![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nmoffn | Structured version Visualization version GIF version |
Description: The function producing operator norm functions is a function on normed groups. (Contributed by Mario Carneiro, 18-Oct-2015.) (Proof shortened by AV, 26-Sep-2020.) |
Ref | Expression |
---|---|
nmoffn | β’ normOp Fn (NrmGrp Γ NrmGrp) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-nmo 24569 | . 2 β’ normOp = (π β NrmGrp, π‘ β NrmGrp β¦ (π β (π GrpHom π‘) β¦ inf({π β (0[,)+β) β£ βπ₯ β (Baseβπ )((normβπ‘)β(πβπ₯)) β€ (π Β· ((normβπ )βπ₯))}, β*, < ))) | |
2 | eqid 2724 | . . . 4 β’ (π β (π GrpHom π‘) β¦ inf({π β (0[,)+β) β£ βπ₯ β (Baseβπ )((normβπ‘)β(πβπ₯)) β€ (π Β· ((normβπ )βπ₯))}, β*, < )) = (π β (π GrpHom π‘) β¦ inf({π β (0[,)+β) β£ βπ₯ β (Baseβπ )((normβπ‘)β(πβπ₯)) β€ (π Β· ((normβπ )βπ₯))}, β*, < )) | |
3 | ssrab2 4070 | . . . . . 6 β’ {π β (0[,)+β) β£ βπ₯ β (Baseβπ )((normβπ‘)β(πβπ₯)) β€ (π Β· ((normβπ )βπ₯))} β (0[,)+β) | |
4 | icossxr 13410 | . . . . . 6 β’ (0[,)+β) β β* | |
5 | 3, 4 | sstri 3984 | . . . . 5 β’ {π β (0[,)+β) β£ βπ₯ β (Baseβπ )((normβπ‘)β(πβπ₯)) β€ (π Β· ((normβπ )βπ₯))} β β* |
6 | infxrcl 13313 | . . . . 5 β’ ({π β (0[,)+β) β£ βπ₯ β (Baseβπ )((normβπ‘)β(πβπ₯)) β€ (π Β· ((normβπ )βπ₯))} β β* β inf({π β (0[,)+β) β£ βπ₯ β (Baseβπ )((normβπ‘)β(πβπ₯)) β€ (π Β· ((normβπ )βπ₯))}, β*, < ) β β*) | |
7 | 5, 6 | mp1i 13 | . . . 4 β’ (π β (π GrpHom π‘) β inf({π β (0[,)+β) β£ βπ₯ β (Baseβπ )((normβπ‘)β(πβπ₯)) β€ (π Β· ((normβπ )βπ₯))}, β*, < ) β β*) |
8 | 2, 7 | fmpti 7104 | . . 3 β’ (π β (π GrpHom π‘) β¦ inf({π β (0[,)+β) β£ βπ₯ β (Baseβπ )((normβπ‘)β(πβπ₯)) β€ (π Β· ((normβπ )βπ₯))}, β*, < )):(π GrpHom π‘)βΆβ* |
9 | ovex 7435 | . . 3 β’ (π GrpHom π‘) β V | |
10 | xrex 12970 | . . 3 β’ β* β V | |
11 | fex2 7918 | . . 3 β’ (((π β (π GrpHom π‘) β¦ inf({π β (0[,)+β) β£ βπ₯ β (Baseβπ )((normβπ‘)β(πβπ₯)) β€ (π Β· ((normβπ )βπ₯))}, β*, < )):(π GrpHom π‘)βΆβ* β§ (π GrpHom π‘) β V β§ β* β V) β (π β (π GrpHom π‘) β¦ inf({π β (0[,)+β) β£ βπ₯ β (Baseβπ )((normβπ‘)β(πβπ₯)) β€ (π Β· ((normβπ )βπ₯))}, β*, < )) β V) | |
12 | 8, 9, 10, 11 | mp3an 1457 | . 2 β’ (π β (π GrpHom π‘) β¦ inf({π β (0[,)+β) β£ βπ₯ β (Baseβπ )((normβπ‘)β(πβπ₯)) β€ (π Β· ((normβπ )βπ₯))}, β*, < )) β V |
13 | 1, 12 | fnmpoi 8050 | 1 β’ normOp Fn (NrmGrp Γ NrmGrp) |
Colors of variables: wff setvar class |
Syntax hints: β wcel 2098 βwral 3053 {crab 3424 Vcvv 3466 β wss 3941 class class class wbr 5139 β¦ cmpt 5222 Γ cxp 5665 Fn wfn 6529 βΆwf 6530 βcfv 6534 (class class class)co 7402 infcinf 9433 0cc0 11107 Β· cmul 11112 +βcpnf 11244 β*cxr 11246 < clt 11247 β€ cle 11248 [,)cico 13327 Basecbs 17149 GrpHom cghm 19134 normcnm 24429 NrmGrpcngp 24430 normOp cnmo 24566 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-sep 5290 ax-nul 5297 ax-pow 5354 ax-pr 5418 ax-un 7719 ax-cnex 11163 ax-resscn 11164 ax-1cn 11165 ax-icn 11166 ax-addcl 11167 ax-addrcl 11168 ax-mulcl 11169 ax-mulrcl 11170 ax-mulcom 11171 ax-addass 11172 ax-mulass 11173 ax-distr 11174 ax-i2m1 11175 ax-1ne0 11176 ax-1rid 11177 ax-rnegex 11178 ax-rrecex 11179 ax-cnre 11180 ax-pre-lttri 11181 ax-pre-lttrn 11182 ax-pre-ltadd 11183 ax-pre-mulgt0 11184 ax-pre-sup 11185 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-nel 3039 df-ral 3054 df-rex 3063 df-rmo 3368 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3771 df-csb 3887 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-nul 4316 df-if 4522 df-pw 4597 df-sn 4622 df-pr 4624 df-op 4628 df-uni 4901 df-iun 4990 df-br 5140 df-opab 5202 df-mpt 5223 df-id 5565 df-po 5579 df-so 5580 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-iota 6486 df-fun 6536 df-fn 6537 df-f 6538 df-f1 6539 df-fo 6540 df-f1o 6541 df-fv 6542 df-riota 7358 df-ov 7405 df-oprab 7406 df-mpo 7407 df-1st 7969 df-2nd 7970 df-er 8700 df-en 8937 df-dom 8938 df-sdom 8939 df-sup 9434 df-inf 9435 df-pnf 11249 df-mnf 11250 df-xr 11251 df-ltxr 11252 df-le 11253 df-sub 11445 df-neg 11446 df-ico 13331 df-nmo 24569 |
This theorem is referenced by: nghmfval 24583 isnghm 24584 |
Copyright terms: Public domain | W3C validator |