Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > df-nlfn | Structured version Visualization version GIF version |
Description: Define the null space of a Hilbert space functional. (Contributed by NM, 11-Feb-2006.) (New usage is discouraged.) |
Ref | Expression |
---|---|
df-nlfn | ⊢ null = (𝑡 ∈ (ℂ ↑m ℋ) ↦ (◡𝑡 “ {0})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnl 29215 | . 2 class null | |
2 | vt | . . 3 setvar 𝑡 | |
3 | cc 10800 | . . . 4 class ℂ | |
4 | chba 29182 | . . . 4 class ℋ | |
5 | cmap 8573 | . . . 4 class ↑m | |
6 | 3, 4, 5 | co 7255 | . . 3 class (ℂ ↑m ℋ) |
7 | 2 | cv 1538 | . . . . 5 class 𝑡 |
8 | 7 | ccnv 5579 | . . . 4 class ◡𝑡 |
9 | cc0 10802 | . . . . 5 class 0 | |
10 | 9 | csn 4558 | . . . 4 class {0} |
11 | 8, 10 | cima 5583 | . . 3 class (◡𝑡 “ {0}) |
12 | 2, 6, 11 | cmpt 5153 | . 2 class (𝑡 ∈ (ℂ ↑m ℋ) ↦ (◡𝑡 “ {0})) |
13 | 1, 12 | wceq 1539 | 1 wff null = (𝑡 ∈ (ℂ ↑m ℋ) ↦ (◡𝑡 “ {0})) |
Colors of variables: wff setvar class |
This definition is referenced by: nlfnval 30144 |
Copyright terms: Public domain | W3C validator |