Detailed syntax breakdown of Definition df-nmfn
| Step | Hyp | Ref
| Expression |
| 1 | | cnmf 30880 |
. 2
class
normfn |
| 2 | | vt |
. . 3
setvar 𝑡 |
| 3 | | cc 11066 |
. . . 4
class
ℂ |
| 4 | | chba 30848 |
. . . 4
class
ℋ |
| 5 | | cmap 8799 |
. . . 4
class
↑m |
| 6 | 3, 4, 5 | co 7387 |
. . 3
class (ℂ
↑m ℋ) |
| 7 | | vz |
. . . . . . . . . 10
setvar 𝑧 |
| 8 | 7 | cv 1539 |
. . . . . . . . 9
class 𝑧 |
| 9 | | cno 30852 |
. . . . . . . . 9
class
normℎ |
| 10 | 8, 9 | cfv 6511 |
. . . . . . . 8
class
(normℎ‘𝑧) |
| 11 | | c1 11069 |
. . . . . . . 8
class
1 |
| 12 | | cle 11209 |
. . . . . . . 8
class
≤ |
| 13 | 10, 11, 12 | wbr 5107 |
. . . . . . 7
wff
(normℎ‘𝑧) ≤ 1 |
| 14 | | vx |
. . . . . . . . 9
setvar 𝑥 |
| 15 | 14 | cv 1539 |
. . . . . . . 8
class 𝑥 |
| 16 | 2 | cv 1539 |
. . . . . . . . . 10
class 𝑡 |
| 17 | 8, 16 | cfv 6511 |
. . . . . . . . 9
class (𝑡‘𝑧) |
| 18 | | cabs 15200 |
. . . . . . . . 9
class
abs |
| 19 | 17, 18 | cfv 6511 |
. . . . . . . 8
class
(abs‘(𝑡‘𝑧)) |
| 20 | 15, 19 | wceq 1540 |
. . . . . . 7
wff 𝑥 = (abs‘(𝑡‘𝑧)) |
| 21 | 13, 20 | wa 395 |
. . . . . 6
wff
((normℎ‘𝑧) ≤ 1 ∧ 𝑥 = (abs‘(𝑡‘𝑧))) |
| 22 | 21, 7, 4 | wrex 3053 |
. . . . 5
wff
∃𝑧 ∈
ℋ ((normℎ‘𝑧) ≤ 1 ∧ 𝑥 = (abs‘(𝑡‘𝑧))) |
| 23 | 22, 14 | cab 2707 |
. . . 4
class {𝑥 ∣ ∃𝑧 ∈ ℋ
((normℎ‘𝑧) ≤ 1 ∧ 𝑥 = (abs‘(𝑡‘𝑧)))} |
| 24 | | cxr 11207 |
. . . 4
class
ℝ* |
| 25 | | clt 11208 |
. . . 4
class
< |
| 26 | 23, 24, 25 | csup 9391 |
. . 3
class
sup({𝑥 ∣
∃𝑧 ∈ ℋ
((normℎ‘𝑧) ≤ 1 ∧ 𝑥 = (abs‘(𝑡‘𝑧)))}, ℝ*, <
) |
| 27 | 2, 6, 26 | cmpt 5188 |
. 2
class (𝑡 ∈ (ℂ
↑m ℋ) ↦ sup({𝑥 ∣ ∃𝑧 ∈ ℋ
((normℎ‘𝑧) ≤ 1 ∧ 𝑥 = (abs‘(𝑡‘𝑧)))}, ℝ*, <
)) |
| 28 | 1, 27 | wceq 1540 |
1
wff
normfn = (𝑡 ∈ (ℂ ↑m ℋ)
↦ sup({𝑥 ∣
∃𝑧 ∈ ℋ
((normℎ‘𝑧) ≤ 1 ∧ 𝑥 = (abs‘(𝑡‘𝑧)))}, ℝ*, <
)) |