| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > nlfnval | Structured version Visualization version GIF version | ||
| Description: Value of the null space of a Hilbert space functional. (Contributed by NM, 11-Feb-2006.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| nlfnval | ⊢ (𝑇: ℋ⟶ℂ → (null‘𝑇) = (◡𝑇 “ {0})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnex 11210 | . . 3 ⊢ ℂ ∈ V | |
| 2 | ax-hilex 30980 | . . 3 ⊢ ℋ ∈ V | |
| 3 | 1, 2 | elmap 8885 | . 2 ⊢ (𝑇 ∈ (ℂ ↑m ℋ) ↔ 𝑇: ℋ⟶ℂ) |
| 4 | cnvexg 7920 | . . . 4 ⊢ (𝑇 ∈ (ℂ ↑m ℋ) → ◡𝑇 ∈ V) | |
| 5 | imaexg 7909 | . . . 4 ⊢ (◡𝑇 ∈ V → (◡𝑇 “ {0}) ∈ V) | |
| 6 | 4, 5 | syl 17 | . . 3 ⊢ (𝑇 ∈ (ℂ ↑m ℋ) → (◡𝑇 “ {0}) ∈ V) |
| 7 | cnveq 5853 | . . . . 5 ⊢ (𝑡 = 𝑇 → ◡𝑡 = ◡𝑇) | |
| 8 | 7 | imaeq1d 6046 | . . . 4 ⊢ (𝑡 = 𝑇 → (◡𝑡 “ {0}) = (◡𝑇 “ {0})) |
| 9 | df-nlfn 31827 | . . . 4 ⊢ null = (𝑡 ∈ (ℂ ↑m ℋ) ↦ (◡𝑡 “ {0})) | |
| 10 | 8, 9 | fvmptg 6984 | . . 3 ⊢ ((𝑇 ∈ (ℂ ↑m ℋ) ∧ (◡𝑇 “ {0}) ∈ V) → (null‘𝑇) = (◡𝑇 “ {0})) |
| 11 | 6, 10 | mpdan 687 | . 2 ⊢ (𝑇 ∈ (ℂ ↑m ℋ) → (null‘𝑇) = (◡𝑇 “ {0})) |
| 12 | 3, 11 | sylbir 235 | 1 ⊢ (𝑇: ℋ⟶ℂ → (null‘𝑇) = (◡𝑇 “ {0})) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2108 Vcvv 3459 {csn 4601 ◡ccnv 5653 “ cima 5657 ⟶wf 6527 ‘cfv 6531 (class class class)co 7405 ↑m cmap 8840 ℂcc 11127 0cc0 11129 ℋchba 30900 nullcnl 30933 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-hilex 30980 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-sbc 3766 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-fv 6539 df-ov 7408 df-oprab 7409 df-mpo 7410 df-map 8842 df-nlfn 31827 |
| This theorem is referenced by: elnlfn 31909 nlelshi 32041 |
| Copyright terms: Public domain | W3C validator |