HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  nlfnval Structured version   Visualization version   GIF version

Theorem nlfnval 31810
Description: Value of the null space of a Hilbert space functional. (Contributed by NM, 11-Feb-2006.) (New usage is discouraged.)
Assertion
Ref Expression
nlfnval (𝑇: ℋ⟶ℂ → (null‘𝑇) = (𝑇 “ {0}))

Proof of Theorem nlfnval
Dummy variable 𝑡 is distinct from all other variables.
StepHypRef Expression
1 cnex 11149 . . 3 ℂ ∈ V
2 ax-hilex 30928 . . 3 ℋ ∈ V
31, 2elmap 8844 . 2 (𝑇 ∈ (ℂ ↑m ℋ) ↔ 𝑇: ℋ⟶ℂ)
4 cnvexg 7900 . . . 4 (𝑇 ∈ (ℂ ↑m ℋ) → 𝑇 ∈ V)
5 imaexg 7889 . . . 4 (𝑇 ∈ V → (𝑇 “ {0}) ∈ V)
64, 5syl 17 . . 3 (𝑇 ∈ (ℂ ↑m ℋ) → (𝑇 “ {0}) ∈ V)
7 cnveq 5837 . . . . 5 (𝑡 = 𝑇𝑡 = 𝑇)
87imaeq1d 6030 . . . 4 (𝑡 = 𝑇 → (𝑡 “ {0}) = (𝑇 “ {0}))
9 df-nlfn 31775 . . . 4 null = (𝑡 ∈ (ℂ ↑m ℋ) ↦ (𝑡 “ {0}))
108, 9fvmptg 6966 . . 3 ((𝑇 ∈ (ℂ ↑m ℋ) ∧ (𝑇 “ {0}) ∈ V) → (null‘𝑇) = (𝑇 “ {0}))
116, 10mpdan 687 . 2 (𝑇 ∈ (ℂ ↑m ℋ) → (null‘𝑇) = (𝑇 “ {0}))
123, 11sylbir 235 1 (𝑇: ℋ⟶ℂ → (null‘𝑇) = (𝑇 “ {0}))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  Vcvv 3447  {csn 4589  ccnv 5637  cima 5641  wf 6507  cfv 6511  (class class class)co 7387  m cmap 8799  cc 11066  0cc0 11068  chba 30848  nullcnl 30881
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-hilex 30928
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-sbc 3754  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-map 8801  df-nlfn 31775
This theorem is referenced by:  elnlfn  31857  nlelshi  31989
  Copyright terms: Public domain W3C validator