![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > nlfnval | Structured version Visualization version GIF version |
Description: Value of the null space of a Hilbert space functional. (Contributed by NM, 11-Feb-2006.) (New usage is discouraged.) |
Ref | Expression |
---|---|
nlfnval | ⊢ (𝑇: ℋ⟶ℂ → (null‘𝑇) = (◡𝑇 “ {0})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnex 11265 | . . 3 ⊢ ℂ ∈ V | |
2 | ax-hilex 31031 | . . 3 ⊢ ℋ ∈ V | |
3 | 1, 2 | elmap 8929 | . 2 ⊢ (𝑇 ∈ (ℂ ↑m ℋ) ↔ 𝑇: ℋ⟶ℂ) |
4 | cnvexg 7964 | . . . 4 ⊢ (𝑇 ∈ (ℂ ↑m ℋ) → ◡𝑇 ∈ V) | |
5 | imaexg 7953 | . . . 4 ⊢ (◡𝑇 ∈ V → (◡𝑇 “ {0}) ∈ V) | |
6 | 4, 5 | syl 17 | . . 3 ⊢ (𝑇 ∈ (ℂ ↑m ℋ) → (◡𝑇 “ {0}) ∈ V) |
7 | cnveq 5898 | . . . . 5 ⊢ (𝑡 = 𝑇 → ◡𝑡 = ◡𝑇) | |
8 | 7 | imaeq1d 6088 | . . . 4 ⊢ (𝑡 = 𝑇 → (◡𝑡 “ {0}) = (◡𝑇 “ {0})) |
9 | df-nlfn 31878 | . . . 4 ⊢ null = (𝑡 ∈ (ℂ ↑m ℋ) ↦ (◡𝑡 “ {0})) | |
10 | 8, 9 | fvmptg 7027 | . . 3 ⊢ ((𝑇 ∈ (ℂ ↑m ℋ) ∧ (◡𝑇 “ {0}) ∈ V) → (null‘𝑇) = (◡𝑇 “ {0})) |
11 | 6, 10 | mpdan 686 | . 2 ⊢ (𝑇 ∈ (ℂ ↑m ℋ) → (null‘𝑇) = (◡𝑇 “ {0})) |
12 | 3, 11 | sylbir 235 | 1 ⊢ (𝑇: ℋ⟶ℂ → (null‘𝑇) = (◡𝑇 “ {0})) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2108 Vcvv 3488 {csn 4648 ◡ccnv 5699 “ cima 5703 ⟶wf 6569 ‘cfv 6573 (class class class)co 7448 ↑m cmap 8884 ℂcc 11182 0cc0 11184 ℋchba 30951 nullcnl 30984 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-hilex 31031 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpo 7453 df-map 8886 df-nlfn 31878 |
This theorem is referenced by: elnlfn 31960 nlelshi 32092 |
Copyright terms: Public domain | W3C validator |