| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > df-nlfn | Structured version Visualization version GIF version | ||
| Description: Define the null space of a Hilbert space functional. (Contributed by NM, 11-Feb-2006.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| df-nlfn | ⊢ null = (𝑡 ∈ (ℂ ↑m ℋ) ↦ (◡𝑡 “ {0})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnl 30971 | . 2 class null | |
| 2 | vt | . . 3 setvar 𝑡 | |
| 3 | cc 11153 | . . . 4 class ℂ | |
| 4 | chba 30938 | . . . 4 class ℋ | |
| 5 | cmap 8866 | . . . 4 class ↑m | |
| 6 | 3, 4, 5 | co 7431 | . . 3 class (ℂ ↑m ℋ) |
| 7 | 2 | cv 1539 | . . . . 5 class 𝑡 |
| 8 | 7 | ccnv 5684 | . . . 4 class ◡𝑡 |
| 9 | cc0 11155 | . . . . 5 class 0 | |
| 10 | 9 | csn 4626 | . . . 4 class {0} |
| 11 | 8, 10 | cima 5688 | . . 3 class (◡𝑡 “ {0}) |
| 12 | 2, 6, 11 | cmpt 5225 | . 2 class (𝑡 ∈ (ℂ ↑m ℋ) ↦ (◡𝑡 “ {0})) |
| 13 | 1, 12 | wceq 1540 | 1 wff null = (𝑡 ∈ (ℂ ↑m ℋ) ↦ (◡𝑡 “ {0})) |
| Colors of variables: wff setvar class |
| This definition is referenced by: nlfnval 31900 |
| Copyright terms: Public domain | W3C validator |