Detailed syntax breakdown of Definition df-nmfn
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | cnmf 30971 | . 2
class
normfn | 
| 2 |  | vt | . . 3
setvar 𝑡 | 
| 3 |  | cc 11154 | . . . 4
class
ℂ | 
| 4 |  | chba 30939 | . . . 4
class 
ℋ | 
| 5 |  | cmap 8867 | . . . 4
class 
↑m | 
| 6 | 3, 4, 5 | co 7432 | . . 3
class (ℂ
↑m ℋ) | 
| 7 |  | vz | . . . . . . . . . 10
setvar 𝑧 | 
| 8 | 7 | cv 1538 | . . . . . . . . 9
class 𝑧 | 
| 9 |  | cno 30943 | . . . . . . . . 9
class
normℎ | 
| 10 | 8, 9 | cfv 6560 | . . . . . . . 8
class
(normℎ‘𝑧) | 
| 11 |  | c1 11157 | . . . . . . . 8
class
1 | 
| 12 |  | cle 11297 | . . . . . . . 8
class 
≤ | 
| 13 | 10, 11, 12 | wbr 5142 | . . . . . . 7
wff
(normℎ‘𝑧) ≤ 1 | 
| 14 |  | vx | . . . . . . . . 9
setvar 𝑥 | 
| 15 | 14 | cv 1538 | . . . . . . . 8
class 𝑥 | 
| 16 | 2 | cv 1538 | . . . . . . . . . 10
class 𝑡 | 
| 17 | 8, 16 | cfv 6560 | . . . . . . . . 9
class (𝑡‘𝑧) | 
| 18 |  | cabs 15274 | . . . . . . . . 9
class
abs | 
| 19 | 17, 18 | cfv 6560 | . . . . . . . 8
class
(abs‘(𝑡‘𝑧)) | 
| 20 | 15, 19 | wceq 1539 | . . . . . . 7
wff 𝑥 = (abs‘(𝑡‘𝑧)) | 
| 21 | 13, 20 | wa 395 | . . . . . 6
wff
((normℎ‘𝑧) ≤ 1 ∧ 𝑥 = (abs‘(𝑡‘𝑧))) | 
| 22 | 21, 7, 4 | wrex 3069 | . . . . 5
wff
∃𝑧 ∈
ℋ ((normℎ‘𝑧) ≤ 1 ∧ 𝑥 = (abs‘(𝑡‘𝑧))) | 
| 23 | 22, 14 | cab 2713 | . . . 4
class {𝑥 ∣ ∃𝑧 ∈ ℋ
((normℎ‘𝑧) ≤ 1 ∧ 𝑥 = (abs‘(𝑡‘𝑧)))} | 
| 24 |  | cxr 11295 | . . . 4
class
ℝ* | 
| 25 |  | clt 11296 | . . . 4
class 
< | 
| 26 | 23, 24, 25 | csup 9481 | . . 3
class
sup({𝑥 ∣
∃𝑧 ∈ ℋ
((normℎ‘𝑧) ≤ 1 ∧ 𝑥 = (abs‘(𝑡‘𝑧)))}, ℝ*, <
) | 
| 27 | 2, 6, 26 | cmpt 5224 | . 2
class (𝑡 ∈ (ℂ
↑m ℋ) ↦ sup({𝑥 ∣ ∃𝑧 ∈ ℋ
((normℎ‘𝑧) ≤ 1 ∧ 𝑥 = (abs‘(𝑡‘𝑧)))}, ℝ*, <
)) | 
| 28 | 1, 27 | wceq 1539 | 1
wff
normfn = (𝑡 ∈ (ℂ ↑m ℋ)
↦ sup({𝑥 ∣
∃𝑧 ∈ ℋ
((normℎ‘𝑧) ≤ 1 ∧ 𝑥 = (abs‘(𝑡‘𝑧)))}, ℝ*, <
)) |