Detailed syntax breakdown of Definition df-cnfn
| Step | Hyp | Ref
| Expression |
| 1 | | ccnfn 30973 |
. 2
class
ContFn |
| 2 | | vw |
. . . . . . . . . . . 12
setvar 𝑤 |
| 3 | 2 | cv 1538 |
. . . . . . . . . . 11
class 𝑤 |
| 4 | | vx |
. . . . . . . . . . . 12
setvar 𝑥 |
| 5 | 4 | cv 1538 |
. . . . . . . . . . 11
class 𝑥 |
| 6 | | cmv 30945 |
. . . . . . . . . . 11
class
−ℎ |
| 7 | 3, 5, 6 | co 7432 |
. . . . . . . . . 10
class (𝑤 −ℎ
𝑥) |
| 8 | | cno 30943 |
. . . . . . . . . 10
class
normℎ |
| 9 | 7, 8 | cfv 6560 |
. . . . . . . . 9
class
(normℎ‘(𝑤 −ℎ 𝑥)) |
| 10 | | vz |
. . . . . . . . . 10
setvar 𝑧 |
| 11 | 10 | cv 1538 |
. . . . . . . . 9
class 𝑧 |
| 12 | | clt 11296 |
. . . . . . . . 9
class
< |
| 13 | 9, 11, 12 | wbr 5142 |
. . . . . . . 8
wff
(normℎ‘(𝑤 −ℎ 𝑥)) < 𝑧 |
| 14 | | vt |
. . . . . . . . . . . . 13
setvar 𝑡 |
| 15 | 14 | cv 1538 |
. . . . . . . . . . . 12
class 𝑡 |
| 16 | 3, 15 | cfv 6560 |
. . . . . . . . . . 11
class (𝑡‘𝑤) |
| 17 | 5, 15 | cfv 6560 |
. . . . . . . . . . 11
class (𝑡‘𝑥) |
| 18 | | cmin 11493 |
. . . . . . . . . . 11
class
− |
| 19 | 16, 17, 18 | co 7432 |
. . . . . . . . . 10
class ((𝑡‘𝑤) − (𝑡‘𝑥)) |
| 20 | | cabs 15274 |
. . . . . . . . . 10
class
abs |
| 21 | 19, 20 | cfv 6560 |
. . . . . . . . 9
class
(abs‘((𝑡‘𝑤) − (𝑡‘𝑥))) |
| 22 | | vy |
. . . . . . . . . 10
setvar 𝑦 |
| 23 | 22 | cv 1538 |
. . . . . . . . 9
class 𝑦 |
| 24 | 21, 23, 12 | wbr 5142 |
. . . . . . . 8
wff
(abs‘((𝑡‘𝑤) − (𝑡‘𝑥))) < 𝑦 |
| 25 | 13, 24 | wi 4 |
. . . . . . 7
wff
((normℎ‘(𝑤 −ℎ 𝑥)) < 𝑧 → (abs‘((𝑡‘𝑤) − (𝑡‘𝑥))) < 𝑦) |
| 26 | | chba 30939 |
. . . . . . 7
class
ℋ |
| 27 | 25, 2, 26 | wral 3060 |
. . . . . 6
wff
∀𝑤 ∈
ℋ ((normℎ‘(𝑤 −ℎ 𝑥)) < 𝑧 → (abs‘((𝑡‘𝑤) − (𝑡‘𝑥))) < 𝑦) |
| 28 | | crp 13035 |
. . . . . 6
class
ℝ+ |
| 29 | 27, 10, 28 | wrex 3069 |
. . . . 5
wff
∃𝑧 ∈
ℝ+ ∀𝑤 ∈ ℋ
((normℎ‘(𝑤 −ℎ 𝑥)) < 𝑧 → (abs‘((𝑡‘𝑤) − (𝑡‘𝑥))) < 𝑦) |
| 30 | 29, 22, 28 | wral 3060 |
. . . 4
wff
∀𝑦 ∈
ℝ+ ∃𝑧 ∈ ℝ+ ∀𝑤 ∈ ℋ
((normℎ‘(𝑤 −ℎ 𝑥)) < 𝑧 → (abs‘((𝑡‘𝑤) − (𝑡‘𝑥))) < 𝑦) |
| 31 | 30, 4, 26 | wral 3060 |
. . 3
wff
∀𝑥 ∈
ℋ ∀𝑦 ∈
ℝ+ ∃𝑧 ∈ ℝ+ ∀𝑤 ∈ ℋ
((normℎ‘(𝑤 −ℎ 𝑥)) < 𝑧 → (abs‘((𝑡‘𝑤) − (𝑡‘𝑥))) < 𝑦) |
| 32 | | cc 11154 |
. . . 4
class
ℂ |
| 33 | | cmap 8867 |
. . . 4
class
↑m |
| 34 | 32, 26, 33 | co 7432 |
. . 3
class (ℂ
↑m ℋ) |
| 35 | 31, 14, 34 | crab 3435 |
. 2
class {𝑡 ∈ (ℂ
↑m ℋ) ∣ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℝ+ ∃𝑧 ∈ ℝ+
∀𝑤 ∈ ℋ
((normℎ‘(𝑤 −ℎ 𝑥)) < 𝑧 → (abs‘((𝑡‘𝑤) − (𝑡‘𝑥))) < 𝑦)} |
| 36 | 1, 35 | wceq 1539 |
1
wff ContFn =
{𝑡 ∈ (ℂ
↑m ℋ) ∣ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℝ+ ∃𝑧 ∈ ℝ+
∀𝑤 ∈ ℋ
((normℎ‘(𝑤 −ℎ 𝑥)) < 𝑧 → (abs‘((𝑡‘𝑤) − (𝑡‘𝑥))) < 𝑦)} |