HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  nlfnval Structured version   Visualization version   GIF version

Theorem nlfnval 29433
Description: Value of the null space of a Hilbert space functional. (Contributed by NM, 11-Feb-2006.) (New usage is discouraged.)
Assertion
Ref Expression
nlfnval (𝑇: ℋ⟶ℂ → (null‘𝑇) = (𝑇 “ {0}))

Proof of Theorem nlfnval
Dummy variable 𝑡 is distinct from all other variables.
StepHypRef Expression
1 cnex 10412 . . 3 ℂ ∈ V
2 ax-hilex 28549 . . 3 ℋ ∈ V
31, 2elmap 8231 . 2 (𝑇 ∈ (ℂ ↑𝑚 ℋ) ↔ 𝑇: ℋ⟶ℂ)
4 cnvexg 7442 . . . 4 (𝑇 ∈ (ℂ ↑𝑚 ℋ) → 𝑇 ∈ V)
5 imaexg 7433 . . . 4 (𝑇 ∈ V → (𝑇 “ {0}) ∈ V)
64, 5syl 17 . . 3 (𝑇 ∈ (ℂ ↑𝑚 ℋ) → (𝑇 “ {0}) ∈ V)
7 cnveq 5591 . . . . 5 (𝑡 = 𝑇𝑡 = 𝑇)
87imaeq1d 5767 . . . 4 (𝑡 = 𝑇 → (𝑡 “ {0}) = (𝑇 “ {0}))
9 df-nlfn 29398 . . . 4 null = (𝑡 ∈ (ℂ ↑𝑚 ℋ) ↦ (𝑡 “ {0}))
108, 9fvmptg 6591 . . 3 ((𝑇 ∈ (ℂ ↑𝑚 ℋ) ∧ (𝑇 “ {0}) ∈ V) → (null‘𝑇) = (𝑇 “ {0}))
116, 10mpdan 674 . 2 (𝑇 ∈ (ℂ ↑𝑚 ℋ) → (null‘𝑇) = (𝑇 “ {0}))
123, 11sylbir 227 1 (𝑇: ℋ⟶ℂ → (null‘𝑇) = (𝑇 “ {0}))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1507  wcel 2048  Vcvv 3412  {csn 4439  ccnv 5403  cima 5407  wf 6182  cfv 6186  (class class class)co 6974  𝑚 cmap 8202  cc 10329  0cc0 10331  chba 28469  nullcnl 28502
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1964  ax-8 2050  ax-9 2057  ax-10 2077  ax-11 2091  ax-12 2104  ax-13 2299  ax-ext 2747  ax-sep 5058  ax-nul 5065  ax-pow 5117  ax-pr 5184  ax-un 7277  ax-cnex 10387  ax-hilex 28549
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3an 1070  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2014  df-mo 2544  df-eu 2580  df-clab 2756  df-cleq 2768  df-clel 2843  df-nfc 2915  df-ral 3090  df-rex 3091  df-rab 3094  df-v 3414  df-sbc 3681  df-dif 3831  df-un 3833  df-in 3835  df-ss 3842  df-nul 4178  df-if 4349  df-pw 4422  df-sn 4440  df-pr 4442  df-op 4446  df-uni 4711  df-br 4928  df-opab 4990  df-mpt 5007  df-id 5309  df-xp 5410  df-rel 5411  df-cnv 5412  df-co 5413  df-dm 5414  df-rn 5415  df-res 5416  df-ima 5417  df-iota 6150  df-fun 6188  df-fn 6189  df-f 6190  df-fv 6194  df-ov 6977  df-oprab 6978  df-mpo 6979  df-map 8204  df-nlfn 29398
This theorem is referenced by:  elnlfn  29480  nlelshi  29612
  Copyright terms: Public domain W3C validator