![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > nlfnval | Structured version Visualization version GIF version |
Description: Value of the null space of a Hilbert space functional. (Contributed by NM, 11-Feb-2006.) (New usage is discouraged.) |
Ref | Expression |
---|---|
nlfnval | β’ (π: ββΆβ β (nullβπ) = (β‘π β {0})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnex 11197 | . . 3 β’ β β V | |
2 | ax-hilex 30686 | . . 3 β’ β β V | |
3 | 1, 2 | elmap 8871 | . 2 β’ (π β (β βm β) β π: ββΆβ) |
4 | cnvexg 7919 | . . . 4 β’ (π β (β βm β) β β‘π β V) | |
5 | imaexg 7910 | . . . 4 β’ (β‘π β V β (β‘π β {0}) β V) | |
6 | 4, 5 | syl 17 | . . 3 β’ (π β (β βm β) β (β‘π β {0}) β V) |
7 | cnveq 5873 | . . . . 5 β’ (π‘ = π β β‘π‘ = β‘π) | |
8 | 7 | imaeq1d 6058 | . . . 4 β’ (π‘ = π β (β‘π‘ β {0}) = (β‘π β {0})) |
9 | df-nlfn 31533 | . . . 4 β’ null = (π‘ β (β βm β) β¦ (β‘π‘ β {0})) | |
10 | 8, 9 | fvmptg 6996 | . . 3 β’ ((π β (β βm β) β§ (β‘π β {0}) β V) β (nullβπ) = (β‘π β {0})) |
11 | 6, 10 | mpdan 684 | . 2 β’ (π β (β βm β) β (nullβπ) = (β‘π β {0})) |
12 | 3, 11 | sylbir 234 | 1 β’ (π: ββΆβ β (nullβπ) = (β‘π β {0})) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 = wceq 1540 β wcel 2105 Vcvv 3473 {csn 4628 β‘ccnv 5675 β cima 5679 βΆwf 6539 βcfv 6543 (class class class)co 7412 βm cmap 8826 βcc 11114 0cc0 11116 βchba 30606 nullcnl 30639 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 ax-cnex 11172 ax-hilex 30686 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ral 3061 df-rex 3070 df-rab 3432 df-v 3475 df-sbc 3778 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-fv 6551 df-ov 7415 df-oprab 7416 df-mpo 7417 df-map 8828 df-nlfn 31533 |
This theorem is referenced by: elnlfn 31615 nlelshi 31747 |
Copyright terms: Public domain | W3C validator |