| Metamath
Proof Explorer Theorem List (p. 314 of 498) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30854) |
(30855-32377) |
(32378-49798) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | shsel1i 31301 | A subspace sum contains a member of one of its subspaces. (Contributed by NM, 19-Oct-1999.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ Sℋ & ⊢ 𝐵 ∈ Sℋ ⇒ ⊢ (𝐶 ∈ 𝐴 → 𝐶 ∈ (𝐴 +ℋ 𝐵)) | ||
| Theorem | shsel2i 31302 | A subspace sum contains a member of one of its subspaces. (Contributed by NM, 19-Oct-1999.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ Sℋ & ⊢ 𝐵 ∈ Sℋ ⇒ ⊢ (𝐶 ∈ 𝐵 → 𝐶 ∈ (𝐴 +ℋ 𝐵)) | ||
| Theorem | shsvsi 31303 | Vector subtraction belongs to subspace sum. (Contributed by NM, 19-Oct-1999.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ Sℋ & ⊢ 𝐵 ∈ Sℋ ⇒ ⊢ ((𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵) → (𝐶 −ℎ 𝐷) ∈ (𝐴 +ℋ 𝐵)) | ||
| Theorem | shunssi 31304 | Union is smaller than subspace sum. (Contributed by NM, 18-Oct-1999.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ Sℋ & ⊢ 𝐵 ∈ Sℋ ⇒ ⊢ (𝐴 ∪ 𝐵) ⊆ (𝐴 +ℋ 𝐵) | ||
| Theorem | shunssji 31305 | Union is smaller than Hilbert lattice join. (Contributed by NM, 11-Jun-2004.) (Revised by Mario Carneiro, 15-May-2014.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ Sℋ & ⊢ 𝐵 ∈ Sℋ ⇒ ⊢ (𝐴 ∪ 𝐵) ⊆ (𝐴 ∨ℋ 𝐵) | ||
| Theorem | shsleji 31306 | Subspace sum is smaller than Hilbert lattice join. Remark in [Kalmbach] p. 65. (Contributed by NM, 19-Oct-1999.) (Revised by Mario Carneiro, 15-May-2014.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ Sℋ & ⊢ 𝐵 ∈ Sℋ ⇒ ⊢ (𝐴 +ℋ 𝐵) ⊆ (𝐴 ∨ℋ 𝐵) | ||
| Theorem | shjcomi 31307 | Commutative law for join in Sℋ. (Contributed by NM, 19-Oct-1999.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ Sℋ & ⊢ 𝐵 ∈ Sℋ ⇒ ⊢ (𝐴 ∨ℋ 𝐵) = (𝐵 ∨ℋ 𝐴) | ||
| Theorem | shsub1i 31308 | Subspace sum is an upper bound of its arguments. (Contributed by NM, 19-Oct-1999.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ Sℋ & ⊢ 𝐵 ∈ Sℋ ⇒ ⊢ 𝐴 ⊆ (𝐴 +ℋ 𝐵) | ||
| Theorem | shsub2i 31309 | Subspace sum is an upper bound of its arguments. (Contributed by NM, 17-Dec-2004.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ Sℋ & ⊢ 𝐵 ∈ Sℋ ⇒ ⊢ 𝐴 ⊆ (𝐵 +ℋ 𝐴) | ||
| Theorem | shub1i 31310 | Hilbert lattice join is an upper bound of two subspaces. (Contributed by NM, 19-Oct-1999.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ Sℋ & ⊢ 𝐵 ∈ Sℋ ⇒ ⊢ 𝐴 ⊆ (𝐴 ∨ℋ 𝐵) | ||
| Theorem | shjcli 31311 | Closure of Cℋ join. (Contributed by NM, 19-Oct-1999.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ Sℋ & ⊢ 𝐵 ∈ Sℋ ⇒ ⊢ (𝐴 ∨ℋ 𝐵) ∈ Cℋ | ||
| Theorem | shjshcli 31312 | Sℋ closure of join. (Contributed by NM, 5-May-2000.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ Sℋ & ⊢ 𝐵 ∈ Sℋ ⇒ ⊢ (𝐴 ∨ℋ 𝐵) ∈ Sℋ | ||
| Theorem | shlessi 31313 | Subset implies subset of subspace sum. (Contributed by NM, 18-Nov-2000.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ Sℋ & ⊢ 𝐵 ∈ Sℋ & ⊢ 𝐶 ∈ Sℋ ⇒ ⊢ (𝐴 ⊆ 𝐵 → (𝐴 +ℋ 𝐶) ⊆ (𝐵 +ℋ 𝐶)) | ||
| Theorem | shlej1i 31314 | Add disjunct to both sides of Hilbert subspace ordering. (Contributed by NM, 19-Oct-1999.) (Revised by Mario Carneiro, 15-May-2014.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ Sℋ & ⊢ 𝐵 ∈ Sℋ & ⊢ 𝐶 ∈ Sℋ ⇒ ⊢ (𝐴 ⊆ 𝐵 → (𝐴 ∨ℋ 𝐶) ⊆ (𝐵 ∨ℋ 𝐶)) | ||
| Theorem | shlej2i 31315 | Add disjunct to both sides of Hilbert subspace ordering. (Contributed by NM, 19-Oct-1999.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ Sℋ & ⊢ 𝐵 ∈ Sℋ & ⊢ 𝐶 ∈ Sℋ ⇒ ⊢ (𝐴 ⊆ 𝐵 → (𝐶 ∨ℋ 𝐴) ⊆ (𝐶 ∨ℋ 𝐵)) | ||
| Theorem | shslej 31316 | Subspace sum is smaller than subspace join. Remark in [Kalmbach] p. 65. (Contributed by NM, 12-Jul-2004.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → (𝐴 +ℋ 𝐵) ⊆ (𝐴 ∨ℋ 𝐵)) | ||
| Theorem | shincl 31317 | Closure of intersection of two subspaces. (Contributed by NM, 24-Jun-2004.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → (𝐴 ∩ 𝐵) ∈ Sℋ ) | ||
| Theorem | shub1 31318 | Hilbert lattice join is an upper bound of two subspaces. (Contributed by NM, 22-Jun-2004.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → 𝐴 ⊆ (𝐴 ∨ℋ 𝐵)) | ||
| Theorem | shub2 31319 | A subspace is a subset of its Hilbert lattice join with another. (Contributed by NM, 22-Jun-2004.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → 𝐴 ⊆ (𝐵 ∨ℋ 𝐴)) | ||
| Theorem | shsidmi 31320 | Idempotent law for Hilbert subspace sum. (Contributed by NM, 6-Jun-2004.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ Sℋ ⇒ ⊢ (𝐴 +ℋ 𝐴) = 𝐴 | ||
| Theorem | shslubi 31321 | The least upper bound law for Hilbert subspace sum. (Contributed by NM, 15-Jun-2004.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ Sℋ & ⊢ 𝐵 ∈ Sℋ & ⊢ 𝐶 ∈ Sℋ ⇒ ⊢ ((𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶) ↔ (𝐴 +ℋ 𝐵) ⊆ 𝐶) | ||
| Theorem | shlesb1i 31322 | Hilbert lattice ordering in terms of subspace sum. (Contributed by NM, 23-Nov-2004.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ Sℋ & ⊢ 𝐵 ∈ Sℋ ⇒ ⊢ (𝐴 ⊆ 𝐵 ↔ (𝐴 +ℋ 𝐵) = 𝐵) | ||
| Theorem | shsval2i 31323* | An alternate way to express subspace sum. (Contributed by NM, 25-Nov-2004.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ Sℋ & ⊢ 𝐵 ∈ Sℋ ⇒ ⊢ (𝐴 +ℋ 𝐵) = ∩ {𝑥 ∈ Sℋ ∣ (𝐴 ∪ 𝐵) ⊆ 𝑥} | ||
| Theorem | shsval3i 31324 | An alternate way to express subspace sum. (Contributed by NM, 25-Nov-2004.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ Sℋ & ⊢ 𝐵 ∈ Sℋ ⇒ ⊢ (𝐴 +ℋ 𝐵) = (span‘(𝐴 ∪ 𝐵)) | ||
| Theorem | shmodsi 31325 | The modular law holds for subspace sum. Similar to part of Theorem 16.9 of [MaedaMaeda] p. 70. (Contributed by NM, 23-Nov-2004.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ Sℋ & ⊢ 𝐵 ∈ Sℋ & ⊢ 𝐶 ∈ Sℋ ⇒ ⊢ (𝐴 ⊆ 𝐶 → ((𝐴 +ℋ 𝐵) ∩ 𝐶) ⊆ (𝐴 +ℋ (𝐵 ∩ 𝐶))) | ||
| Theorem | shmodi 31326 | The modular law is implied by the closure of subspace sum. Part of proof of Theorem 16.9 of [MaedaMaeda] p. 70. (Contributed by NM, 23-Nov-2004.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ Sℋ & ⊢ 𝐵 ∈ Sℋ & ⊢ 𝐶 ∈ Sℋ ⇒ ⊢ (((𝐴 +ℋ 𝐵) = (𝐴 ∨ℋ 𝐵) ∧ 𝐴 ⊆ 𝐶) → ((𝐴 ∨ℋ 𝐵) ∩ 𝐶) ⊆ (𝐴 ∨ℋ (𝐵 ∩ 𝐶))) | ||
| Theorem | pjhthlem1 31327* | Lemma for pjhth 31329. (Contributed by NM, 10-Oct-1999.) (Revised by Mario Carneiro, 15-May-2014.) (Proof shortened by AV, 10-Jul-2022.) (New usage is discouraged.) |
| ⊢ 𝐻 ∈ Cℋ & ⊢ (𝜑 → 𝐴 ∈ ℋ) & ⊢ (𝜑 → 𝐵 ∈ 𝐻) & ⊢ (𝜑 → 𝐶 ∈ 𝐻) & ⊢ (𝜑 → ∀𝑥 ∈ 𝐻 (normℎ‘(𝐴 −ℎ 𝐵)) ≤ (normℎ‘(𝐴 −ℎ 𝑥))) & ⊢ 𝑇 = (((𝐴 −ℎ 𝐵) ·ih 𝐶) / ((𝐶 ·ih 𝐶) + 1)) ⇒ ⊢ (𝜑 → ((𝐴 −ℎ 𝐵) ·ih 𝐶) = 0) | ||
| Theorem | pjhthlem2 31328* | Lemma for pjhth 31329. (Contributed by NM, 10-Oct-1999.) (Revised by Mario Carneiro, 15-May-2014.) (New usage is discouraged.) |
| ⊢ 𝐻 ∈ Cℋ & ⊢ (𝜑 → 𝐴 ∈ ℋ) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ 𝐻 ∃𝑦 ∈ (⊥‘𝐻)𝐴 = (𝑥 +ℎ 𝑦)) | ||
| Theorem | pjhth 31329 | Projection Theorem: Any Hilbert space vector 𝐴 can be decomposed uniquely into a member 𝑥 of a closed subspace 𝐻 and a member 𝑦 of the complement of the subspace. Theorem 3.7(i) of [Beran] p. 102 (existence part). (Contributed by NM, 23-Oct-1999.) (Revised by Mario Carneiro, 14-May-2014.) (New usage is discouraged.) |
| ⊢ (𝐻 ∈ Cℋ → (𝐻 +ℋ (⊥‘𝐻)) = ℋ) | ||
| Theorem | pjhtheu 31330* | Projection Theorem: Any Hilbert space vector 𝐴 can be decomposed uniquely into a member 𝑥 of a closed subspace 𝐻 and a member 𝑦 of the complement of the subspace. Theorem 3.7(i) of [Beran] p. 102. See pjhtheu2 31352 for the uniqueness of 𝑦. (Contributed by NM, 23-Oct-1999.) (Revised by Mario Carneiro, 14-May-2014.) (New usage is discouraged.) |
| ⊢ ((𝐻 ∈ Cℋ ∧ 𝐴 ∈ ℋ) → ∃!𝑥 ∈ 𝐻 ∃𝑦 ∈ (⊥‘𝐻)𝐴 = (𝑥 +ℎ 𝑦)) | ||
| Definition | df-pjh 31331* | Define the projection function on a Hilbert space, as a mapping from the Hilbert lattice to a function on Hilbert space. Every closed subspace is associated with a unique projection function. Remark in [Kalmbach] p. 66, adopted as a definition. (projℎ‘𝐻)‘𝐴 is the projection of vector 𝐴 onto closed subspace 𝐻. Note that the range of projℎ is the set of all projection operators, so 𝑇 ∈ ran projℎ means that 𝑇 is a projection operator. (Contributed by NM, 23-Oct-1999.) (New usage is discouraged.) |
| ⊢ projℎ = (ℎ ∈ Cℋ ↦ (𝑥 ∈ ℋ ↦ (℩𝑧 ∈ ℎ ∃𝑦 ∈ (⊥‘ℎ)𝑥 = (𝑧 +ℎ 𝑦)))) | ||
| Theorem | pjhfval 31332* | The value of the projection map. (Contributed by NM, 23-Oct-1999.) (Revised by Mario Carneiro, 15-Dec-2013.) (New usage is discouraged.) |
| ⊢ (𝐻 ∈ Cℋ → (projℎ‘𝐻) = (𝑥 ∈ ℋ ↦ (℩𝑧 ∈ 𝐻 ∃𝑦 ∈ (⊥‘𝐻)𝑥 = (𝑧 +ℎ 𝑦)))) | ||
| Theorem | pjhval 31333* | Value of a projection. (Contributed by NM, 23-Oct-1999.) (Revised by Mario Carneiro, 15-Dec-2013.) (New usage is discouraged.) |
| ⊢ ((𝐻 ∈ Cℋ ∧ 𝐴 ∈ ℋ) → ((projℎ‘𝐻)‘𝐴) = (℩𝑥 ∈ 𝐻 ∃𝑦 ∈ (⊥‘𝐻)𝐴 = (𝑥 +ℎ 𝑦))) | ||
| Theorem | pjpreeq 31334* | Equality with a projection. This version of pjeq 31335 does not assume the Axiom of Choice via pjhth 31329. (Contributed by Mario Carneiro, 15-May-2014.) (New usage is discouraged.) |
| ⊢ ((𝐻 ∈ Cℋ ∧ 𝐴 ∈ (𝐻 +ℋ (⊥‘𝐻))) → (((projℎ‘𝐻)‘𝐴) = 𝐵 ↔ (𝐵 ∈ 𝐻 ∧ ∃𝑥 ∈ (⊥‘𝐻)𝐴 = (𝐵 +ℎ 𝑥)))) | ||
| Theorem | pjeq 31335* | Equality with a projection. (Contributed by NM, 20-Jan-2007.) (Revised by Mario Carneiro, 15-May-2014.) (New usage is discouraged.) |
| ⊢ ((𝐻 ∈ Cℋ ∧ 𝐴 ∈ ℋ) → (((projℎ‘𝐻)‘𝐴) = 𝐵 ↔ (𝐵 ∈ 𝐻 ∧ ∃𝑥 ∈ (⊥‘𝐻)𝐴 = (𝐵 +ℎ 𝑥)))) | ||
| Theorem | axpjcl 31336 | Closure of a projection in its subspace. If we consider this together with axpjpj 31356 to be axioms, the need for the ax-hcompl 31138 can often be avoided for the kinds of theorems we are interested in here. An interesting project is to see how far we can go by using them in place of it. In particular, we can prove the orthomodular law pjomli 31371.) (Contributed by NM, 23-Oct-1999.) (Revised by Mario Carneiro, 15-May-2014.) (New usage is discouraged.) |
| ⊢ ((𝐻 ∈ Cℋ ∧ 𝐴 ∈ ℋ) → ((projℎ‘𝐻)‘𝐴) ∈ 𝐻) | ||
| Theorem | pjhcl 31337 | Closure of a projection in Hilbert space. (Contributed by NM, 30-Oct-1999.) (New usage is discouraged.) |
| ⊢ ((𝐻 ∈ Cℋ ∧ 𝐴 ∈ ℋ) → ((projℎ‘𝐻)‘𝐴) ∈ ℋ) | ||
| Theorem | omlsilem 31338 | Lemma for orthomodular law in the Hilbert lattice. (Contributed by NM, 14-Oct-1999.) (New usage is discouraged.) |
| ⊢ 𝐺 ∈ Sℋ & ⊢ 𝐻 ∈ Sℋ & ⊢ 𝐺 ⊆ 𝐻 & ⊢ (𝐻 ∩ (⊥‘𝐺)) = 0ℋ & ⊢ 𝐴 ∈ 𝐻 & ⊢ 𝐵 ∈ 𝐺 & ⊢ 𝐶 ∈ (⊥‘𝐺) ⇒ ⊢ (𝐴 = (𝐵 +ℎ 𝐶) → 𝐴 ∈ 𝐺) | ||
| Theorem | omlsii 31339 | Subspace inference form of orthomodular law in the Hilbert lattice. (Contributed by NM, 14-Oct-1999.) (Revised by Mario Carneiro, 15-May-2014.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Sℋ & ⊢ 𝐴 ⊆ 𝐵 & ⊢ (𝐵 ∩ (⊥‘𝐴)) = 0ℋ ⇒ ⊢ 𝐴 = 𝐵 | ||
| Theorem | omlsi 31340 | Subspace form of orthomodular law in the Hilbert lattice. Compare the orthomodular law in Theorem 2(ii) of [Kalmbach] p. 22. (Contributed by NM, 14-Oct-1999.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Sℋ ⇒ ⊢ ((𝐴 ⊆ 𝐵 ∧ (𝐵 ∩ (⊥‘𝐴)) = 0ℋ) → 𝐴 = 𝐵) | ||
| Theorem | ococi 31341 | Complement of complement of a closed subspace of Hilbert space. Theorem 3.7(ii) of [Beran] p. 102. (Contributed by NM, 11-Oct-1999.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ Cℋ ⇒ ⊢ (⊥‘(⊥‘𝐴)) = 𝐴 | ||
| Theorem | ococ 31342 | Complement of complement of a closed subspace of Hilbert space. Theorem 3.7(ii) of [Beran] p. 102. (Contributed by NM, 11-Oct-1999.) (New usage is discouraged.) |
| ⊢ (𝐴 ∈ Cℋ → (⊥‘(⊥‘𝐴)) = 𝐴) | ||
| Theorem | dfch2 31343 | Alternate definition of the Hilbert lattice. (Contributed by NM, 8-Aug-2000.) (Revised by Mario Carneiro, 23-Dec-2013.) (New usage is discouraged.) |
| ⊢ Cℋ = {𝑥 ∈ 𝒫 ℋ ∣ (⊥‘(⊥‘𝑥)) = 𝑥} | ||
| Theorem | ococin 31344* | The double complement is the smallest closed subspace containing a subset of Hilbert space. Remark 3.12(B) of [Beran] p. 107. (Contributed by NM, 8-Aug-2000.) (New usage is discouraged.) |
| ⊢ (𝐴 ⊆ ℋ → (⊥‘(⊥‘𝐴)) = ∩ {𝑥 ∈ Cℋ ∣ 𝐴 ⊆ 𝑥}) | ||
| Theorem | hsupval2 31345* | Alternate definition of supremum of a subset of the Hilbert lattice. Definition of supremum in Proposition 1 of [Kalmbach] p. 65. We actually define it on any collection of Hilbert space subsets, not just the Hilbert lattice Cℋ, to allow more general theorems. (Contributed by NM, 13-Aug-2002.) (New usage is discouraged.) |
| ⊢ (𝐴 ⊆ 𝒫 ℋ → ( ∨ℋ ‘𝐴) = ∩ {𝑥 ∈ Cℋ ∣ ∪ 𝐴 ⊆ 𝑥}) | ||
| Theorem | chsupval2 31346* | The value of the supremum of a set of closed subspaces of Hilbert space. Definition of supremum in Proposition 1 of [Kalmbach] p. 65. (Contributed by NM, 13-Aug-2002.) (New usage is discouraged.) |
| ⊢ (𝐴 ⊆ Cℋ → ( ∨ℋ ‘𝐴) = ∩ {𝑥 ∈ Cℋ ∣ ∪ 𝐴 ⊆ 𝑥}) | ||
| Theorem | sshjval2 31347* | Value of join in the set of closed subspaces of Hilbert space Cℋ. (Contributed by NM, 1-Nov-2000.) (Revised by Mario Carneiro, 23-Dec-2013.) (New usage is discouraged.) |
| ⊢ ((𝐴 ⊆ ℋ ∧ 𝐵 ⊆ ℋ) → (𝐴 ∨ℋ 𝐵) = ∩ {𝑥 ∈ Cℋ ∣ (𝐴 ∪ 𝐵) ⊆ 𝑥}) | ||
| Theorem | chsupid 31348* | A subspace is the supremum of all smaller subspaces. (Contributed by NM, 13-Aug-2002.) (New usage is discouraged.) |
| ⊢ (𝐴 ∈ Cℋ → ( ∨ℋ ‘{𝑥 ∈ Cℋ ∣ 𝑥 ⊆ 𝐴}) = 𝐴) | ||
| Theorem | chsupsn 31349 | Value of supremum of subset of Cℋ on a singleton. (Contributed by NM, 13-Aug-2002.) (New usage is discouraged.) |
| ⊢ (𝐴 ∈ Cℋ → ( ∨ℋ ‘{𝐴}) = 𝐴) | ||
| Theorem | shlub 31350 | Hilbert lattice join is the least upper bound (among Hilbert lattice elements) of two subspaces. (Contributed by NM, 15-Jun-2004.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ∧ 𝐶 ∈ Cℋ ) → ((𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶) ↔ (𝐴 ∨ℋ 𝐵) ⊆ 𝐶)) | ||
| Theorem | shlubi 31351 | Hilbert lattice join is the least upper bound (among Hilbert lattice elements) of two subspaces. (Contributed by NM, 11-Jun-2004.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ Sℋ & ⊢ 𝐵 ∈ Sℋ & ⊢ 𝐶 ∈ Cℋ ⇒ ⊢ ((𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶) ↔ (𝐴 ∨ℋ 𝐵) ⊆ 𝐶) | ||
| Theorem | pjhtheu2 31352* | Uniqueness of 𝑦 for the projection theorem. (Contributed by NM, 6-Nov-1999.) (Revised by Mario Carneiro, 15-May-2014.) (New usage is discouraged.) |
| ⊢ ((𝐻 ∈ Cℋ ∧ 𝐴 ∈ ℋ) → ∃!𝑦 ∈ (⊥‘𝐻)∃𝑥 ∈ 𝐻 𝐴 = (𝑥 +ℎ 𝑦)) | ||
| Theorem | pjcli 31353 | Closure of a projection in its subspace. (Contributed by NM, 7-Oct-2000.) (New usage is discouraged.) |
| ⊢ 𝐻 ∈ Cℋ ⇒ ⊢ (𝐴 ∈ ℋ → ((projℎ‘𝐻)‘𝐴) ∈ 𝐻) | ||
| Theorem | pjhcli 31354 | Closure of a projection in Hilbert space. (Contributed by NM, 7-Oct-2000.) (New usage is discouraged.) |
| ⊢ 𝐻 ∈ Cℋ ⇒ ⊢ (𝐴 ∈ ℋ → ((projℎ‘𝐻)‘𝐴) ∈ ℋ) | ||
| Theorem | pjpjpre 31355 | Decomposition of a vector into projections. This formulation of axpjpj 31356 avoids pjhth 31329. (Contributed by Mario Carneiro, 15-May-2014.) (New usage is discouraged.) |
| ⊢ (𝜑 → 𝐻 ∈ Cℋ ) & ⊢ (𝜑 → 𝐴 ∈ (𝐻 +ℋ (⊥‘𝐻))) ⇒ ⊢ (𝜑 → 𝐴 = (((projℎ‘𝐻)‘𝐴) +ℎ ((projℎ‘(⊥‘𝐻))‘𝐴))) | ||
| Theorem | axpjpj 31356 | Decomposition of a vector into projections. See comment in axpjcl 31336. (Contributed by NM, 26-Oct-1999.) (Revised by Mario Carneiro, 15-May-2014.) (New usage is discouraged.) |
| ⊢ ((𝐻 ∈ Cℋ ∧ 𝐴 ∈ ℋ) → 𝐴 = (((projℎ‘𝐻)‘𝐴) +ℎ ((projℎ‘(⊥‘𝐻))‘𝐴))) | ||
| Theorem | pjclii 31357 | Closure of a projection in its subspace. (Contributed by NM, 30-Oct-1999.) (New usage is discouraged.) |
| ⊢ 𝐻 ∈ Cℋ & ⊢ 𝐴 ∈ ℋ ⇒ ⊢ ((projℎ‘𝐻)‘𝐴) ∈ 𝐻 | ||
| Theorem | pjhclii 31358 | Closure of a projection in Hilbert space. (Contributed by NM, 30-Oct-1999.) (New usage is discouraged.) |
| ⊢ 𝐻 ∈ Cℋ & ⊢ 𝐴 ∈ ℋ ⇒ ⊢ ((projℎ‘𝐻)‘𝐴) ∈ ℋ | ||
| Theorem | pjpj0i 31359 | Decomposition of a vector into projections. (Contributed by NM, 26-Oct-1999.) (Revised by Mario Carneiro, 15-May-2014.) (New usage is discouraged.) |
| ⊢ 𝐻 ∈ Cℋ & ⊢ 𝐴 ∈ ℋ ⇒ ⊢ 𝐴 = (((projℎ‘𝐻)‘𝐴) +ℎ ((projℎ‘(⊥‘𝐻))‘𝐴)) | ||
| Theorem | pjpji 31360 | Decomposition of a vector into projections. (Contributed by NM, 6-Nov-1999.) (New usage is discouraged.) |
| ⊢ 𝐻 ∈ Cℋ & ⊢ 𝐴 ∈ ℋ ⇒ ⊢ 𝐴 = (((projℎ‘𝐻)‘𝐴) +ℎ ((projℎ‘(⊥‘𝐻))‘𝐴)) | ||
| Theorem | pjpjhth 31361* | Projection Theorem: Any Hilbert space vector 𝐴 can be decomposed into a member 𝑥 of a closed subspace 𝐻 and a member 𝑦 of the complement of the subspace. Theorem 3.7(i) of [Beran] p. 102 (existence part). (Contributed by NM, 6-Nov-1999.) (New usage is discouraged.) |
| ⊢ ((𝐻 ∈ Cℋ ∧ 𝐴 ∈ ℋ) → ∃𝑥 ∈ 𝐻 ∃𝑦 ∈ (⊥‘𝐻)𝐴 = (𝑥 +ℎ 𝑦)) | ||
| Theorem | pjpjhthi 31362* | Projection Theorem: Any Hilbert space vector 𝐴 can be decomposed into a member 𝑥 of a closed subspace 𝐻 and a member 𝑦 of the complement of the subspace. Theorem 3.7(i) of [Beran] p. 102 (existence part). (Contributed by NM, 6-Nov-1999.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ ℋ & ⊢ 𝐻 ∈ Cℋ ⇒ ⊢ ∃𝑥 ∈ 𝐻 ∃𝑦 ∈ (⊥‘𝐻)𝐴 = (𝑥 +ℎ 𝑦) | ||
| Theorem | pjop 31363 | Orthocomplement projection in terms of projection. (Contributed by NM, 5-Nov-1999.) (New usage is discouraged.) |
| ⊢ ((𝐻 ∈ Cℋ ∧ 𝐴 ∈ ℋ) → ((projℎ‘(⊥‘𝐻))‘𝐴) = (𝐴 −ℎ ((projℎ‘𝐻)‘𝐴))) | ||
| Theorem | pjpo 31364 | Projection in terms of orthocomplement projection. (Contributed by NM, 5-Nov-1999.) (New usage is discouraged.) |
| ⊢ ((𝐻 ∈ Cℋ ∧ 𝐴 ∈ ℋ) → ((projℎ‘𝐻)‘𝐴) = (𝐴 −ℎ ((projℎ‘(⊥‘𝐻))‘𝐴))) | ||
| Theorem | pjopi 31365 | Orthocomplement projection in terms of projection. (Contributed by NM, 31-Oct-1999.) (New usage is discouraged.) |
| ⊢ 𝐻 ∈ Cℋ & ⊢ 𝐴 ∈ ℋ ⇒ ⊢ ((projℎ‘(⊥‘𝐻))‘𝐴) = (𝐴 −ℎ ((projℎ‘𝐻)‘𝐴)) | ||
| Theorem | pjpoi 31366 | Projection in terms of orthocomplement projection. (Contributed by NM, 31-Oct-1999.) (New usage is discouraged.) |
| ⊢ 𝐻 ∈ Cℋ & ⊢ 𝐴 ∈ ℋ ⇒ ⊢ ((projℎ‘𝐻)‘𝐴) = (𝐴 −ℎ ((projℎ‘(⊥‘𝐻))‘𝐴)) | ||
| Theorem | pjoc1i 31367 | Projection of a vector in the orthocomplement of the projection subspace. (Contributed by NM, 27-Oct-1999.) (New usage is discouraged.) |
| ⊢ 𝐻 ∈ Cℋ & ⊢ 𝐴 ∈ ℋ ⇒ ⊢ (𝐴 ∈ 𝐻 ↔ ((projℎ‘(⊥‘𝐻))‘𝐴) = 0ℎ) | ||
| Theorem | pjchi 31368 | Projection of a vector in the projection subspace. Lemma 4.4(ii) of [Beran] p. 111. (Contributed by NM, 27-Oct-1999.) (New usage is discouraged.) |
| ⊢ 𝐻 ∈ Cℋ & ⊢ 𝐴 ∈ ℋ ⇒ ⊢ (𝐴 ∈ 𝐻 ↔ ((projℎ‘𝐻)‘𝐴) = 𝐴) | ||
| Theorem | pjoccl 31369 | The part of a vector that belongs to the orthocomplemented space. (Contributed by NM, 11-Apr-2006.) (New usage is discouraged.) |
| ⊢ ((𝐻 ∈ Cℋ ∧ 𝐴 ∈ ℋ) → (𝐴 −ℎ ((projℎ‘𝐻)‘𝐴)) ∈ (⊥‘𝐻)) | ||
| Theorem | pjoc1 31370 | Projection of a vector in the orthocomplement of the projection subspace. (Contributed by NM, 6-Nov-1999.) (New usage is discouraged.) |
| ⊢ ((𝐻 ∈ Cℋ ∧ 𝐴 ∈ ℋ) → (𝐴 ∈ 𝐻 ↔ ((projℎ‘(⊥‘𝐻))‘𝐴) = 0ℎ)) | ||
| Theorem | pjomli 31371 | Subspace form of orthomodular law in the Hilbert lattice. Compare the orthomodular law in Theorem 2(ii) of [Kalmbach] p. 22. Derived using projections; compare omlsi 31340. (Contributed by NM, 6-Nov-1999.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Sℋ ⇒ ⊢ ((𝐴 ⊆ 𝐵 ∧ (𝐵 ∩ (⊥‘𝐴)) = 0ℋ) → 𝐴 = 𝐵) | ||
| Theorem | pjoml 31372 | Subspace form of orthomodular law in the Hilbert lattice. Compare the orthomodular law in Theorem 2(ii) of [Kalmbach] p. 22. Derived using projections; compare omlsi 31340. (Contributed by NM, 14-Jun-2006.) (New usage is discouraged.) |
| ⊢ (((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Sℋ ) ∧ (𝐴 ⊆ 𝐵 ∧ (𝐵 ∩ (⊥‘𝐴)) = 0ℋ)) → 𝐴 = 𝐵) | ||
| Theorem | pjococi 31373 | Proof of orthocomplement theorem using projections. Compare ococ 31342. (Contributed by NM, 5-Nov-1999.) (New usage is discouraged.) |
| ⊢ 𝐻 ∈ Cℋ ⇒ ⊢ (⊥‘(⊥‘𝐻)) = 𝐻 | ||
| Theorem | pjoc2i 31374 | Projection of a vector in the orthocomplement of the projection subspace. Lemma 4.4(iii) of [Beran] p. 111. (Contributed by NM, 27-Oct-1999.) (New usage is discouraged.) |
| ⊢ 𝐻 ∈ Cℋ & ⊢ 𝐴 ∈ ℋ ⇒ ⊢ (𝐴 ∈ (⊥‘𝐻) ↔ ((projℎ‘𝐻)‘𝐴) = 0ℎ) | ||
| Theorem | pjoc2 31375 | Projection of a vector in the orthocomplement of the projection subspace. Lemma 4.4(iii) of [Beran] p. 111. (Contributed by NM, 24-Apr-2006.) (New usage is discouraged.) |
| ⊢ ((𝐻 ∈ Cℋ ∧ 𝐴 ∈ ℋ) → (𝐴 ∈ (⊥‘𝐻) ↔ ((projℎ‘𝐻)‘𝐴) = 0ℎ)) | ||
| Theorem | sh0le 31376 | The zero subspace is the smallest subspace. (Contributed by NM, 3-Jun-2004.) (New usage is discouraged.) |
| ⊢ (𝐴 ∈ Sℋ → 0ℋ ⊆ 𝐴) | ||
| Theorem | ch0le 31377 | The zero subspace is the smallest member of Cℋ. (Contributed by NM, 14-Aug-2002.) (New usage is discouraged.) |
| ⊢ (𝐴 ∈ Cℋ → 0ℋ ⊆ 𝐴) | ||
| Theorem | shle0 31378 | No subspace is smaller than the zero subspace. (Contributed by NM, 24-Nov-2004.) (New usage is discouraged.) |
| ⊢ (𝐴 ∈ Sℋ → (𝐴 ⊆ 0ℋ ↔ 𝐴 = 0ℋ)) | ||
| Theorem | chle0 31379 | No Hilbert lattice element is smaller than zero. (Contributed by NM, 14-Aug-2002.) (New usage is discouraged.) |
| ⊢ (𝐴 ∈ Cℋ → (𝐴 ⊆ 0ℋ ↔ 𝐴 = 0ℋ)) | ||
| Theorem | chnlen0 31380 | A Hilbert lattice element that is not a subset of another is nonzero. (Contributed by NM, 30-Jun-2004.) (New usage is discouraged.) |
| ⊢ (𝐵 ∈ Cℋ → (¬ 𝐴 ⊆ 𝐵 → ¬ 𝐴 = 0ℋ)) | ||
| Theorem | ch0pss 31381 | The zero subspace is a proper subset of nonzero Hilbert lattice elements. (Contributed by NM, 9-Jun-2004.) (New usage is discouraged.) |
| ⊢ (𝐴 ∈ Cℋ → (0ℋ ⊊ 𝐴 ↔ 𝐴 ≠ 0ℋ)) | ||
| Theorem | orthin 31382 | The intersection of orthogonal subspaces is the zero subspace. (Contributed by NM, 24-Jun-2004.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → (𝐴 ⊆ (⊥‘𝐵) → (𝐴 ∩ 𝐵) = 0ℋ)) | ||
| Theorem | ssjo 31383 | The lattice join of a subset with its orthocomplement is the whole space. (Contributed by Mario Carneiro, 15-May-2014.) (New usage is discouraged.) |
| ⊢ (𝐴 ⊆ ℋ → (𝐴 ∨ℋ (⊥‘𝐴)) = ℋ) | ||
| Theorem | shne0i 31384* | A nonzero subspace has a nonzero vector. (Contributed by NM, 25-Feb-2006.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ Sℋ ⇒ ⊢ (𝐴 ≠ 0ℋ ↔ ∃𝑥 ∈ 𝐴 𝑥 ≠ 0ℎ) | ||
| Theorem | shs0i 31385 | Hilbert subspace sum with the zero subspace. (Contributed by NM, 14-Jan-2005.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ Sℋ ⇒ ⊢ (𝐴 +ℋ 0ℋ) = 𝐴 | ||
| Theorem | shs00i 31386 | Two subspaces are zero iff their join is zero. (Contributed by NM, 7-Aug-2004.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ Sℋ & ⊢ 𝐵 ∈ Sℋ ⇒ ⊢ ((𝐴 = 0ℋ ∧ 𝐵 = 0ℋ) ↔ (𝐴 +ℋ 𝐵) = 0ℋ) | ||
| Theorem | ch0lei 31387 | The closed subspace zero is the smallest member of Cℋ. (Contributed by NM, 15-Oct-1999.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ Cℋ ⇒ ⊢ 0ℋ ⊆ 𝐴 | ||
| Theorem | chle0i 31388 | No Hilbert closed subspace is smaller than zero. (Contributed by NM, 7-Apr-2001.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ Cℋ ⇒ ⊢ (𝐴 ⊆ 0ℋ ↔ 𝐴 = 0ℋ) | ||
| Theorem | chne0i 31389* | A nonzero closed subspace has a nonzero vector. (Contributed by NM, 25-Feb-2006.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ Cℋ ⇒ ⊢ (𝐴 ≠ 0ℋ ↔ ∃𝑥 ∈ 𝐴 𝑥 ≠ 0ℎ) | ||
| Theorem | chocini 31390 | Intersection of a closed subspace and its orthocomplement. Part of Proposition 1 of [Kalmbach] p. 65. (Contributed by NM, 11-Oct-1999.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ Cℋ ⇒ ⊢ (𝐴 ∩ (⊥‘𝐴)) = 0ℋ | ||
| Theorem | chj0i 31391 | Join with lattice zero in Cℋ. (Contributed by NM, 15-Oct-1999.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ Cℋ ⇒ ⊢ (𝐴 ∨ℋ 0ℋ) = 𝐴 | ||
| Theorem | chm1i 31392 | Meet with lattice one in Cℋ. (Contributed by NM, 24-Oct-1999.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ Cℋ ⇒ ⊢ (𝐴 ∩ ℋ) = 𝐴 | ||
| Theorem | chjcli 31393 | Closure of Cℋ join. (Contributed by NM, 29-Jul-1999.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ ⇒ ⊢ (𝐴 ∨ℋ 𝐵) ∈ Cℋ | ||
| Theorem | chsleji 31394 | Subspace sum is smaller than subspace join. Remark in [Kalmbach] p. 65. (Contributed by NM, 17-Oct-1999.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ ⇒ ⊢ (𝐴 +ℋ 𝐵) ⊆ (𝐴 ∨ℋ 𝐵) | ||
| Theorem | chseli 31395* | Membership in subspace sum. (Contributed by NM, 19-Oct-1999.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ ⇒ ⊢ (𝐶 ∈ (𝐴 +ℋ 𝐵) ↔ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝐶 = (𝑥 +ℎ 𝑦)) | ||
| Theorem | chincli 31396 | Closure of Hilbert lattice intersection. (Contributed by NM, 15-Oct-1999.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ ⇒ ⊢ (𝐴 ∩ 𝐵) ∈ Cℋ | ||
| Theorem | chsscon3i 31397 | Hilbert lattice contraposition law. (Contributed by NM, 15-Oct-1999.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ ⇒ ⊢ (𝐴 ⊆ 𝐵 ↔ (⊥‘𝐵) ⊆ (⊥‘𝐴)) | ||
| Theorem | chsscon1i 31398 | Hilbert lattice contraposition law. (Contributed by NM, 15-Oct-1999.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ ⇒ ⊢ ((⊥‘𝐴) ⊆ 𝐵 ↔ (⊥‘𝐵) ⊆ 𝐴) | ||
| Theorem | chsscon2i 31399 | Hilbert lattice contraposition law. (Contributed by NM, 15-Oct-1999.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ ⇒ ⊢ (𝐴 ⊆ (⊥‘𝐵) ↔ 𝐵 ⊆ (⊥‘𝐴)) | ||
| Theorem | chcon2i 31400 | Hilbert lattice contraposition law. (Contributed by NM, 24-Jun-2004.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ ⇒ ⊢ (𝐴 = (⊥‘𝐵) ↔ 𝐵 = (⊥‘𝐴)) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |