| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > nlfnval | Structured version Visualization version GIF version | ||
| Description: Value of the null space of a Hilbert space functional. (Contributed by NM, 11-Feb-2006.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| nlfnval | ⊢ (𝑇: ℋ⟶ℂ → (null‘𝑇) = (◡𝑇 “ {0})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnex 11125 | . . 3 ⊢ ℂ ∈ V | |
| 2 | ax-hilex 30901 | . . 3 ⊢ ℋ ∈ V | |
| 3 | 1, 2 | elmap 8821 | . 2 ⊢ (𝑇 ∈ (ℂ ↑m ℋ) ↔ 𝑇: ℋ⟶ℂ) |
| 4 | cnvexg 7880 | . . . 4 ⊢ (𝑇 ∈ (ℂ ↑m ℋ) → ◡𝑇 ∈ V) | |
| 5 | imaexg 7869 | . . . 4 ⊢ (◡𝑇 ∈ V → (◡𝑇 “ {0}) ∈ V) | |
| 6 | 4, 5 | syl 17 | . . 3 ⊢ (𝑇 ∈ (ℂ ↑m ℋ) → (◡𝑇 “ {0}) ∈ V) |
| 7 | cnveq 5827 | . . . . 5 ⊢ (𝑡 = 𝑇 → ◡𝑡 = ◡𝑇) | |
| 8 | 7 | imaeq1d 6019 | . . . 4 ⊢ (𝑡 = 𝑇 → (◡𝑡 “ {0}) = (◡𝑇 “ {0})) |
| 9 | df-nlfn 31748 | . . . 4 ⊢ null = (𝑡 ∈ (ℂ ↑m ℋ) ↦ (◡𝑡 “ {0})) | |
| 10 | 8, 9 | fvmptg 6948 | . . 3 ⊢ ((𝑇 ∈ (ℂ ↑m ℋ) ∧ (◡𝑇 “ {0}) ∈ V) → (null‘𝑇) = (◡𝑇 “ {0})) |
| 11 | 6, 10 | mpdan 687 | . 2 ⊢ (𝑇 ∈ (ℂ ↑m ℋ) → (null‘𝑇) = (◡𝑇 “ {0})) |
| 12 | 3, 11 | sylbir 235 | 1 ⊢ (𝑇: ℋ⟶ℂ → (null‘𝑇) = (◡𝑇 “ {0})) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 Vcvv 3444 {csn 4585 ◡ccnv 5630 “ cima 5634 ⟶wf 6495 ‘cfv 6499 (class class class)co 7369 ↑m cmap 8776 ℂcc 11042 0cc0 11044 ℋchba 30821 nullcnl 30854 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-hilex 30901 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-sbc 3751 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-fv 6507 df-ov 7372 df-oprab 7373 df-mpo 7374 df-map 8778 df-nlfn 31748 |
| This theorem is referenced by: elnlfn 31830 nlelshi 31962 |
| Copyright terms: Public domain | W3C validator |