| Metamath
Proof Explorer Theorem List (p. 314 of 500) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30909) |
(30910-32432) |
(32433-49920) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Definition | df-chj 31301* | Define Hilbert lattice join. See chjval 31343 for its value and chjcl 31348 for its closure law. Note that we define it over all Hilbert space subsets to allow proving more general theorems. Even for general subsets the join belongs to Cℋ; see sshjcl 31346. (Contributed by NM, 1-Nov-2000.) (New usage is discouraged.) |
| ⊢ ∨ℋ = (𝑥 ∈ 𝒫 ℋ, 𝑦 ∈ 𝒫 ℋ ↦ (⊥‘(⊥‘(𝑥 ∪ 𝑦)))) | ||
| Definition | df-chsup 31302 | Define the supremum of a set of Hilbert lattice elements. See chsupval2 31401 for its value. We actually define the supremum for an arbitrary collection of Hilbert space subsets, not just elements of the Hilbert lattice Cℋ, to allow more general theorems. Even for general subsets the supremum still a Hilbert lattice element; see hsupcl 31330. (Contributed by NM, 9-Dec-2003.) (New usage is discouraged.) |
| ⊢ ∨ℋ = (𝑥 ∈ 𝒫 𝒫 ℋ ↦ (⊥‘(⊥‘∪ 𝑥))) | ||
| Theorem | shsval 31303 | Value of subspace sum of two Hilbert space subspaces. Definition of subspace sum in [Kalmbach] p. 65. (Contributed by NM, 16-Oct-1999.) (Revised by Mario Carneiro, 23-Dec-2013.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → (𝐴 +ℋ 𝐵) = ( +ℎ “ (𝐴 × 𝐵))) | ||
| Theorem | shsss 31304 | The subspace sum is a subset of Hilbert space. (Contributed by Mario Carneiro, 23-Dec-2013.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → (𝐴 +ℋ 𝐵) ⊆ ℋ) | ||
| Theorem | shsel 31305* | Membership in the subspace sum of two Hilbert subspaces. (Contributed by NM, 14-Dec-2004.) (Revised by Mario Carneiro, 29-Jan-2014.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → (𝐶 ∈ (𝐴 +ℋ 𝐵) ↔ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝐶 = (𝑥 +ℎ 𝑦))) | ||
| Theorem | shsel3 31306* | Membership in the subspace sum of two Hilbert subspaces, using vector subtraction. (Contributed by NM, 20-Jan-2007.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → (𝐶 ∈ (𝐴 +ℋ 𝐵) ↔ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝐶 = (𝑥 −ℎ 𝑦))) | ||
| Theorem | shseli 31307* | Membership in subspace sum. (Contributed by NM, 4-May-2000.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ Sℋ & ⊢ 𝐵 ∈ Sℋ ⇒ ⊢ (𝐶 ∈ (𝐴 +ℋ 𝐵) ↔ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝐶 = (𝑥 +ℎ 𝑦)) | ||
| Theorem | shscli 31308 | Closure of subspace sum. (Contributed by NM, 15-Oct-1999.) (Revised by Mario Carneiro, 23-Dec-2013.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ Sℋ & ⊢ 𝐵 ∈ Sℋ ⇒ ⊢ (𝐴 +ℋ 𝐵) ∈ Sℋ | ||
| Theorem | shscl 31309 | Closure of subspace sum. (Contributed by NM, 15-Dec-2004.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → (𝐴 +ℋ 𝐵) ∈ Sℋ ) | ||
| Theorem | shscom 31310 | Commutative law for subspace sum. (Contributed by NM, 15-Dec-2004.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → (𝐴 +ℋ 𝐵) = (𝐵 +ℋ 𝐴)) | ||
| Theorem | shsva 31311 | Vector sum belongs to subspace sum. (Contributed by NM, 15-Dec-2004.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → ((𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵) → (𝐶 +ℎ 𝐷) ∈ (𝐴 +ℋ 𝐵))) | ||
| Theorem | shsel1 31312 | A subspace sum contains a member of one of its subspaces. (Contributed by NM, 15-Dec-2004.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → (𝐶 ∈ 𝐴 → 𝐶 ∈ (𝐴 +ℋ 𝐵))) | ||
| Theorem | shsel2 31313 | A subspace sum contains a member of one of its subspaces. (Contributed by NM, 15-Dec-2004.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → (𝐶 ∈ 𝐵 → 𝐶 ∈ (𝐴 +ℋ 𝐵))) | ||
| Theorem | shsvs 31314 | Vector subtraction belongs to subspace sum. (Contributed by NM, 15-Dec-2004.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → ((𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵) → (𝐶 −ℎ 𝐷) ∈ (𝐴 +ℋ 𝐵))) | ||
| Theorem | shsub1 31315 | Subspace sum is an upper bound of its arguments. (Contributed by NM, 14-Dec-2004.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → 𝐴 ⊆ (𝐴 +ℋ 𝐵)) | ||
| Theorem | shsub2 31316 | Subspace sum is an upper bound of its arguments. (Contributed by NM, 17-Dec-2004.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → 𝐴 ⊆ (𝐵 +ℋ 𝐴)) | ||
| Theorem | choc0 31317 | The orthocomplement of the zero subspace is the unit subspace. (Contributed by NM, 15-Oct-1999.) (New usage is discouraged.) |
| ⊢ (⊥‘0ℋ) = ℋ | ||
| Theorem | choc1 31318 | The orthocomplement of the unit subspace is the zero subspace. Does not require Axiom of Choice. (Contributed by NM, 24-Oct-1999.) (New usage is discouraged.) |
| ⊢ (⊥‘ ℋ) = 0ℋ | ||
| Theorem | chocnul 31319 | Orthogonal complement of the empty set. (Contributed by NM, 31-Oct-2000.) (New usage is discouraged.) |
| ⊢ (⊥‘∅) = ℋ | ||
| Theorem | shintcli 31320 | Closure of intersection of a nonempty subset of Sℋ. (Contributed by NM, 14-Oct-1999.) (New usage is discouraged.) |
| ⊢ (𝐴 ⊆ Sℋ ∧ 𝐴 ≠ ∅) ⇒ ⊢ ∩ 𝐴 ∈ Sℋ | ||
| Theorem | shintcl 31321 | The intersection of a nonempty set of subspaces is a subspace. (Contributed by NM, 2-Jun-2004.) (New usage is discouraged.) |
| ⊢ ((𝐴 ⊆ Sℋ ∧ 𝐴 ≠ ∅) → ∩ 𝐴 ∈ Sℋ ) | ||
| Theorem | chintcli 31322 | The intersection of a nonempty set of closed subspaces is a closed subspace. (Contributed by NM, 14-Oct-1999.) (New usage is discouraged.) |
| ⊢ (𝐴 ⊆ Cℋ ∧ 𝐴 ≠ ∅) ⇒ ⊢ ∩ 𝐴 ∈ Cℋ | ||
| Theorem | chintcl 31323 | The intersection (infimum) of a nonempty subset of Cℋ belongs to Cℋ. Part of Theorem 3.13 of [Beran] p. 108. Also part of Definition 3.4-1 in [MegPav2000] p. 2345 (PDF p. 8). (Contributed by NM, 14-Oct-1999.) (New usage is discouraged.) |
| ⊢ ((𝐴 ⊆ Cℋ ∧ 𝐴 ≠ ∅) → ∩ 𝐴 ∈ Cℋ ) | ||
| Theorem | spanval 31324* | Value of the linear span of a subset of Hilbert space. The span is the intersection of all subspaces constraining the subset. Definition of span in [Schechter] p. 276. (Contributed by NM, 2-Jun-2004.) (Revised by Mario Carneiro, 23-Dec-2013.) (New usage is discouraged.) |
| ⊢ (𝐴 ⊆ ℋ → (span‘𝐴) = ∩ {𝑥 ∈ Sℋ ∣ 𝐴 ⊆ 𝑥}) | ||
| Theorem | hsupval 31325 | Value of supremum of set of subsets of Hilbert space. For an alternate version of the value, see hsupval2 31400. (Contributed by NM, 9-Dec-2003.) (Revised by Mario Carneiro, 23-Dec-2013.) (New usage is discouraged.) |
| ⊢ (𝐴 ⊆ 𝒫 ℋ → ( ∨ℋ ‘𝐴) = (⊥‘(⊥‘∪ 𝐴))) | ||
| Theorem | chsupval 31326 | The value of the supremum of a set of closed subspaces of Hilbert space. For an alternate version of the value, see chsupval2 31401. (Contributed by NM, 13-Aug-2002.) (New usage is discouraged.) |
| ⊢ (𝐴 ⊆ Cℋ → ( ∨ℋ ‘𝐴) = (⊥‘(⊥‘∪ 𝐴))) | ||
| Theorem | spancl 31327 | The span of a subset of Hilbert space is a subspace. (Contributed by NM, 2-Jun-2004.) (New usage is discouraged.) |
| ⊢ (𝐴 ⊆ ℋ → (span‘𝐴) ∈ Sℋ ) | ||
| Theorem | elspancl 31328 | A member of a span is a vector. (Contributed by NM, 17-Dec-2004.) (New usage is discouraged.) |
| ⊢ ((𝐴 ⊆ ℋ ∧ 𝐵 ∈ (span‘𝐴)) → 𝐵 ∈ ℋ) | ||
| Theorem | shsupcl 31329 | Closure of the subspace supremum of set of subsets of Hilbert space. (Contributed by NM, 26-Nov-2004.) (New usage is discouraged.) |
| ⊢ (𝐴 ⊆ 𝒫 ℋ → (span‘∪ 𝐴) ∈ Sℋ ) | ||
| Theorem | hsupcl 31330 | Closure of supremum of set of subsets of Hilbert space. Note that the supremum belongs to Cℋ even if the subsets do not. (Contributed by NM, 10-Nov-1999.) (Revised by Mario Carneiro, 15-May-2014.) (New usage is discouraged.) |
| ⊢ (𝐴 ⊆ 𝒫 ℋ → ( ∨ℋ ‘𝐴) ∈ Cℋ ) | ||
| Theorem | chsupcl 31331 | Closure of supremum of subset of Cℋ. Definition of supremum in Proposition 1 of [Kalmbach] p. 65. Shows that Cℋ is a complete lattice. Also part of Definition 3.4-1 in [MegPav2000] p. 2345 (PDF p. 8). (Contributed by NM, 10-Nov-1999.) (New usage is discouraged.) |
| ⊢ (𝐴 ⊆ Cℋ → ( ∨ℋ ‘𝐴) ∈ Cℋ ) | ||
| Theorem | hsupss 31332 | Subset relation for supremum of Hilbert space subsets. (Contributed by NM, 24-Nov-2004.) (Revised by Mario Carneiro, 15-May-2014.) (New usage is discouraged.) |
| ⊢ ((𝐴 ⊆ 𝒫 ℋ ∧ 𝐵 ⊆ 𝒫 ℋ) → (𝐴 ⊆ 𝐵 → ( ∨ℋ ‘𝐴) ⊆ ( ∨ℋ ‘𝐵))) | ||
| Theorem | chsupss 31333 | Subset relation for supremum of subset of Cℋ. (Contributed by NM, 13-Aug-2002.) (New usage is discouraged.) |
| ⊢ ((𝐴 ⊆ Cℋ ∧ 𝐵 ⊆ Cℋ ) → (𝐴 ⊆ 𝐵 → ( ∨ℋ ‘𝐴) ⊆ ( ∨ℋ ‘𝐵))) | ||
| Theorem | hsupunss 31334 | The union of a set of Hilbert space subsets is smaller than its supremum. (Contributed by NM, 24-Nov-2004.) (Revised by Mario Carneiro, 15-May-2014.) (New usage is discouraged.) |
| ⊢ (𝐴 ⊆ 𝒫 ℋ → ∪ 𝐴 ⊆ ( ∨ℋ ‘𝐴)) | ||
| Theorem | chsupunss 31335 | The union of a set of closed subspaces is smaller than its supremum. (Contributed by NM, 14-Aug-2002.) (New usage is discouraged.) |
| ⊢ (𝐴 ⊆ Cℋ → ∪ 𝐴 ⊆ ( ∨ℋ ‘𝐴)) | ||
| Theorem | spanss2 31336 | A subset of Hilbert space is included in its span. (Contributed by NM, 2-Jun-2004.) (New usage is discouraged.) |
| ⊢ (𝐴 ⊆ ℋ → 𝐴 ⊆ (span‘𝐴)) | ||
| Theorem | shsupunss 31337 | The union of a set of subspaces is smaller than its supremum. (Contributed by NM, 26-Nov-2004.) (New usage is discouraged.) |
| ⊢ (𝐴 ⊆ Sℋ → ∪ 𝐴 ⊆ (span‘∪ 𝐴)) | ||
| Theorem | spanid 31338 | A subspace of Hilbert space is its own span. (Contributed by NM, 2-Jun-2004.) (New usage is discouraged.) |
| ⊢ (𝐴 ∈ Sℋ → (span‘𝐴) = 𝐴) | ||
| Theorem | spanss 31339 | Ordering relationship for the spans of subsets of Hilbert space. (Contributed by NM, 2-Jun-2004.) (New usage is discouraged.) |
| ⊢ ((𝐵 ⊆ ℋ ∧ 𝐴 ⊆ 𝐵) → (span‘𝐴) ⊆ (span‘𝐵)) | ||
| Theorem | spanssoc 31340 | The span of a subset of Hilbert space is less than or equal to its closure (double orthogonal complement). (Contributed by NM, 3-Jun-2004.) (New usage is discouraged.) |
| ⊢ (𝐴 ⊆ ℋ → (span‘𝐴) ⊆ (⊥‘(⊥‘𝐴))) | ||
| Theorem | sshjval 31341 | Value of join for subsets of Hilbert space. (Contributed by NM, 1-Nov-2000.) (Revised by Mario Carneiro, 23-Dec-2013.) (New usage is discouraged.) |
| ⊢ ((𝐴 ⊆ ℋ ∧ 𝐵 ⊆ ℋ) → (𝐴 ∨ℋ 𝐵) = (⊥‘(⊥‘(𝐴 ∪ 𝐵)))) | ||
| Theorem | shjval 31342 | Value of join in Sℋ. (Contributed by NM, 9-Aug-2000.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → (𝐴 ∨ℋ 𝐵) = (⊥‘(⊥‘(𝐴 ∪ 𝐵)))) | ||
| Theorem | chjval 31343 | Value of join in Cℋ. (Contributed by NM, 9-Aug-2000.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → (𝐴 ∨ℋ 𝐵) = (⊥‘(⊥‘(𝐴 ∪ 𝐵)))) | ||
| Theorem | chjvali 31344 | Value of join in Cℋ. (Contributed by NM, 9-Aug-2000.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ ⇒ ⊢ (𝐴 ∨ℋ 𝐵) = (⊥‘(⊥‘(𝐴 ∪ 𝐵))) | ||
| Theorem | sshjval3 31345 | Value of join for subsets of Hilbert space in terms of supremum: the join is the supremum of its two arguments. Based on the definition of join in [Beran] p. 3. For later convenience we prove a general version that works for any subset of Hilbert space, not just the elements of the lattice Cℋ. (Contributed by NM, 2-Mar-2004.) (Revised by Mario Carneiro, 23-Dec-2013.) (New usage is discouraged.) |
| ⊢ ((𝐴 ⊆ ℋ ∧ 𝐵 ⊆ ℋ) → (𝐴 ∨ℋ 𝐵) = ( ∨ℋ ‘{𝐴, 𝐵})) | ||
| Theorem | sshjcl 31346 | Closure of join for subsets of Hilbert space. (Contributed by NM, 1-Nov-2000.) (New usage is discouraged.) |
| ⊢ ((𝐴 ⊆ ℋ ∧ 𝐵 ⊆ ℋ) → (𝐴 ∨ℋ 𝐵) ∈ Cℋ ) | ||
| Theorem | shjcl 31347 | Closure of join in Sℋ. (Contributed by NM, 2-Nov-1999.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → (𝐴 ∨ℋ 𝐵) ∈ Cℋ ) | ||
| Theorem | chjcl 31348 | Closure of join in Cℋ. (Contributed by NM, 2-Nov-1999.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → (𝐴 ∨ℋ 𝐵) ∈ Cℋ ) | ||
| Theorem | shjcom 31349 | Commutative law for Hilbert lattice join of subspaces. (Contributed by NM, 22-Jun-2004.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → (𝐴 ∨ℋ 𝐵) = (𝐵 ∨ℋ 𝐴)) | ||
| Theorem | shless 31350 | Subset implies subset of subspace sum. (Contributed by Mario Carneiro, 15-May-2014.) (New usage is discouraged.) |
| ⊢ (((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ∧ 𝐶 ∈ Sℋ ) ∧ 𝐴 ⊆ 𝐵) → (𝐴 +ℋ 𝐶) ⊆ (𝐵 +ℋ 𝐶)) | ||
| Theorem | shlej1 31351 | Add disjunct to both sides of Hilbert subspace ordering. (Contributed by NM, 22-Jun-2004.) (Revised by Mario Carneiro, 15-May-2014.) (New usage is discouraged.) |
| ⊢ (((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ∧ 𝐶 ∈ Sℋ ) ∧ 𝐴 ⊆ 𝐵) → (𝐴 ∨ℋ 𝐶) ⊆ (𝐵 ∨ℋ 𝐶)) | ||
| Theorem | shlej2 31352 | Add disjunct to both sides of Hilbert subspace ordering. (Contributed by NM, 22-Jun-2004.) (New usage is discouraged.) |
| ⊢ (((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ∧ 𝐶 ∈ Sℋ ) ∧ 𝐴 ⊆ 𝐵) → (𝐶 ∨ℋ 𝐴) ⊆ (𝐶 ∨ℋ 𝐵)) | ||
| Theorem | shincli 31353 | Closure of intersection of two subspaces. (Contributed by NM, 19-Oct-1999.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ Sℋ & ⊢ 𝐵 ∈ Sℋ ⇒ ⊢ (𝐴 ∩ 𝐵) ∈ Sℋ | ||
| Theorem | shscomi 31354 | Commutative law for subspace sum. (Contributed by NM, 17-Oct-1999.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ Sℋ & ⊢ 𝐵 ∈ Sℋ ⇒ ⊢ (𝐴 +ℋ 𝐵) = (𝐵 +ℋ 𝐴) | ||
| Theorem | shsvai 31355 | Vector sum belongs to subspace sum. (Contributed by NM, 17-Oct-1999.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ Sℋ & ⊢ 𝐵 ∈ Sℋ ⇒ ⊢ ((𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵) → (𝐶 +ℎ 𝐷) ∈ (𝐴 +ℋ 𝐵)) | ||
| Theorem | shsel1i 31356 | A subspace sum contains a member of one of its subspaces. (Contributed by NM, 19-Oct-1999.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ Sℋ & ⊢ 𝐵 ∈ Sℋ ⇒ ⊢ (𝐶 ∈ 𝐴 → 𝐶 ∈ (𝐴 +ℋ 𝐵)) | ||
| Theorem | shsel2i 31357 | A subspace sum contains a member of one of its subspaces. (Contributed by NM, 19-Oct-1999.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ Sℋ & ⊢ 𝐵 ∈ Sℋ ⇒ ⊢ (𝐶 ∈ 𝐵 → 𝐶 ∈ (𝐴 +ℋ 𝐵)) | ||
| Theorem | shsvsi 31358 | Vector subtraction belongs to subspace sum. (Contributed by NM, 19-Oct-1999.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ Sℋ & ⊢ 𝐵 ∈ Sℋ ⇒ ⊢ ((𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵) → (𝐶 −ℎ 𝐷) ∈ (𝐴 +ℋ 𝐵)) | ||
| Theorem | shunssi 31359 | Union is smaller than subspace sum. (Contributed by NM, 18-Oct-1999.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ Sℋ & ⊢ 𝐵 ∈ Sℋ ⇒ ⊢ (𝐴 ∪ 𝐵) ⊆ (𝐴 +ℋ 𝐵) | ||
| Theorem | shunssji 31360 | Union is smaller than Hilbert lattice join. (Contributed by NM, 11-Jun-2004.) (Revised by Mario Carneiro, 15-May-2014.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ Sℋ & ⊢ 𝐵 ∈ Sℋ ⇒ ⊢ (𝐴 ∪ 𝐵) ⊆ (𝐴 ∨ℋ 𝐵) | ||
| Theorem | shsleji 31361 | Subspace sum is smaller than Hilbert lattice join. Remark in [Kalmbach] p. 65. (Contributed by NM, 19-Oct-1999.) (Revised by Mario Carneiro, 15-May-2014.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ Sℋ & ⊢ 𝐵 ∈ Sℋ ⇒ ⊢ (𝐴 +ℋ 𝐵) ⊆ (𝐴 ∨ℋ 𝐵) | ||
| Theorem | shjcomi 31362 | Commutative law for join in Sℋ. (Contributed by NM, 19-Oct-1999.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ Sℋ & ⊢ 𝐵 ∈ Sℋ ⇒ ⊢ (𝐴 ∨ℋ 𝐵) = (𝐵 ∨ℋ 𝐴) | ||
| Theorem | shsub1i 31363 | Subspace sum is an upper bound of its arguments. (Contributed by NM, 19-Oct-1999.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ Sℋ & ⊢ 𝐵 ∈ Sℋ ⇒ ⊢ 𝐴 ⊆ (𝐴 +ℋ 𝐵) | ||
| Theorem | shsub2i 31364 | Subspace sum is an upper bound of its arguments. (Contributed by NM, 17-Dec-2004.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ Sℋ & ⊢ 𝐵 ∈ Sℋ ⇒ ⊢ 𝐴 ⊆ (𝐵 +ℋ 𝐴) | ||
| Theorem | shub1i 31365 | Hilbert lattice join is an upper bound of two subspaces. (Contributed by NM, 19-Oct-1999.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ Sℋ & ⊢ 𝐵 ∈ Sℋ ⇒ ⊢ 𝐴 ⊆ (𝐴 ∨ℋ 𝐵) | ||
| Theorem | shjcli 31366 | Closure of Cℋ join. (Contributed by NM, 19-Oct-1999.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ Sℋ & ⊢ 𝐵 ∈ Sℋ ⇒ ⊢ (𝐴 ∨ℋ 𝐵) ∈ Cℋ | ||
| Theorem | shjshcli 31367 | Sℋ closure of join. (Contributed by NM, 5-May-2000.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ Sℋ & ⊢ 𝐵 ∈ Sℋ ⇒ ⊢ (𝐴 ∨ℋ 𝐵) ∈ Sℋ | ||
| Theorem | shlessi 31368 | Subset implies subset of subspace sum. (Contributed by NM, 18-Nov-2000.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ Sℋ & ⊢ 𝐵 ∈ Sℋ & ⊢ 𝐶 ∈ Sℋ ⇒ ⊢ (𝐴 ⊆ 𝐵 → (𝐴 +ℋ 𝐶) ⊆ (𝐵 +ℋ 𝐶)) | ||
| Theorem | shlej1i 31369 | Add disjunct to both sides of Hilbert subspace ordering. (Contributed by NM, 19-Oct-1999.) (Revised by Mario Carneiro, 15-May-2014.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ Sℋ & ⊢ 𝐵 ∈ Sℋ & ⊢ 𝐶 ∈ Sℋ ⇒ ⊢ (𝐴 ⊆ 𝐵 → (𝐴 ∨ℋ 𝐶) ⊆ (𝐵 ∨ℋ 𝐶)) | ||
| Theorem | shlej2i 31370 | Add disjunct to both sides of Hilbert subspace ordering. (Contributed by NM, 19-Oct-1999.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ Sℋ & ⊢ 𝐵 ∈ Sℋ & ⊢ 𝐶 ∈ Sℋ ⇒ ⊢ (𝐴 ⊆ 𝐵 → (𝐶 ∨ℋ 𝐴) ⊆ (𝐶 ∨ℋ 𝐵)) | ||
| Theorem | shslej 31371 | Subspace sum is smaller than subspace join. Remark in [Kalmbach] p. 65. (Contributed by NM, 12-Jul-2004.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → (𝐴 +ℋ 𝐵) ⊆ (𝐴 ∨ℋ 𝐵)) | ||
| Theorem | shincl 31372 | Closure of intersection of two subspaces. (Contributed by NM, 24-Jun-2004.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → (𝐴 ∩ 𝐵) ∈ Sℋ ) | ||
| Theorem | shub1 31373 | Hilbert lattice join is an upper bound of two subspaces. (Contributed by NM, 22-Jun-2004.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → 𝐴 ⊆ (𝐴 ∨ℋ 𝐵)) | ||
| Theorem | shub2 31374 | A subspace is a subset of its Hilbert lattice join with another. (Contributed by NM, 22-Jun-2004.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → 𝐴 ⊆ (𝐵 ∨ℋ 𝐴)) | ||
| Theorem | shsidmi 31375 | Idempotent law for Hilbert subspace sum. (Contributed by NM, 6-Jun-2004.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ Sℋ ⇒ ⊢ (𝐴 +ℋ 𝐴) = 𝐴 | ||
| Theorem | shslubi 31376 | The least upper bound law for Hilbert subspace sum. (Contributed by NM, 15-Jun-2004.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ Sℋ & ⊢ 𝐵 ∈ Sℋ & ⊢ 𝐶 ∈ Sℋ ⇒ ⊢ ((𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶) ↔ (𝐴 +ℋ 𝐵) ⊆ 𝐶) | ||
| Theorem | shlesb1i 31377 | Hilbert lattice ordering in terms of subspace sum. (Contributed by NM, 23-Nov-2004.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ Sℋ & ⊢ 𝐵 ∈ Sℋ ⇒ ⊢ (𝐴 ⊆ 𝐵 ↔ (𝐴 +ℋ 𝐵) = 𝐵) | ||
| Theorem | shsval2i 31378* | An alternate way to express subspace sum. (Contributed by NM, 25-Nov-2004.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ Sℋ & ⊢ 𝐵 ∈ Sℋ ⇒ ⊢ (𝐴 +ℋ 𝐵) = ∩ {𝑥 ∈ Sℋ ∣ (𝐴 ∪ 𝐵) ⊆ 𝑥} | ||
| Theorem | shsval3i 31379 | An alternate way to express subspace sum. (Contributed by NM, 25-Nov-2004.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ Sℋ & ⊢ 𝐵 ∈ Sℋ ⇒ ⊢ (𝐴 +ℋ 𝐵) = (span‘(𝐴 ∪ 𝐵)) | ||
| Theorem | shmodsi 31380 | The modular law holds for subspace sum. Similar to part of Theorem 16.9 of [MaedaMaeda] p. 70. (Contributed by NM, 23-Nov-2004.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ Sℋ & ⊢ 𝐵 ∈ Sℋ & ⊢ 𝐶 ∈ Sℋ ⇒ ⊢ (𝐴 ⊆ 𝐶 → ((𝐴 +ℋ 𝐵) ∩ 𝐶) ⊆ (𝐴 +ℋ (𝐵 ∩ 𝐶))) | ||
| Theorem | shmodi 31381 | The modular law is implied by the closure of subspace sum. Part of proof of Theorem 16.9 of [MaedaMaeda] p. 70. (Contributed by NM, 23-Nov-2004.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ Sℋ & ⊢ 𝐵 ∈ Sℋ & ⊢ 𝐶 ∈ Sℋ ⇒ ⊢ (((𝐴 +ℋ 𝐵) = (𝐴 ∨ℋ 𝐵) ∧ 𝐴 ⊆ 𝐶) → ((𝐴 ∨ℋ 𝐵) ∩ 𝐶) ⊆ (𝐴 ∨ℋ (𝐵 ∩ 𝐶))) | ||
| Theorem | pjhthlem1 31382* | Lemma for pjhth 31384. (Contributed by NM, 10-Oct-1999.) (Revised by Mario Carneiro, 15-May-2014.) (Proof shortened by AV, 10-Jul-2022.) (New usage is discouraged.) |
| ⊢ 𝐻 ∈ Cℋ & ⊢ (𝜑 → 𝐴 ∈ ℋ) & ⊢ (𝜑 → 𝐵 ∈ 𝐻) & ⊢ (𝜑 → 𝐶 ∈ 𝐻) & ⊢ (𝜑 → ∀𝑥 ∈ 𝐻 (normℎ‘(𝐴 −ℎ 𝐵)) ≤ (normℎ‘(𝐴 −ℎ 𝑥))) & ⊢ 𝑇 = (((𝐴 −ℎ 𝐵) ·ih 𝐶) / ((𝐶 ·ih 𝐶) + 1)) ⇒ ⊢ (𝜑 → ((𝐴 −ℎ 𝐵) ·ih 𝐶) = 0) | ||
| Theorem | pjhthlem2 31383* | Lemma for pjhth 31384. (Contributed by NM, 10-Oct-1999.) (Revised by Mario Carneiro, 15-May-2014.) (New usage is discouraged.) |
| ⊢ 𝐻 ∈ Cℋ & ⊢ (𝜑 → 𝐴 ∈ ℋ) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ 𝐻 ∃𝑦 ∈ (⊥‘𝐻)𝐴 = (𝑥 +ℎ 𝑦)) | ||
| Theorem | pjhth 31384 | Projection Theorem: Any Hilbert space vector 𝐴 can be decomposed uniquely into a member 𝑥 of a closed subspace 𝐻 and a member 𝑦 of the complement of the subspace. Theorem 3.7(i) of [Beran] p. 102 (existence part). (Contributed by NM, 23-Oct-1999.) (Revised by Mario Carneiro, 14-May-2014.) (New usage is discouraged.) |
| ⊢ (𝐻 ∈ Cℋ → (𝐻 +ℋ (⊥‘𝐻)) = ℋ) | ||
| Theorem | pjhtheu 31385* | Projection Theorem: Any Hilbert space vector 𝐴 can be decomposed uniquely into a member 𝑥 of a closed subspace 𝐻 and a member 𝑦 of the complement of the subspace. Theorem 3.7(i) of [Beran] p. 102. See pjhtheu2 31407 for the uniqueness of 𝑦. (Contributed by NM, 23-Oct-1999.) (Revised by Mario Carneiro, 14-May-2014.) (New usage is discouraged.) |
| ⊢ ((𝐻 ∈ Cℋ ∧ 𝐴 ∈ ℋ) → ∃!𝑥 ∈ 𝐻 ∃𝑦 ∈ (⊥‘𝐻)𝐴 = (𝑥 +ℎ 𝑦)) | ||
| Definition | df-pjh 31386* | Define the projection function on a Hilbert space, as a mapping from the Hilbert lattice to a function on Hilbert space. Every closed subspace is associated with a unique projection function. Remark in [Kalmbach] p. 66, adopted as a definition. (projℎ‘𝐻)‘𝐴 is the projection of vector 𝐴 onto closed subspace 𝐻. Note that the range of projℎ is the set of all projection operators, so 𝑇 ∈ ran projℎ means that 𝑇 is a projection operator. (Contributed by NM, 23-Oct-1999.) (New usage is discouraged.) |
| ⊢ projℎ = (ℎ ∈ Cℋ ↦ (𝑥 ∈ ℋ ↦ (℩𝑧 ∈ ℎ ∃𝑦 ∈ (⊥‘ℎ)𝑥 = (𝑧 +ℎ 𝑦)))) | ||
| Theorem | pjhfval 31387* | The value of the projection map. (Contributed by NM, 23-Oct-1999.) (Revised by Mario Carneiro, 15-Dec-2013.) (New usage is discouraged.) |
| ⊢ (𝐻 ∈ Cℋ → (projℎ‘𝐻) = (𝑥 ∈ ℋ ↦ (℩𝑧 ∈ 𝐻 ∃𝑦 ∈ (⊥‘𝐻)𝑥 = (𝑧 +ℎ 𝑦)))) | ||
| Theorem | pjhval 31388* | Value of a projection. (Contributed by NM, 23-Oct-1999.) (Revised by Mario Carneiro, 15-Dec-2013.) (New usage is discouraged.) |
| ⊢ ((𝐻 ∈ Cℋ ∧ 𝐴 ∈ ℋ) → ((projℎ‘𝐻)‘𝐴) = (℩𝑥 ∈ 𝐻 ∃𝑦 ∈ (⊥‘𝐻)𝐴 = (𝑥 +ℎ 𝑦))) | ||
| Theorem | pjpreeq 31389* | Equality with a projection. This version of pjeq 31390 does not assume the Axiom of Choice via pjhth 31384. (Contributed by Mario Carneiro, 15-May-2014.) (New usage is discouraged.) |
| ⊢ ((𝐻 ∈ Cℋ ∧ 𝐴 ∈ (𝐻 +ℋ (⊥‘𝐻))) → (((projℎ‘𝐻)‘𝐴) = 𝐵 ↔ (𝐵 ∈ 𝐻 ∧ ∃𝑥 ∈ (⊥‘𝐻)𝐴 = (𝐵 +ℎ 𝑥)))) | ||
| Theorem | pjeq 31390* | Equality with a projection. (Contributed by NM, 20-Jan-2007.) (Revised by Mario Carneiro, 15-May-2014.) (New usage is discouraged.) |
| ⊢ ((𝐻 ∈ Cℋ ∧ 𝐴 ∈ ℋ) → (((projℎ‘𝐻)‘𝐴) = 𝐵 ↔ (𝐵 ∈ 𝐻 ∧ ∃𝑥 ∈ (⊥‘𝐻)𝐴 = (𝐵 +ℎ 𝑥)))) | ||
| Theorem | axpjcl 31391 | Closure of a projection in its subspace. If we consider this together with axpjpj 31411 to be axioms, the need for the ax-hcompl 31193 can often be avoided for the kinds of theorems we are interested in here. An interesting project is to see how far we can go by using them in place of it. In particular, we can prove the orthomodular law pjomli 31426.) (Contributed by NM, 23-Oct-1999.) (Revised by Mario Carneiro, 15-May-2014.) (New usage is discouraged.) |
| ⊢ ((𝐻 ∈ Cℋ ∧ 𝐴 ∈ ℋ) → ((projℎ‘𝐻)‘𝐴) ∈ 𝐻) | ||
| Theorem | pjhcl 31392 | Closure of a projection in Hilbert space. (Contributed by NM, 30-Oct-1999.) (New usage is discouraged.) |
| ⊢ ((𝐻 ∈ Cℋ ∧ 𝐴 ∈ ℋ) → ((projℎ‘𝐻)‘𝐴) ∈ ℋ) | ||
| Theorem | omlsilem 31393 | Lemma for orthomodular law in the Hilbert lattice. (Contributed by NM, 14-Oct-1999.) (New usage is discouraged.) |
| ⊢ 𝐺 ∈ Sℋ & ⊢ 𝐻 ∈ Sℋ & ⊢ 𝐺 ⊆ 𝐻 & ⊢ (𝐻 ∩ (⊥‘𝐺)) = 0ℋ & ⊢ 𝐴 ∈ 𝐻 & ⊢ 𝐵 ∈ 𝐺 & ⊢ 𝐶 ∈ (⊥‘𝐺) ⇒ ⊢ (𝐴 = (𝐵 +ℎ 𝐶) → 𝐴 ∈ 𝐺) | ||
| Theorem | omlsii 31394 | Subspace inference form of orthomodular law in the Hilbert lattice. (Contributed by NM, 14-Oct-1999.) (Revised by Mario Carneiro, 15-May-2014.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Sℋ & ⊢ 𝐴 ⊆ 𝐵 & ⊢ (𝐵 ∩ (⊥‘𝐴)) = 0ℋ ⇒ ⊢ 𝐴 = 𝐵 | ||
| Theorem | omlsi 31395 | Subspace form of orthomodular law in the Hilbert lattice. Compare the orthomodular law in Theorem 2(ii) of [Kalmbach] p. 22. (Contributed by NM, 14-Oct-1999.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Sℋ ⇒ ⊢ ((𝐴 ⊆ 𝐵 ∧ (𝐵 ∩ (⊥‘𝐴)) = 0ℋ) → 𝐴 = 𝐵) | ||
| Theorem | ococi 31396 | Complement of complement of a closed subspace of Hilbert space. Theorem 3.7(ii) of [Beran] p. 102. (Contributed by NM, 11-Oct-1999.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ Cℋ ⇒ ⊢ (⊥‘(⊥‘𝐴)) = 𝐴 | ||
| Theorem | ococ 31397 | Complement of complement of a closed subspace of Hilbert space. Theorem 3.7(ii) of [Beran] p. 102. (Contributed by NM, 11-Oct-1999.) (New usage is discouraged.) |
| ⊢ (𝐴 ∈ Cℋ → (⊥‘(⊥‘𝐴)) = 𝐴) | ||
| Theorem | dfch2 31398 | Alternate definition of the Hilbert lattice. (Contributed by NM, 8-Aug-2000.) (Revised by Mario Carneiro, 23-Dec-2013.) (New usage is discouraged.) |
| ⊢ Cℋ = {𝑥 ∈ 𝒫 ℋ ∣ (⊥‘(⊥‘𝑥)) = 𝑥} | ||
| Theorem | ococin 31399* | The double complement is the smallest closed subspace containing a subset of Hilbert space. Remark 3.12(B) of [Beran] p. 107. (Contributed by NM, 8-Aug-2000.) (New usage is discouraged.) |
| ⊢ (𝐴 ⊆ ℋ → (⊥‘(⊥‘𝐴)) = ∩ {𝑥 ∈ Cℋ ∣ 𝐴 ⊆ 𝑥}) | ||
| Theorem | hsupval2 31400* | Alternate definition of supremum of a subset of the Hilbert lattice. Definition of supremum in Proposition 1 of [Kalmbach] p. 65. We actually define it on any collection of Hilbert space subsets, not just the Hilbert lattice Cℋ, to allow more general theorems. (Contributed by NM, 13-Aug-2002.) (New usage is discouraged.) |
| ⊢ (𝐴 ⊆ 𝒫 ℋ → ( ∨ℋ ‘𝐴) = ∩ {𝑥 ∈ Cℋ ∣ ∪ 𝐴 ⊆ 𝑥}) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |