Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > nlfnval | Structured version Visualization version GIF version |
Description: Value of the null space of a Hilbert space functional. (Contributed by NM, 11-Feb-2006.) (New usage is discouraged.) |
Ref | Expression |
---|---|
nlfnval | ⊢ (𝑇: ℋ⟶ℂ → (null‘𝑇) = (◡𝑇 “ {0})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnex 10952 | . . 3 ⊢ ℂ ∈ V | |
2 | ax-hilex 29361 | . . 3 ⊢ ℋ ∈ V | |
3 | 1, 2 | elmap 8659 | . 2 ⊢ (𝑇 ∈ (ℂ ↑m ℋ) ↔ 𝑇: ℋ⟶ℂ) |
4 | cnvexg 7771 | . . . 4 ⊢ (𝑇 ∈ (ℂ ↑m ℋ) → ◡𝑇 ∈ V) | |
5 | imaexg 7762 | . . . 4 ⊢ (◡𝑇 ∈ V → (◡𝑇 “ {0}) ∈ V) | |
6 | 4, 5 | syl 17 | . . 3 ⊢ (𝑇 ∈ (ℂ ↑m ℋ) → (◡𝑇 “ {0}) ∈ V) |
7 | cnveq 5782 | . . . . 5 ⊢ (𝑡 = 𝑇 → ◡𝑡 = ◡𝑇) | |
8 | 7 | imaeq1d 5968 | . . . 4 ⊢ (𝑡 = 𝑇 → (◡𝑡 “ {0}) = (◡𝑇 “ {0})) |
9 | df-nlfn 30208 | . . . 4 ⊢ null = (𝑡 ∈ (ℂ ↑m ℋ) ↦ (◡𝑡 “ {0})) | |
10 | 8, 9 | fvmptg 6873 | . . 3 ⊢ ((𝑇 ∈ (ℂ ↑m ℋ) ∧ (◡𝑇 “ {0}) ∈ V) → (null‘𝑇) = (◡𝑇 “ {0})) |
11 | 6, 10 | mpdan 684 | . 2 ⊢ (𝑇 ∈ (ℂ ↑m ℋ) → (null‘𝑇) = (◡𝑇 “ {0})) |
12 | 3, 11 | sylbir 234 | 1 ⊢ (𝑇: ℋ⟶ℂ → (null‘𝑇) = (◡𝑇 “ {0})) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2106 Vcvv 3432 {csn 4561 ◡ccnv 5588 “ cima 5592 ⟶wf 6429 ‘cfv 6433 (class class class)co 7275 ↑m cmap 8615 ℂcc 10869 0cc0 10871 ℋchba 29281 nullcnl 29314 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-hilex 29361 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-sbc 3717 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-fv 6441 df-ov 7278 df-oprab 7279 df-mpo 7280 df-map 8617 df-nlfn 30208 |
This theorem is referenced by: elnlfn 30290 nlelshi 30422 |
Copyright terms: Public domain | W3C validator |