Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nmoffn | Structured version Visualization version GIF version |
Description: The function producing operator norm functions is a function on normed groups. (Contributed by Mario Carneiro, 18-Oct-2015.) (Proof shortened by AV, 26-Sep-2020.) |
Ref | Expression |
---|---|
nmoffn | ⊢ normOp Fn (NrmGrp × NrmGrp) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-nmo 23410 | . 2 ⊢ normOp = (𝑠 ∈ NrmGrp, 𝑡 ∈ NrmGrp ↦ (𝑓 ∈ (𝑠 GrpHom 𝑡) ↦ inf({𝑟 ∈ (0[,)+∞) ∣ ∀𝑥 ∈ (Base‘𝑠)((norm‘𝑡)‘(𝑓‘𝑥)) ≤ (𝑟 · ((norm‘𝑠)‘𝑥))}, ℝ*, < ))) | |
2 | eqid 2758 | . . . 4 ⊢ (𝑓 ∈ (𝑠 GrpHom 𝑡) ↦ inf({𝑟 ∈ (0[,)+∞) ∣ ∀𝑥 ∈ (Base‘𝑠)((norm‘𝑡)‘(𝑓‘𝑥)) ≤ (𝑟 · ((norm‘𝑠)‘𝑥))}, ℝ*, < )) = (𝑓 ∈ (𝑠 GrpHom 𝑡) ↦ inf({𝑟 ∈ (0[,)+∞) ∣ ∀𝑥 ∈ (Base‘𝑠)((norm‘𝑡)‘(𝑓‘𝑥)) ≤ (𝑟 · ((norm‘𝑠)‘𝑥))}, ℝ*, < )) | |
3 | ssrab2 3984 | . . . . . 6 ⊢ {𝑟 ∈ (0[,)+∞) ∣ ∀𝑥 ∈ (Base‘𝑠)((norm‘𝑡)‘(𝑓‘𝑥)) ≤ (𝑟 · ((norm‘𝑠)‘𝑥))} ⊆ (0[,)+∞) | |
4 | icossxr 12864 | . . . . . 6 ⊢ (0[,)+∞) ⊆ ℝ* | |
5 | 3, 4 | sstri 3901 | . . . . 5 ⊢ {𝑟 ∈ (0[,)+∞) ∣ ∀𝑥 ∈ (Base‘𝑠)((norm‘𝑡)‘(𝑓‘𝑥)) ≤ (𝑟 · ((norm‘𝑠)‘𝑥))} ⊆ ℝ* |
6 | infxrcl 12767 | . . . . 5 ⊢ ({𝑟 ∈ (0[,)+∞) ∣ ∀𝑥 ∈ (Base‘𝑠)((norm‘𝑡)‘(𝑓‘𝑥)) ≤ (𝑟 · ((norm‘𝑠)‘𝑥))} ⊆ ℝ* → inf({𝑟 ∈ (0[,)+∞) ∣ ∀𝑥 ∈ (Base‘𝑠)((norm‘𝑡)‘(𝑓‘𝑥)) ≤ (𝑟 · ((norm‘𝑠)‘𝑥))}, ℝ*, < ) ∈ ℝ*) | |
7 | 5, 6 | mp1i 13 | . . . 4 ⊢ (𝑓 ∈ (𝑠 GrpHom 𝑡) → inf({𝑟 ∈ (0[,)+∞) ∣ ∀𝑥 ∈ (Base‘𝑠)((norm‘𝑡)‘(𝑓‘𝑥)) ≤ (𝑟 · ((norm‘𝑠)‘𝑥))}, ℝ*, < ) ∈ ℝ*) |
8 | 2, 7 | fmpti 6867 | . . 3 ⊢ (𝑓 ∈ (𝑠 GrpHom 𝑡) ↦ inf({𝑟 ∈ (0[,)+∞) ∣ ∀𝑥 ∈ (Base‘𝑠)((norm‘𝑡)‘(𝑓‘𝑥)) ≤ (𝑟 · ((norm‘𝑠)‘𝑥))}, ℝ*, < )):(𝑠 GrpHom 𝑡)⟶ℝ* |
9 | ovex 7183 | . . 3 ⊢ (𝑠 GrpHom 𝑡) ∈ V | |
10 | xrex 12427 | . . 3 ⊢ ℝ* ∈ V | |
11 | fex2 7643 | . . 3 ⊢ (((𝑓 ∈ (𝑠 GrpHom 𝑡) ↦ inf({𝑟 ∈ (0[,)+∞) ∣ ∀𝑥 ∈ (Base‘𝑠)((norm‘𝑡)‘(𝑓‘𝑥)) ≤ (𝑟 · ((norm‘𝑠)‘𝑥))}, ℝ*, < )):(𝑠 GrpHom 𝑡)⟶ℝ* ∧ (𝑠 GrpHom 𝑡) ∈ V ∧ ℝ* ∈ V) → (𝑓 ∈ (𝑠 GrpHom 𝑡) ↦ inf({𝑟 ∈ (0[,)+∞) ∣ ∀𝑥 ∈ (Base‘𝑠)((norm‘𝑡)‘(𝑓‘𝑥)) ≤ (𝑟 · ((norm‘𝑠)‘𝑥))}, ℝ*, < )) ∈ V) | |
12 | 8, 9, 10, 11 | mp3an 1458 | . 2 ⊢ (𝑓 ∈ (𝑠 GrpHom 𝑡) ↦ inf({𝑟 ∈ (0[,)+∞) ∣ ∀𝑥 ∈ (Base‘𝑠)((norm‘𝑡)‘(𝑓‘𝑥)) ≤ (𝑟 · ((norm‘𝑠)‘𝑥))}, ℝ*, < )) ∈ V |
13 | 1, 12 | fnmpoi 7772 | 1 ⊢ normOp Fn (NrmGrp × NrmGrp) |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2111 ∀wral 3070 {crab 3074 Vcvv 3409 ⊆ wss 3858 class class class wbr 5032 ↦ cmpt 5112 × cxp 5522 Fn wfn 6330 ⟶wf 6331 ‘cfv 6335 (class class class)co 7150 infcinf 8938 0cc0 10575 · cmul 10580 +∞cpnf 10710 ℝ*cxr 10712 < clt 10713 ≤ cle 10714 [,)cico 12781 Basecbs 16541 GrpHom cghm 18422 normcnm 23278 NrmGrpcngp 23279 normOp cnmo 23407 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-sep 5169 ax-nul 5176 ax-pow 5234 ax-pr 5298 ax-un 7459 ax-cnex 10631 ax-resscn 10632 ax-1cn 10633 ax-icn 10634 ax-addcl 10635 ax-addrcl 10636 ax-mulcl 10637 ax-mulrcl 10638 ax-mulcom 10639 ax-addass 10640 ax-mulass 10641 ax-distr 10642 ax-i2m1 10643 ax-1ne0 10644 ax-1rid 10645 ax-rnegex 10646 ax-rrecex 10647 ax-cnre 10648 ax-pre-lttri 10649 ax-pre-lttrn 10650 ax-pre-ltadd 10651 ax-pre-mulgt0 10652 ax-pre-sup 10653 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-nel 3056 df-ral 3075 df-rex 3076 df-reu 3077 df-rmo 3078 df-rab 3079 df-v 3411 df-sbc 3697 df-csb 3806 df-dif 3861 df-un 3863 df-in 3865 df-ss 3875 df-nul 4226 df-if 4421 df-pw 4496 df-sn 4523 df-pr 4525 df-op 4529 df-uni 4799 df-iun 4885 df-br 5033 df-opab 5095 df-mpt 5113 df-id 5430 df-po 5443 df-so 5444 df-xp 5530 df-rel 5531 df-cnv 5532 df-co 5533 df-dm 5534 df-rn 5535 df-res 5536 df-ima 5537 df-iota 6294 df-fun 6337 df-fn 6338 df-f 6339 df-f1 6340 df-fo 6341 df-f1o 6342 df-fv 6343 df-riota 7108 df-ov 7153 df-oprab 7154 df-mpo 7155 df-1st 7693 df-2nd 7694 df-er 8299 df-en 8528 df-dom 8529 df-sdom 8530 df-sup 8939 df-inf 8940 df-pnf 10715 df-mnf 10716 df-xr 10717 df-ltxr 10718 df-le 10719 df-sub 10910 df-neg 10911 df-ico 12785 df-nmo 23410 |
This theorem is referenced by: nghmfval 23424 isnghm 23425 |
Copyright terms: Public domain | W3C validator |