HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  nlfnval Structured version   Visualization version   GIF version

Theorem nlfnval 31817
Description: Value of the null space of a Hilbert space functional. (Contributed by NM, 11-Feb-2006.) (New usage is discouraged.)
Assertion
Ref Expression
nlfnval (𝑇: ℋ⟶ℂ → (null‘𝑇) = (𝑇 “ {0}))

Proof of Theorem nlfnval
Dummy variable 𝑡 is distinct from all other variables.
StepHypRef Expression
1 cnex 11156 . . 3 ℂ ∈ V
2 ax-hilex 30935 . . 3 ℋ ∈ V
31, 2elmap 8847 . 2 (𝑇 ∈ (ℂ ↑m ℋ) ↔ 𝑇: ℋ⟶ℂ)
4 cnvexg 7903 . . . 4 (𝑇 ∈ (ℂ ↑m ℋ) → 𝑇 ∈ V)
5 imaexg 7892 . . . 4 (𝑇 ∈ V → (𝑇 “ {0}) ∈ V)
64, 5syl 17 . . 3 (𝑇 ∈ (ℂ ↑m ℋ) → (𝑇 “ {0}) ∈ V)
7 cnveq 5840 . . . . 5 (𝑡 = 𝑇𝑡 = 𝑇)
87imaeq1d 6033 . . . 4 (𝑡 = 𝑇 → (𝑡 “ {0}) = (𝑇 “ {0}))
9 df-nlfn 31782 . . . 4 null = (𝑡 ∈ (ℂ ↑m ℋ) ↦ (𝑡 “ {0}))
108, 9fvmptg 6969 . . 3 ((𝑇 ∈ (ℂ ↑m ℋ) ∧ (𝑇 “ {0}) ∈ V) → (null‘𝑇) = (𝑇 “ {0}))
116, 10mpdan 687 . 2 (𝑇 ∈ (ℂ ↑m ℋ) → (null‘𝑇) = (𝑇 “ {0}))
123, 11sylbir 235 1 (𝑇: ℋ⟶ℂ → (null‘𝑇) = (𝑇 “ {0}))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  Vcvv 3450  {csn 4592  ccnv 5640  cima 5644  wf 6510  cfv 6514  (class class class)co 7390  m cmap 8802  cc 11073  0cc0 11075  chba 30855  nullcnl 30888
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-hilex 30935
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3757  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-map 8804  df-nlfn 31782
This theorem is referenced by:  elnlfn  31864  nlelshi  31996
  Copyright terms: Public domain W3C validator