𝐹‘1) − (𝐺‘1)))) | ||
Theorem | ehl2eudis 24491* | The Euclidean distance function in a real Euclidean space of dimension 2. (Contributed by AV, 16-Jan-2023.) |
⊢ 𝐸 = (𝔼hil‘2) & ⊢ 𝑋 = (ℝ ↑m {1, 2}) & ⊢ 𝐷 = (dist‘𝐸) ⇒ ⊢ 𝐷 = (𝑓 ∈ 𝑋, 𝑔 ∈ 𝑋 ↦ (√‘((((𝑓‘1) − (𝑔‘1))↑2) + (((𝑓‘2) − (𝑔‘2))↑2)))) | ||
Theorem | ehl2eudisval 24492 | The value of the Euclidean distance function in a real Euclidean space of dimension 2. (Contributed by AV, 16-Jan-2023.) |
⊢ 𝐸 = (𝔼hil‘2) & ⊢ 𝑋 = (ℝ ↑m {1, 2}) & ⊢ 𝐷 = (dist‘𝐸) ⇒ ⊢ ((𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋) → (𝐹𝐷𝐺) = (√‘((((𝐹‘1) − (𝐺‘1))↑2) + (((𝐹‘2) − (𝐺‘2))↑2)))) | ||
Theorem | minveclem1 24493* | Lemma for minvec 24505. The set of all distances from points of 𝑌 to 𝐴 are a nonempty set of nonnegative reals. (Contributed by Mario Carneiro, 8-May-2014.) (Revised by Mario Carneiro, 15-Oct-2015.) |
⊢ 𝑋 = (Base‘𝑈) & ⊢ − = (-g‘𝑈) & ⊢ 𝑁 = (norm‘𝑈) & ⊢ (𝜑 → 𝑈 ∈ ℂPreHil) & ⊢ (𝜑 → 𝑌 ∈ (LSubSp‘𝑈)) & ⊢ (𝜑 → (𝑈 ↾s 𝑌) ∈ CMetSp) & ⊢ (𝜑 → 𝐴 ∈ 𝑋) & ⊢ 𝐽 = (TopOpen‘𝑈) & ⊢ 𝑅 = ran (𝑦 ∈ 𝑌 ↦ (𝑁‘(𝐴 − 𝑦))) ⇒ ⊢ (𝜑 → (𝑅 ⊆ ℝ ∧ 𝑅 ≠ ∅ ∧ ∀𝑤 ∈ 𝑅 0 ≤ 𝑤)) | ||
Theorem | minveclem4c 24494* | Lemma for minvec 24505. The infimum of the distances to 𝐴 is a real number. (Contributed by Mario Carneiro, 16-Jun-2014.) (Revised by Mario Carneiro, 15-Oct-2015.) (Revised by AV, 3-Oct-2020.) |
⊢ 𝑋 = (Base‘𝑈) & ⊢ − = (-g‘𝑈) & ⊢ 𝑁 = (norm‘𝑈) & ⊢ (𝜑 → 𝑈 ∈ ℂPreHil) & ⊢ (𝜑 → 𝑌 ∈ (LSubSp‘𝑈)) & ⊢ (𝜑 → (𝑈 ↾s 𝑌) ∈ CMetSp) & ⊢ (𝜑 → 𝐴 ∈ 𝑋) & ⊢ 𝐽 = (TopOpen‘𝑈) & ⊢ 𝑅 = ran (𝑦 ∈ 𝑌 ↦ (𝑁‘(𝐴 − 𝑦))) & ⊢ 𝑆 = inf(𝑅, ℝ, < ) ⇒ ⊢ (𝜑 → 𝑆 ∈ ℝ) | ||
Theorem | minveclem2 24495* | Lemma for minvec 24505. Any two points 𝐾 and 𝐿 in 𝑌 are close to each other if they are close to the infimum of distance to 𝐴. (Contributed by Mario Carneiro, 9-May-2014.) (Revised by Mario Carneiro, 15-Oct-2015.) (Revised by AV, 3-Oct-2020.) |
⊢ 𝑋 = (Base‘𝑈) & ⊢ − = (-g‘𝑈) & ⊢ 𝑁 = (norm‘𝑈) & ⊢ (𝜑 → 𝑈 ∈ ℂPreHil) & ⊢ (𝜑 → 𝑌 ∈ (LSubSp‘𝑈)) & ⊢ (𝜑 → (𝑈 ↾s 𝑌) ∈ CMetSp) & ⊢ (𝜑 → 𝐴 ∈ 𝑋) & ⊢ 𝐽 = (TopOpen‘𝑈) & ⊢ 𝑅 = ran (𝑦 ∈ 𝑌 ↦ (𝑁‘(𝐴 − 𝑦))) & ⊢ 𝑆 = inf(𝑅, ℝ, < ) & ⊢ 𝐷 = ((dist‘𝑈) ↾ (𝑋 × 𝑋)) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 0 ≤ 𝐵) & ⊢ (𝜑 → 𝐾 ∈ 𝑌) & ⊢ (𝜑 → 𝐿 ∈ 𝑌) & ⊢ (𝜑 → ((𝐴𝐷𝐾)↑2) ≤ ((𝑆↑2) + 𝐵)) & ⊢ (𝜑 → ((𝐴𝐷𝐿)↑2) ≤ ((𝑆↑2) + 𝐵)) ⇒ ⊢ (𝜑 → ((𝐾𝐷𝐿)↑2) ≤ (4 · 𝐵)) | ||
Theorem | minveclem3a 24496* | Lemma for minvec 24505. 𝐷 is a complete metric when restricted to 𝑌. (Contributed by Mario Carneiro, 7-May-2014.) (Revised by Mario Carneiro, 15-Oct-2015.) |
⊢ 𝑋 = (Base‘𝑈) & ⊢ − = (-g‘𝑈) & ⊢ 𝑁 = (norm‘𝑈) & ⊢ (𝜑 → 𝑈 ∈ ℂPreHil) & ⊢ (𝜑 → 𝑌 ∈ (LSubSp‘𝑈)) & ⊢ (𝜑 → (𝑈 ↾s 𝑌) ∈ CMetSp) & ⊢ (𝜑 → 𝐴 ∈ 𝑋) & ⊢ 𝐽 = (TopOpen‘𝑈) & ⊢ 𝑅 = ran (𝑦 ∈ 𝑌 ↦ (𝑁‘(𝐴 − 𝑦))) & ⊢ 𝑆 = inf(𝑅, ℝ, < ) & ⊢ 𝐷 = ((dist‘𝑈) ↾ (𝑋 × 𝑋)) ⇒ ⊢ (𝜑 → (𝐷 ↾ (𝑌 × 𝑌)) ∈ (CMet‘𝑌)) | ||
Theorem | minveclem3b 24497* | Lemma for minvec 24505. The set of vectors within a fixed distance of the infimum forms a filter base. (Contributed by Mario Carneiro, 15-Oct-2015.) (Revised by AV, 3-Oct-2020.) |
⊢ 𝑋 = (Base‘𝑈) & ⊢ − = (-g‘𝑈) & ⊢ 𝑁 = (norm‘𝑈) & ⊢ (𝜑 → 𝑈 ∈ ℂPreHil) & ⊢ (𝜑 → 𝑌 ∈ (LSubSp‘𝑈)) & ⊢ (𝜑 → (𝑈 ↾s 𝑌) ∈ CMetSp) & ⊢ (𝜑 → 𝐴 ∈ 𝑋) & ⊢ 𝐽 = (TopOpen‘𝑈) & ⊢ 𝑅 = ran (𝑦 ∈ 𝑌 ↦ (𝑁‘(𝐴 − 𝑦))) & ⊢ 𝑆 = inf(𝑅, ℝ, < ) & ⊢ 𝐷 = ((dist‘𝑈) ↾ (𝑋 × 𝑋)) & ⊢ 𝐹 = ran (𝑟 ∈ ℝ+ ↦ {𝑦 ∈ 𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + 𝑟)}) ⇒ ⊢ (𝜑 → 𝐹 ∈ (fBas‘𝑌)) | ||
Theorem | minveclem3 24498* | Lemma for minvec 24505. The filter formed by taking elements successively closer to the infimum is Cauchy. (Contributed by Mario Carneiro, 8-May-2014.) (Revised by Mario Carneiro, 15-Oct-2015.) |
⊢ 𝑋 = (Base‘𝑈) & ⊢ − = (-g‘𝑈) & ⊢ 𝑁 = (norm‘𝑈) & ⊢ (𝜑 → 𝑈 ∈ ℂPreHil) & ⊢ (𝜑 → 𝑌 ∈ (LSubSp‘𝑈)) & ⊢ (𝜑 → (𝑈 ↾s 𝑌) ∈ CMetSp) & ⊢ (𝜑 → 𝐴 ∈ 𝑋) & ⊢ 𝐽 = (TopOpen‘𝑈) & ⊢ 𝑅 = ran (𝑦 ∈ 𝑌 ↦ (𝑁‘(𝐴 − 𝑦))) & ⊢ 𝑆 = inf(𝑅, ℝ, < ) & ⊢ 𝐷 = ((dist‘𝑈) ↾ (𝑋 × 𝑋)) & ⊢ 𝐹 = ran (𝑟 ∈ ℝ+ ↦ {𝑦 ∈ 𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + 𝑟)}) ⇒ ⊢ (𝜑 → (𝑌filGen𝐹) ∈ (CauFil‘(𝐷 ↾ (𝑌 × 𝑌)))) | ||
Theorem | minveclem4a 24499* | Lemma for minvec 24505. 𝐹 converges to a point 𝑃 in 𝑌. (Contributed by Mario Carneiro, 7-May-2014.) (Revised by Mario Carneiro, 15-Oct-2015.) |
⊢ 𝑋 = (Base‘𝑈) & ⊢ − = (-g‘𝑈) & ⊢ 𝑁 = (norm‘𝑈) & ⊢ (𝜑 → 𝑈 ∈ ℂPreHil) & ⊢ (𝜑 → 𝑌 ∈ (LSubSp‘𝑈)) & ⊢ (𝜑 → (𝑈 ↾s 𝑌) ∈ CMetSp) & ⊢ (𝜑 → 𝐴 ∈ 𝑋) & ⊢ 𝐽 = (TopOpen‘𝑈) & ⊢ 𝑅 = ran (𝑦 ∈ 𝑌 ↦ (𝑁‘(𝐴 − 𝑦))) & ⊢ 𝑆 = inf(𝑅, ℝ, < ) & ⊢ 𝐷 = ((dist‘𝑈) ↾ (𝑋 × 𝑋)) & ⊢ 𝐹 = ran (𝑟 ∈ ℝ+ ↦ {𝑦 ∈ 𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + 𝑟)}) & ⊢ 𝑃 = ∪ (𝐽 fLim (𝑋filGen𝐹)) ⇒ ⊢ (𝜑 → 𝑃 ∈ ((𝐽 fLim (𝑋filGen𝐹)) ∩ 𝑌)) | ||
Theorem | minveclem4b 24500* | Lemma for minvec 24505. The convergent point of the Cauchy sequence 𝐹 is a member of the base space. (Contributed by Mario Carneiro, 16-Jun-2014.) (Revised by Mario Carneiro, 15-Oct-2015.) |
⊢ 𝑋 = (Base‘𝑈) & ⊢ − = (-g‘𝑈) & ⊢ 𝑁 = (norm‘𝑈) & ⊢ (𝜑 → 𝑈 ∈ ℂPreHil) & ⊢ (𝜑 → 𝑌 ∈ (LSubSp‘𝑈)) & ⊢ (𝜑 → (𝑈 ↾s 𝑌) ∈ CMetSp) & ⊢ (𝜑 → 𝐴 ∈ 𝑋) & ⊢ 𝐽 = (TopOpen‘𝑈) & ⊢ 𝑅 = ran (𝑦 ∈ 𝑌 ↦ (𝑁‘(𝐴 − 𝑦))) & ⊢ 𝑆 = inf(𝑅, ℝ, < ) & ⊢ 𝐷 = ((dist‘𝑈) ↾ (𝑋 × 𝑋)) & ⊢ 𝐹 = ran (𝑟 ∈ ℝ+ ↦ {𝑦 ∈ 𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + 𝑟)}) & ⊢ 𝑃 = ∪ (𝐽 fLim (𝑋filGen𝐹)) ⇒ ⊢ (𝜑 → 𝑃 ∈ 𝑋) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |