HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  nlfnval Structured version   Visualization version   GIF version

Theorem nlfnval 31568
Description: Value of the null space of a Hilbert space functional. (Contributed by NM, 11-Feb-2006.) (New usage is discouraged.)
Assertion
Ref Expression
nlfnval (𝑇: β„‹βŸΆβ„‚ β†’ (nullβ€˜π‘‡) = (◑𝑇 β€œ {0}))

Proof of Theorem nlfnval
Dummy variable 𝑑 is distinct from all other variables.
StepHypRef Expression
1 cnex 11197 . . 3 β„‚ ∈ V
2 ax-hilex 30686 . . 3 β„‹ ∈ V
31, 2elmap 8871 . 2 (𝑇 ∈ (β„‚ ↑m β„‹) ↔ 𝑇: β„‹βŸΆβ„‚)
4 cnvexg 7919 . . . 4 (𝑇 ∈ (β„‚ ↑m β„‹) β†’ ◑𝑇 ∈ V)
5 imaexg 7910 . . . 4 (◑𝑇 ∈ V β†’ (◑𝑇 β€œ {0}) ∈ V)
64, 5syl 17 . . 3 (𝑇 ∈ (β„‚ ↑m β„‹) β†’ (◑𝑇 β€œ {0}) ∈ V)
7 cnveq 5873 . . . . 5 (𝑑 = 𝑇 β†’ ◑𝑑 = ◑𝑇)
87imaeq1d 6058 . . . 4 (𝑑 = 𝑇 β†’ (◑𝑑 β€œ {0}) = (◑𝑇 β€œ {0}))
9 df-nlfn 31533 . . . 4 null = (𝑑 ∈ (β„‚ ↑m β„‹) ↦ (◑𝑑 β€œ {0}))
108, 9fvmptg 6996 . . 3 ((𝑇 ∈ (β„‚ ↑m β„‹) ∧ (◑𝑇 β€œ {0}) ∈ V) β†’ (nullβ€˜π‘‡) = (◑𝑇 β€œ {0}))
116, 10mpdan 684 . 2 (𝑇 ∈ (β„‚ ↑m β„‹) β†’ (nullβ€˜π‘‡) = (◑𝑇 β€œ {0}))
123, 11sylbir 234 1 (𝑇: β„‹βŸΆβ„‚ β†’ (nullβ€˜π‘‡) = (◑𝑇 β€œ {0}))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   = wceq 1540   ∈ wcel 2105  Vcvv 3473  {csn 4628  β—‘ccnv 5675   β€œ cima 5679  βŸΆwf 6539  β€˜cfv 6543  (class class class)co 7412   ↑m cmap 8826  β„‚cc 11114  0cc0 11116   β„‹chba 30606  nullcnl 30639
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7729  ax-cnex 11172  ax-hilex 30686
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ral 3061  df-rex 3070  df-rab 3432  df-v 3475  df-sbc 3778  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-fv 6551  df-ov 7415  df-oprab 7416  df-mpo 7417  df-map 8828  df-nlfn 31533
This theorem is referenced by:  elnlfn  31615  nlelshi  31747
  Copyright terms: Public domain W3C validator