HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  nmfnval Structured version   Visualization version   GIF version

Theorem nmfnval 30238
Description: Value of the norm of a Hilbert space functional. (Contributed by NM, 11-Feb-2006.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.)
Assertion
Ref Expression
nmfnval (𝑇: ℋ⟶ℂ → (normfn𝑇) = sup({𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (abs‘(𝑇𝑦)))}, ℝ*, < ))
Distinct variable group:   𝑥,𝑦,𝑇

Proof of Theorem nmfnval
Dummy variable 𝑡 is distinct from all other variables.
StepHypRef Expression
1 xrltso 12875 . . 3 < Or ℝ*
21supex 9222 . 2 sup({𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (abs‘(𝑇𝑦)))}, ℝ*, < ) ∈ V
3 ax-hilex 29361 . 2 ℋ ∈ V
4 cnex 10952 . 2 ℂ ∈ V
5 fveq1 6773 . . . . . . . 8 (𝑡 = 𝑇 → (𝑡𝑦) = (𝑇𝑦))
65fveq2d 6778 . . . . . . 7 (𝑡 = 𝑇 → (abs‘(𝑡𝑦)) = (abs‘(𝑇𝑦)))
76eqeq2d 2749 . . . . . 6 (𝑡 = 𝑇 → (𝑥 = (abs‘(𝑡𝑦)) ↔ 𝑥 = (abs‘(𝑇𝑦))))
87anbi2d 629 . . . . 5 (𝑡 = 𝑇 → (((norm𝑦) ≤ 1 ∧ 𝑥 = (abs‘(𝑡𝑦))) ↔ ((norm𝑦) ≤ 1 ∧ 𝑥 = (abs‘(𝑇𝑦)))))
98rexbidv 3226 . . . 4 (𝑡 = 𝑇 → (∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (abs‘(𝑡𝑦))) ↔ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (abs‘(𝑇𝑦)))))
109abbidv 2807 . . 3 (𝑡 = 𝑇 → {𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (abs‘(𝑡𝑦)))} = {𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (abs‘(𝑇𝑦)))})
1110supeq1d 9205 . 2 (𝑡 = 𝑇 → sup({𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (abs‘(𝑡𝑦)))}, ℝ*, < ) = sup({𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (abs‘(𝑇𝑦)))}, ℝ*, < ))
12 df-nmfn 30207 . 2 normfn = (𝑡 ∈ (ℂ ↑m ℋ) ↦ sup({𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (abs‘(𝑡𝑦)))}, ℝ*, < ))
132, 3, 4, 11, 12fvmptmap 8669 1 (𝑇: ℋ⟶ℂ → (normfn𝑇) = sup({𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (abs‘(𝑇𝑦)))}, ℝ*, < ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  {cab 2715  wrex 3065   class class class wbr 5074  wf 6429  cfv 6433  supcsup 9199  cc 10869  1c1 10872  *cxr 11008   < clt 11009  cle 11010  abscabs 14945  chba 29281  normcno 29285  normfncnmf 29313
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-hilex 29361
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-po 5503  df-so 5504  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-er 8498  df-map 8617  df-en 8734  df-dom 8735  df-sdom 8736  df-sup 9201  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-nmfn 30207
This theorem is referenced by:  nmfnxr  30241  nmfnrepnf  30242  nmfnlb  30286  nmfnleub  30287  nmfn0  30349  nmcfnexi  30413  branmfn  30467
  Copyright terms: Public domain W3C validator