HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  nlfnval Structured version   Visualization version   GIF version

Theorem nlfnval 31913
Description: Value of the null space of a Hilbert space functional. (Contributed by NM, 11-Feb-2006.) (New usage is discouraged.)
Assertion
Ref Expression
nlfnval (𝑇: ℋ⟶ℂ → (null‘𝑇) = (𝑇 “ {0}))

Proof of Theorem nlfnval
Dummy variable 𝑡 is distinct from all other variables.
StepHypRef Expression
1 cnex 11265 . . 3 ℂ ∈ V
2 ax-hilex 31031 . . 3 ℋ ∈ V
31, 2elmap 8929 . 2 (𝑇 ∈ (ℂ ↑m ℋ) ↔ 𝑇: ℋ⟶ℂ)
4 cnvexg 7964 . . . 4 (𝑇 ∈ (ℂ ↑m ℋ) → 𝑇 ∈ V)
5 imaexg 7953 . . . 4 (𝑇 ∈ V → (𝑇 “ {0}) ∈ V)
64, 5syl 17 . . 3 (𝑇 ∈ (ℂ ↑m ℋ) → (𝑇 “ {0}) ∈ V)
7 cnveq 5898 . . . . 5 (𝑡 = 𝑇𝑡 = 𝑇)
87imaeq1d 6088 . . . 4 (𝑡 = 𝑇 → (𝑡 “ {0}) = (𝑇 “ {0}))
9 df-nlfn 31878 . . . 4 null = (𝑡 ∈ (ℂ ↑m ℋ) ↦ (𝑡 “ {0}))
108, 9fvmptg 7027 . . 3 ((𝑇 ∈ (ℂ ↑m ℋ) ∧ (𝑇 “ {0}) ∈ V) → (null‘𝑇) = (𝑇 “ {0}))
116, 10mpdan 686 . 2 (𝑇 ∈ (ℂ ↑m ℋ) → (null‘𝑇) = (𝑇 “ {0}))
123, 11sylbir 235 1 (𝑇: ℋ⟶ℂ → (null‘𝑇) = (𝑇 “ {0}))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2108  Vcvv 3488  {csn 4648  ccnv 5699  cima 5703  wf 6569  cfv 6573  (class class class)co 7448  m cmap 8884  cc 11182  0cc0 11184  chba 30951  nullcnl 30984
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-hilex 31031
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-map 8886  df-nlfn 31878
This theorem is referenced by:  elnlfn  31960  nlelshi  32092
  Copyright terms: Public domain W3C validator