![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > nmfnval | Structured version Visualization version GIF version |
Description: Value of the norm of a Hilbert space functional. (Contributed by NM, 11-Feb-2006.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
nmfnval | β’ (π: ββΆβ β (normfnβπ) = sup({π₯ β£ βπ¦ β β ((normββπ¦) β€ 1 β§ π₯ = (absβ(πβπ¦)))}, β*, < )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xrltso 13127 | . . 3 β’ < Or β* | |
2 | 1 | supex 9464 | . 2 β’ sup({π₯ β£ βπ¦ β β ((normββπ¦) β€ 1 β§ π₯ = (absβ(πβπ¦)))}, β*, < ) β V |
3 | ax-hilex 30686 | . 2 β’ β β V | |
4 | cnex 11197 | . 2 β’ β β V | |
5 | fveq1 6890 | . . . . . . . 8 β’ (π‘ = π β (π‘βπ¦) = (πβπ¦)) | |
6 | 5 | fveq2d 6895 | . . . . . . 7 β’ (π‘ = π β (absβ(π‘βπ¦)) = (absβ(πβπ¦))) |
7 | 6 | eqeq2d 2742 | . . . . . 6 β’ (π‘ = π β (π₯ = (absβ(π‘βπ¦)) β π₯ = (absβ(πβπ¦)))) |
8 | 7 | anbi2d 628 | . . . . 5 β’ (π‘ = π β (((normββπ¦) β€ 1 β§ π₯ = (absβ(π‘βπ¦))) β ((normββπ¦) β€ 1 β§ π₯ = (absβ(πβπ¦))))) |
9 | 8 | rexbidv 3177 | . . . 4 β’ (π‘ = π β (βπ¦ β β ((normββπ¦) β€ 1 β§ π₯ = (absβ(π‘βπ¦))) β βπ¦ β β ((normββπ¦) β€ 1 β§ π₯ = (absβ(πβπ¦))))) |
10 | 9 | abbidv 2800 | . . 3 β’ (π‘ = π β {π₯ β£ βπ¦ β β ((normββπ¦) β€ 1 β§ π₯ = (absβ(π‘βπ¦)))} = {π₯ β£ βπ¦ β β ((normββπ¦) β€ 1 β§ π₯ = (absβ(πβπ¦)))}) |
11 | 10 | supeq1d 9447 | . 2 β’ (π‘ = π β sup({π₯ β£ βπ¦ β β ((normββπ¦) β€ 1 β§ π₯ = (absβ(π‘βπ¦)))}, β*, < ) = sup({π₯ β£ βπ¦ β β ((normββπ¦) β€ 1 β§ π₯ = (absβ(πβπ¦)))}, β*, < )) |
12 | df-nmfn 31532 | . 2 β’ normfn = (π‘ β (β βm β) β¦ sup({π₯ β£ βπ¦ β β ((normββπ¦) β€ 1 β§ π₯ = (absβ(π‘βπ¦)))}, β*, < )) | |
13 | 2, 3, 4, 11, 12 | fvmptmap 8881 | 1 β’ (π: ββΆβ β (normfnβπ) = sup({π₯ β£ βπ¦ β β ((normββπ¦) β€ 1 β§ π₯ = (absβ(πβπ¦)))}, β*, < )) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 395 = wceq 1540 {cab 2708 βwrex 3069 class class class wbr 5148 βΆwf 6539 βcfv 6543 supcsup 9441 βcc 11114 1c1 11117 β*cxr 11254 < clt 11255 β€ cle 11256 abscabs 15188 βchba 30606 normβcno 30610 normfncnmf 30638 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 ax-cnex 11172 ax-resscn 11173 ax-pre-lttri 11190 ax-pre-lttrn 11191 ax-hilex 30686 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3375 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-po 5588 df-so 5589 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-ov 7415 df-oprab 7416 df-mpo 7417 df-er 8709 df-map 8828 df-en 8946 df-dom 8947 df-sdom 8948 df-sup 9443 df-pnf 11257 df-mnf 11258 df-xr 11259 df-ltxr 11260 df-nmfn 31532 |
This theorem is referenced by: nmfnxr 31566 nmfnrepnf 31567 nmfnlb 31611 nmfnleub 31612 nmfn0 31674 nmcfnexi 31738 branmfn 31792 |
Copyright terms: Public domain | W3C validator |