| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > nmfnval | Structured version Visualization version GIF version | ||
| Description: Value of the norm of a Hilbert space functional. (Contributed by NM, 11-Feb-2006.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| nmfnval | ⊢ (𝑇: ℋ⟶ℂ → (normfn‘𝑇) = sup({𝑥 ∣ ∃𝑦 ∈ ℋ ((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (abs‘(𝑇‘𝑦)))}, ℝ*, < )) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xrltso 13183 | . . 3 ⊢ < Or ℝ* | |
| 2 | 1 | supex 9503 | . 2 ⊢ sup({𝑥 ∣ ∃𝑦 ∈ ℋ ((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (abs‘(𝑇‘𝑦)))}, ℝ*, < ) ∈ V |
| 3 | ax-hilex 31018 | . 2 ⊢ ℋ ∈ V | |
| 4 | cnex 11236 | . 2 ⊢ ℂ ∈ V | |
| 5 | fveq1 6905 | . . . . . . . 8 ⊢ (𝑡 = 𝑇 → (𝑡‘𝑦) = (𝑇‘𝑦)) | |
| 6 | 5 | fveq2d 6910 | . . . . . . 7 ⊢ (𝑡 = 𝑇 → (abs‘(𝑡‘𝑦)) = (abs‘(𝑇‘𝑦))) |
| 7 | 6 | eqeq2d 2748 | . . . . . 6 ⊢ (𝑡 = 𝑇 → (𝑥 = (abs‘(𝑡‘𝑦)) ↔ 𝑥 = (abs‘(𝑇‘𝑦)))) |
| 8 | 7 | anbi2d 630 | . . . . 5 ⊢ (𝑡 = 𝑇 → (((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (abs‘(𝑡‘𝑦))) ↔ ((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (abs‘(𝑇‘𝑦))))) |
| 9 | 8 | rexbidv 3179 | . . . 4 ⊢ (𝑡 = 𝑇 → (∃𝑦 ∈ ℋ ((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (abs‘(𝑡‘𝑦))) ↔ ∃𝑦 ∈ ℋ ((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (abs‘(𝑇‘𝑦))))) |
| 10 | 9 | abbidv 2808 | . . 3 ⊢ (𝑡 = 𝑇 → {𝑥 ∣ ∃𝑦 ∈ ℋ ((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (abs‘(𝑡‘𝑦)))} = {𝑥 ∣ ∃𝑦 ∈ ℋ ((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (abs‘(𝑇‘𝑦)))}) |
| 11 | 10 | supeq1d 9486 | . 2 ⊢ (𝑡 = 𝑇 → sup({𝑥 ∣ ∃𝑦 ∈ ℋ ((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (abs‘(𝑡‘𝑦)))}, ℝ*, < ) = sup({𝑥 ∣ ∃𝑦 ∈ ℋ ((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (abs‘(𝑇‘𝑦)))}, ℝ*, < )) |
| 12 | df-nmfn 31864 | . 2 ⊢ normfn = (𝑡 ∈ (ℂ ↑m ℋ) ↦ sup({𝑥 ∣ ∃𝑦 ∈ ℋ ((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (abs‘(𝑡‘𝑦)))}, ℝ*, < )) | |
| 13 | 2, 3, 4, 11, 12 | fvmptmap 8921 | 1 ⊢ (𝑇: ℋ⟶ℂ → (normfn‘𝑇) = sup({𝑥 ∣ ∃𝑦 ∈ ℋ ((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (abs‘(𝑇‘𝑦)))}, ℝ*, < )) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 {cab 2714 ∃wrex 3070 class class class wbr 5143 ⟶wf 6557 ‘cfv 6561 supcsup 9480 ℂcc 11153 1c1 11156 ℝ*cxr 11294 < clt 11295 ≤ cle 11296 abscabs 15273 ℋchba 30938 normℎcno 30942 normfncnmf 30970 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-cnex 11211 ax-resscn 11212 ax-pre-lttri 11229 ax-pre-lttrn 11230 ax-hilex 31018 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3380 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-br 5144 df-opab 5206 df-mpt 5226 df-id 5578 df-po 5592 df-so 5593 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-ov 7434 df-oprab 7435 df-mpo 7436 df-er 8745 df-map 8868 df-en 8986 df-dom 8987 df-sdom 8988 df-sup 9482 df-pnf 11297 df-mnf 11298 df-xr 11299 df-ltxr 11300 df-nmfn 31864 |
| This theorem is referenced by: nmfnxr 31898 nmfnrepnf 31899 nmfnlb 31943 nmfnleub 31944 nmfn0 32006 nmcfnexi 32070 branmfn 32124 |
| Copyright terms: Public domain | W3C validator |