Hilbert Space Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  HSE Home  >  Th. List  >  df-cnfn Structured version   Visualization version   GIF version

Definition df-cnfn 29633
 Description: Define the set of continuous functionals on Hilbert space. For every "epsilon" (𝑦) there is a "delta" (𝑧) such that... (Contributed by NM, 11-Feb-2006.) (New usage is discouraged.)
Assertion
Ref Expression
df-cnfn ContFn = {𝑡 ∈ (ℂ ↑m ℋ) ∣ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤 ∈ ℋ ((norm‘(𝑤 𝑥)) < 𝑧 → (abs‘((𝑡𝑤) − (𝑡𝑥))) < 𝑦)}
Distinct variable group:   𝑤,𝑡,𝑥,𝑦,𝑧

Detailed syntax breakdown of Definition df-cnfn
StepHypRef Expression
1 ccnfn 28739 . 2 class ContFn
2 vw . . . . . . . . . . . 12 setvar 𝑤
32cv 1537 . . . . . . . . . . 11 class 𝑤
4 vx . . . . . . . . . . . 12 setvar 𝑥
54cv 1537 . . . . . . . . . . 11 class 𝑥
6 cmv 28711 . . . . . . . . . . 11 class
73, 5, 6co 7139 . . . . . . . . . 10 class (𝑤 𝑥)
8 cno 28709 . . . . . . . . . 10 class norm
97, 8cfv 6328 . . . . . . . . 9 class (norm‘(𝑤 𝑥))
10 vz . . . . . . . . . 10 setvar 𝑧
1110cv 1537 . . . . . . . . 9 class 𝑧
12 clt 10668 . . . . . . . . 9 class <
139, 11, 12wbr 5033 . . . . . . . 8 wff (norm‘(𝑤 𝑥)) < 𝑧
14 vt . . . . . . . . . . . . 13 setvar 𝑡
1514cv 1537 . . . . . . . . . . . 12 class 𝑡
163, 15cfv 6328 . . . . . . . . . . 11 class (𝑡𝑤)
175, 15cfv 6328 . . . . . . . . . . 11 class (𝑡𝑥)
18 cmin 10863 . . . . . . . . . . 11 class
1916, 17, 18co 7139 . . . . . . . . . 10 class ((𝑡𝑤) − (𝑡𝑥))
20 cabs 14588 . . . . . . . . . 10 class abs
2119, 20cfv 6328 . . . . . . . . 9 class (abs‘((𝑡𝑤) − (𝑡𝑥)))
22 vy . . . . . . . . . 10 setvar 𝑦
2322cv 1537 . . . . . . . . 9 class 𝑦
2421, 23, 12wbr 5033 . . . . . . . 8 wff (abs‘((𝑡𝑤) − (𝑡𝑥))) < 𝑦
2513, 24wi 4 . . . . . . 7 wff ((norm‘(𝑤 𝑥)) < 𝑧 → (abs‘((𝑡𝑤) − (𝑡𝑥))) < 𝑦)
26 chba 28705 . . . . . . 7 class
2725, 2, 26wral 3109 . . . . . 6 wff 𝑤 ∈ ℋ ((norm‘(𝑤 𝑥)) < 𝑧 → (abs‘((𝑡𝑤) − (𝑡𝑥))) < 𝑦)
28 crp 12381 . . . . . 6 class +
2927, 10, 28wrex 3110 . . . . 5 wff 𝑧 ∈ ℝ+𝑤 ∈ ℋ ((norm‘(𝑤 𝑥)) < 𝑧 → (abs‘((𝑡𝑤) − (𝑡𝑥))) < 𝑦)
3029, 22, 28wral 3109 . . . 4 wff 𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤 ∈ ℋ ((norm‘(𝑤 𝑥)) < 𝑧 → (abs‘((𝑡𝑤) − (𝑡𝑥))) < 𝑦)
3130, 4, 26wral 3109 . . 3 wff 𝑥 ∈ ℋ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤 ∈ ℋ ((norm‘(𝑤 𝑥)) < 𝑧 → (abs‘((𝑡𝑤) − (𝑡𝑥))) < 𝑦)
32 cc 10528 . . . 4 class
33 cmap 8393 . . . 4 class m
3432, 26, 33co 7139 . . 3 class (ℂ ↑m ℋ)
3531, 14, 34crab 3113 . 2 class {𝑡 ∈ (ℂ ↑m ℋ) ∣ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤 ∈ ℋ ((norm‘(𝑤 𝑥)) < 𝑧 → (abs‘((𝑡𝑤) − (𝑡𝑥))) < 𝑦)}
361, 35wceq 1538 1 wff ContFn = {𝑡 ∈ (ℂ ↑m ℋ) ∣ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤 ∈ ℋ ((norm‘(𝑤 𝑥)) < 𝑧 → (abs‘((𝑡𝑤) − (𝑡𝑥))) < 𝑦)}
 Colors of variables: wff setvar class This definition is referenced by:  elcnfn  29668  hhcnf  29691
 Copyright terms: Public domain W3C validator