| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > nlfnval | Structured version Visualization version GIF version | ||
| Description: Value of the null space of a Hilbert space functional. (Contributed by NM, 11-Feb-2006.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| nlfnval | ⊢ (𝑇: ℋ⟶ℂ → (null‘𝑇) = (◡𝑇 “ {0})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnex 11156 | . . 3 ⊢ ℂ ∈ V | |
| 2 | ax-hilex 30935 | . . 3 ⊢ ℋ ∈ V | |
| 3 | 1, 2 | elmap 8847 | . 2 ⊢ (𝑇 ∈ (ℂ ↑m ℋ) ↔ 𝑇: ℋ⟶ℂ) |
| 4 | cnvexg 7903 | . . . 4 ⊢ (𝑇 ∈ (ℂ ↑m ℋ) → ◡𝑇 ∈ V) | |
| 5 | imaexg 7892 | . . . 4 ⊢ (◡𝑇 ∈ V → (◡𝑇 “ {0}) ∈ V) | |
| 6 | 4, 5 | syl 17 | . . 3 ⊢ (𝑇 ∈ (ℂ ↑m ℋ) → (◡𝑇 “ {0}) ∈ V) |
| 7 | cnveq 5840 | . . . . 5 ⊢ (𝑡 = 𝑇 → ◡𝑡 = ◡𝑇) | |
| 8 | 7 | imaeq1d 6033 | . . . 4 ⊢ (𝑡 = 𝑇 → (◡𝑡 “ {0}) = (◡𝑇 “ {0})) |
| 9 | df-nlfn 31782 | . . . 4 ⊢ null = (𝑡 ∈ (ℂ ↑m ℋ) ↦ (◡𝑡 “ {0})) | |
| 10 | 8, 9 | fvmptg 6969 | . . 3 ⊢ ((𝑇 ∈ (ℂ ↑m ℋ) ∧ (◡𝑇 “ {0}) ∈ V) → (null‘𝑇) = (◡𝑇 “ {0})) |
| 11 | 6, 10 | mpdan 687 | . 2 ⊢ (𝑇 ∈ (ℂ ↑m ℋ) → (null‘𝑇) = (◡𝑇 “ {0})) |
| 12 | 3, 11 | sylbir 235 | 1 ⊢ (𝑇: ℋ⟶ℂ → (null‘𝑇) = (◡𝑇 “ {0})) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 Vcvv 3450 {csn 4592 ◡ccnv 5640 “ cima 5644 ⟶wf 6510 ‘cfv 6514 (class class class)co 7390 ↑m cmap 8802 ℂcc 11073 0cc0 11075 ℋchba 30855 nullcnl 30888 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-hilex 30935 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-sbc 3757 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-fv 6522 df-ov 7393 df-oprab 7394 df-mpo 7395 df-map 8804 df-nlfn 31782 |
| This theorem is referenced by: elnlfn 31864 nlelshi 31996 |
| Copyright terms: Public domain | W3C validator |