Detailed syntax breakdown of Definition df-tng
| Step | Hyp | Ref
| Expression |
| 1 | | ctng 24515 |
. 2
class
toNrmGrp |
| 2 | | vg |
. . 3
setvar 𝑔 |
| 3 | | vf |
. . 3
setvar 𝑓 |
| 4 | | cvv 3459 |
. . 3
class
V |
| 5 | 2 | cv 1539 |
. . . . 5
class 𝑔 |
| 6 | | cnx 17210 |
. . . . . . 7
class
ndx |
| 7 | | cds 17278 |
. . . . . . 7
class
dist |
| 8 | 6, 7 | cfv 6530 |
. . . . . 6
class
(dist‘ndx) |
| 9 | 3 | cv 1539 |
. . . . . . 7
class 𝑓 |
| 10 | | csg 18916 |
. . . . . . . 8
class
-g |
| 11 | 5, 10 | cfv 6530 |
. . . . . . 7
class
(-g‘𝑔) |
| 12 | 9, 11 | ccom 5658 |
. . . . . 6
class (𝑓 ∘
(-g‘𝑔)) |
| 13 | 8, 12 | cop 4607 |
. . . . 5
class
〈(dist‘ndx), (𝑓 ∘ (-g‘𝑔))〉 |
| 14 | | csts 17180 |
. . . . 5
class
sSet |
| 15 | 5, 13, 14 | co 7403 |
. . . 4
class (𝑔 sSet 〈(dist‘ndx),
(𝑓 ∘
(-g‘𝑔))〉) |
| 16 | | cts 17275 |
. . . . . 6
class
TopSet |
| 17 | 6, 16 | cfv 6530 |
. . . . 5
class
(TopSet‘ndx) |
| 18 | | cmopn 21303 |
. . . . . 6
class
MetOpen |
| 19 | 12, 18 | cfv 6530 |
. . . . 5
class
(MetOpen‘(𝑓
∘ (-g‘𝑔))) |
| 20 | 17, 19 | cop 4607 |
. . . 4
class
〈(TopSet‘ndx), (MetOpen‘(𝑓 ∘ (-g‘𝑔)))〉 |
| 21 | 15, 20, 14 | co 7403 |
. . 3
class ((𝑔 sSet 〈(dist‘ndx),
(𝑓 ∘
(-g‘𝑔))〉) sSet 〈(TopSet‘ndx),
(MetOpen‘(𝑓 ∘
(-g‘𝑔)))〉) |
| 22 | 2, 3, 4, 4, 21 | cmpo 7405 |
. 2
class (𝑔 ∈ V, 𝑓 ∈ V ↦ ((𝑔 sSet 〈(dist‘ndx), (𝑓 ∘
(-g‘𝑔))〉) sSet 〈(TopSet‘ndx),
(MetOpen‘(𝑓 ∘
(-g‘𝑔)))〉)) |
| 23 | 1, 22 | wceq 1540 |
1
wff toNrmGrp =
(𝑔 ∈ V, 𝑓 ∈ V ↦ ((𝑔 sSet 〈(dist‘ndx),
(𝑓 ∘
(-g‘𝑔))〉) sSet 〈(TopSet‘ndx),
(MetOpen‘(𝑓 ∘
(-g‘𝑔)))〉)) |