Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > df-nmhm | Structured version Visualization version GIF version |
Description: Define a normed module homomorphism, also known as a bounded linear operator. This is a module homomorphism (a linear function) such that the operator norm is finite, or equivalently there is a constant 𝑐 such that... (Contributed by Mario Carneiro, 18-Oct-2015.) |
Ref | Expression |
---|---|
df-nmhm | ⊢ NMHom = (𝑠 ∈ NrmMod, 𝑡 ∈ NrmMod ↦ ((𝑠 LMHom 𝑡) ∩ (𝑠 NGHom 𝑡))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnmhm 23871 | . 2 class NMHom | |
2 | vs | . . 3 setvar 𝑠 | |
3 | vt | . . 3 setvar 𝑡 | |
4 | cnlm 23736 | . . 3 class NrmMod | |
5 | 2 | cv 1538 | . . . . 5 class 𝑠 |
6 | 3 | cv 1538 | . . . . 5 class 𝑡 |
7 | clmhm 20281 | . . . . 5 class LMHom | |
8 | 5, 6, 7 | co 7275 | . . . 4 class (𝑠 LMHom 𝑡) |
9 | cnghm 23870 | . . . . 5 class NGHom | |
10 | 5, 6, 9 | co 7275 | . . . 4 class (𝑠 NGHom 𝑡) |
11 | 8, 10 | cin 3886 | . . 3 class ((𝑠 LMHom 𝑡) ∩ (𝑠 NGHom 𝑡)) |
12 | 2, 3, 4, 4, 11 | cmpo 7277 | . 2 class (𝑠 ∈ NrmMod, 𝑡 ∈ NrmMod ↦ ((𝑠 LMHom 𝑡) ∩ (𝑠 NGHom 𝑡))) |
13 | 1, 12 | wceq 1539 | 1 wff NMHom = (𝑠 ∈ NrmMod, 𝑡 ∈ NrmMod ↦ ((𝑠 LMHom 𝑡) ∩ (𝑠 NGHom 𝑡))) |
Colors of variables: wff setvar class |
This definition is referenced by: reldmnmhm 23877 isnmhm 23910 |
Copyright terms: Public domain | W3C validator |