HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  nmfnval Structured version   Visualization version   GIF version

Theorem nmfnval 31563
Description: Value of the norm of a Hilbert space functional. (Contributed by NM, 11-Feb-2006.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.)
Assertion
Ref Expression
nmfnval (𝑇: β„‹βŸΆβ„‚ β†’ (normfnβ€˜π‘‡) = sup({π‘₯ ∣ βˆƒπ‘¦ ∈ β„‹ ((normβ„Žβ€˜π‘¦) ≀ 1 ∧ π‘₯ = (absβ€˜(π‘‡β€˜π‘¦)))}, ℝ*, < ))
Distinct variable group:   π‘₯,𝑦,𝑇

Proof of Theorem nmfnval
Dummy variable 𝑑 is distinct from all other variables.
StepHypRef Expression
1 xrltso 13127 . . 3 < Or ℝ*
21supex 9464 . 2 sup({π‘₯ ∣ βˆƒπ‘¦ ∈ β„‹ ((normβ„Žβ€˜π‘¦) ≀ 1 ∧ π‘₯ = (absβ€˜(π‘‡β€˜π‘¦)))}, ℝ*, < ) ∈ V
3 ax-hilex 30686 . 2 β„‹ ∈ V
4 cnex 11197 . 2 β„‚ ∈ V
5 fveq1 6890 . . . . . . . 8 (𝑑 = 𝑇 β†’ (π‘‘β€˜π‘¦) = (π‘‡β€˜π‘¦))
65fveq2d 6895 . . . . . . 7 (𝑑 = 𝑇 β†’ (absβ€˜(π‘‘β€˜π‘¦)) = (absβ€˜(π‘‡β€˜π‘¦)))
76eqeq2d 2742 . . . . . 6 (𝑑 = 𝑇 β†’ (π‘₯ = (absβ€˜(π‘‘β€˜π‘¦)) ↔ π‘₯ = (absβ€˜(π‘‡β€˜π‘¦))))
87anbi2d 628 . . . . 5 (𝑑 = 𝑇 β†’ (((normβ„Žβ€˜π‘¦) ≀ 1 ∧ π‘₯ = (absβ€˜(π‘‘β€˜π‘¦))) ↔ ((normβ„Žβ€˜π‘¦) ≀ 1 ∧ π‘₯ = (absβ€˜(π‘‡β€˜π‘¦)))))
98rexbidv 3177 . . . 4 (𝑑 = 𝑇 β†’ (βˆƒπ‘¦ ∈ β„‹ ((normβ„Žβ€˜π‘¦) ≀ 1 ∧ π‘₯ = (absβ€˜(π‘‘β€˜π‘¦))) ↔ βˆƒπ‘¦ ∈ β„‹ ((normβ„Žβ€˜π‘¦) ≀ 1 ∧ π‘₯ = (absβ€˜(π‘‡β€˜π‘¦)))))
109abbidv 2800 . . 3 (𝑑 = 𝑇 β†’ {π‘₯ ∣ βˆƒπ‘¦ ∈ β„‹ ((normβ„Žβ€˜π‘¦) ≀ 1 ∧ π‘₯ = (absβ€˜(π‘‘β€˜π‘¦)))} = {π‘₯ ∣ βˆƒπ‘¦ ∈ β„‹ ((normβ„Žβ€˜π‘¦) ≀ 1 ∧ π‘₯ = (absβ€˜(π‘‡β€˜π‘¦)))})
1110supeq1d 9447 . 2 (𝑑 = 𝑇 β†’ sup({π‘₯ ∣ βˆƒπ‘¦ ∈ β„‹ ((normβ„Žβ€˜π‘¦) ≀ 1 ∧ π‘₯ = (absβ€˜(π‘‘β€˜π‘¦)))}, ℝ*, < ) = sup({π‘₯ ∣ βˆƒπ‘¦ ∈ β„‹ ((normβ„Žβ€˜π‘¦) ≀ 1 ∧ π‘₯ = (absβ€˜(π‘‡β€˜π‘¦)))}, ℝ*, < ))
12 df-nmfn 31532 . 2 normfn = (𝑑 ∈ (β„‚ ↑m β„‹) ↦ sup({π‘₯ ∣ βˆƒπ‘¦ ∈ β„‹ ((normβ„Žβ€˜π‘¦) ≀ 1 ∧ π‘₯ = (absβ€˜(π‘‘β€˜π‘¦)))}, ℝ*, < ))
132, 3, 4, 11, 12fvmptmap 8881 1 (𝑇: β„‹βŸΆβ„‚ β†’ (normfnβ€˜π‘‡) = sup({π‘₯ ∣ βˆƒπ‘¦ ∈ β„‹ ((normβ„Žβ€˜π‘¦) ≀ 1 ∧ π‘₯ = (absβ€˜(π‘‡β€˜π‘¦)))}, ℝ*, < ))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 395   = wceq 1540  {cab 2708  βˆƒwrex 3069   class class class wbr 5148  βŸΆwf 6539  β€˜cfv 6543  supcsup 9441  β„‚cc 11114  1c1 11117  β„*cxr 11254   < clt 11255   ≀ cle 11256  abscabs 15188   β„‹chba 30606  normβ„Žcno 30610  normfncnmf 30638
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7729  ax-cnex 11172  ax-resscn 11173  ax-pre-lttri 11190  ax-pre-lttrn 11191  ax-hilex 30686
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3375  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-po 5588  df-so 5589  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-ov 7415  df-oprab 7416  df-mpo 7417  df-er 8709  df-map 8828  df-en 8946  df-dom 8947  df-sdom 8948  df-sup 9443  df-pnf 11257  df-mnf 11258  df-xr 11259  df-ltxr 11260  df-nmfn 31532
This theorem is referenced by:  nmfnxr  31566  nmfnrepnf  31567  nmfnlb  31611  nmfnleub  31612  nmfn0  31674  nmcfnexi  31738  branmfn  31792
  Copyright terms: Public domain W3C validator