![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > nlfnval | Structured version Visualization version GIF version |
Description: Value of the null space of a Hilbert space functional. (Contributed by NM, 11-Feb-2006.) (New usage is discouraged.) |
Ref | Expression |
---|---|
nlfnval | ⊢ (𝑇: ℋ⟶ℂ → (null‘𝑇) = (◡𝑇 “ {0})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnex 10412 | . . 3 ⊢ ℂ ∈ V | |
2 | ax-hilex 28549 | . . 3 ⊢ ℋ ∈ V | |
3 | 1, 2 | elmap 8231 | . 2 ⊢ (𝑇 ∈ (ℂ ↑𝑚 ℋ) ↔ 𝑇: ℋ⟶ℂ) |
4 | cnvexg 7442 | . . . 4 ⊢ (𝑇 ∈ (ℂ ↑𝑚 ℋ) → ◡𝑇 ∈ V) | |
5 | imaexg 7433 | . . . 4 ⊢ (◡𝑇 ∈ V → (◡𝑇 “ {0}) ∈ V) | |
6 | 4, 5 | syl 17 | . . 3 ⊢ (𝑇 ∈ (ℂ ↑𝑚 ℋ) → (◡𝑇 “ {0}) ∈ V) |
7 | cnveq 5591 | . . . . 5 ⊢ (𝑡 = 𝑇 → ◡𝑡 = ◡𝑇) | |
8 | 7 | imaeq1d 5767 | . . . 4 ⊢ (𝑡 = 𝑇 → (◡𝑡 “ {0}) = (◡𝑇 “ {0})) |
9 | df-nlfn 29398 | . . . 4 ⊢ null = (𝑡 ∈ (ℂ ↑𝑚 ℋ) ↦ (◡𝑡 “ {0})) | |
10 | 8, 9 | fvmptg 6591 | . . 3 ⊢ ((𝑇 ∈ (ℂ ↑𝑚 ℋ) ∧ (◡𝑇 “ {0}) ∈ V) → (null‘𝑇) = (◡𝑇 “ {0})) |
11 | 6, 10 | mpdan 674 | . 2 ⊢ (𝑇 ∈ (ℂ ↑𝑚 ℋ) → (null‘𝑇) = (◡𝑇 “ {0})) |
12 | 3, 11 | sylbir 227 | 1 ⊢ (𝑇: ℋ⟶ℂ → (null‘𝑇) = (◡𝑇 “ {0})) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1507 ∈ wcel 2048 Vcvv 3412 {csn 4439 ◡ccnv 5403 “ cima 5407 ⟶wf 6182 ‘cfv 6186 (class class class)co 6974 ↑𝑚 cmap 8202 ℂcc 10329 0cc0 10331 ℋchba 28469 nullcnl 28502 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1964 ax-8 2050 ax-9 2057 ax-10 2077 ax-11 2091 ax-12 2104 ax-13 2299 ax-ext 2747 ax-sep 5058 ax-nul 5065 ax-pow 5117 ax-pr 5184 ax-un 7277 ax-cnex 10387 ax-hilex 28549 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3an 1070 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2014 df-mo 2544 df-eu 2580 df-clab 2756 df-cleq 2768 df-clel 2843 df-nfc 2915 df-ral 3090 df-rex 3091 df-rab 3094 df-v 3414 df-sbc 3681 df-dif 3831 df-un 3833 df-in 3835 df-ss 3842 df-nul 4178 df-if 4349 df-pw 4422 df-sn 4440 df-pr 4442 df-op 4446 df-uni 4711 df-br 4928 df-opab 4990 df-mpt 5007 df-id 5309 df-xp 5410 df-rel 5411 df-cnv 5412 df-co 5413 df-dm 5414 df-rn 5415 df-res 5416 df-ima 5417 df-iota 6150 df-fun 6188 df-fn 6189 df-f 6190 df-fv 6194 df-ov 6977 df-oprab 6978 df-mpo 6979 df-map 8204 df-nlfn 29398 |
This theorem is referenced by: elnlfn 29480 nlelshi 29612 |
Copyright terms: Public domain | W3C validator |