HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  nlfnval Structured version   Visualization version   GIF version

Theorem nlfnval 31783
Description: Value of the null space of a Hilbert space functional. (Contributed by NM, 11-Feb-2006.) (New usage is discouraged.)
Assertion
Ref Expression
nlfnval (𝑇: ℋ⟶ℂ → (null‘𝑇) = (𝑇 “ {0}))

Proof of Theorem nlfnval
Dummy variable 𝑡 is distinct from all other variables.
StepHypRef Expression
1 cnex 11125 . . 3 ℂ ∈ V
2 ax-hilex 30901 . . 3 ℋ ∈ V
31, 2elmap 8821 . 2 (𝑇 ∈ (ℂ ↑m ℋ) ↔ 𝑇: ℋ⟶ℂ)
4 cnvexg 7880 . . . 4 (𝑇 ∈ (ℂ ↑m ℋ) → 𝑇 ∈ V)
5 imaexg 7869 . . . 4 (𝑇 ∈ V → (𝑇 “ {0}) ∈ V)
64, 5syl 17 . . 3 (𝑇 ∈ (ℂ ↑m ℋ) → (𝑇 “ {0}) ∈ V)
7 cnveq 5827 . . . . 5 (𝑡 = 𝑇𝑡 = 𝑇)
87imaeq1d 6019 . . . 4 (𝑡 = 𝑇 → (𝑡 “ {0}) = (𝑇 “ {0}))
9 df-nlfn 31748 . . . 4 null = (𝑡 ∈ (ℂ ↑m ℋ) ↦ (𝑡 “ {0}))
108, 9fvmptg 6948 . . 3 ((𝑇 ∈ (ℂ ↑m ℋ) ∧ (𝑇 “ {0}) ∈ V) → (null‘𝑇) = (𝑇 “ {0}))
116, 10mpdan 687 . 2 (𝑇 ∈ (ℂ ↑m ℋ) → (null‘𝑇) = (𝑇 “ {0}))
123, 11sylbir 235 1 (𝑇: ℋ⟶ℂ → (null‘𝑇) = (𝑇 “ {0}))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  Vcvv 3444  {csn 4585  ccnv 5630  cima 5634  wf 6495  cfv 6499  (class class class)co 7369  m cmap 8776  cc 11042  0cc0 11044  chba 30821  nullcnl 30854
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-hilex 30901
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-sbc 3751  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-fv 6507  df-ov 7372  df-oprab 7373  df-mpo 7374  df-map 8778  df-nlfn 31748
This theorem is referenced by:  elnlfn  31830  nlelshi  31962
  Copyright terms: Public domain W3C validator