Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > isnmhm | Structured version Visualization version GIF version |
Description: A normed module homomorphism is a left module homomorphism which is also a normed group homomorphism. (Contributed by Mario Carneiro, 18-Oct-2015.) |
Ref | Expression |
---|---|
isnmhm | ⊢ (𝐹 ∈ (𝑆 NMHom 𝑇) ↔ ((𝑆 ∈ NrmMod ∧ 𝑇 ∈ NrmMod) ∧ (𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝐹 ∈ (𝑆 NGHom 𝑇)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-nmhm 23954 | . . 3 ⊢ NMHom = (𝑠 ∈ NrmMod, 𝑡 ∈ NrmMod ↦ ((𝑠 LMHom 𝑡) ∩ (𝑠 NGHom 𝑡))) | |
2 | 1 | elmpocl 7552 | . 2 ⊢ (𝐹 ∈ (𝑆 NMHom 𝑇) → (𝑆 ∈ NrmMod ∧ 𝑇 ∈ NrmMod)) |
3 | oveq12 7325 | . . . . . 6 ⊢ ((𝑠 = 𝑆 ∧ 𝑡 = 𝑇) → (𝑠 LMHom 𝑡) = (𝑆 LMHom 𝑇)) | |
4 | oveq12 7325 | . . . . . 6 ⊢ ((𝑠 = 𝑆 ∧ 𝑡 = 𝑇) → (𝑠 NGHom 𝑡) = (𝑆 NGHom 𝑇)) | |
5 | 3, 4 | ineq12d 4157 | . . . . 5 ⊢ ((𝑠 = 𝑆 ∧ 𝑡 = 𝑇) → ((𝑠 LMHom 𝑡) ∩ (𝑠 NGHom 𝑡)) = ((𝑆 LMHom 𝑇) ∩ (𝑆 NGHom 𝑇))) |
6 | ovex 7349 | . . . . . 6 ⊢ (𝑆 LMHom 𝑇) ∈ V | |
7 | 6 | inex1 5255 | . . . . 5 ⊢ ((𝑆 LMHom 𝑇) ∩ (𝑆 NGHom 𝑇)) ∈ V |
8 | 5, 1, 7 | ovmpoa 7469 | . . . 4 ⊢ ((𝑆 ∈ NrmMod ∧ 𝑇 ∈ NrmMod) → (𝑆 NMHom 𝑇) = ((𝑆 LMHom 𝑇) ∩ (𝑆 NGHom 𝑇))) |
9 | 8 | eleq2d 2822 | . . 3 ⊢ ((𝑆 ∈ NrmMod ∧ 𝑇 ∈ NrmMod) → (𝐹 ∈ (𝑆 NMHom 𝑇) ↔ 𝐹 ∈ ((𝑆 LMHom 𝑇) ∩ (𝑆 NGHom 𝑇)))) |
10 | elin 3912 | . . 3 ⊢ (𝐹 ∈ ((𝑆 LMHom 𝑇) ∩ (𝑆 NGHom 𝑇)) ↔ (𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝐹 ∈ (𝑆 NGHom 𝑇))) | |
11 | 9, 10 | bitrdi 286 | . 2 ⊢ ((𝑆 ∈ NrmMod ∧ 𝑇 ∈ NrmMod) → (𝐹 ∈ (𝑆 NMHom 𝑇) ↔ (𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝐹 ∈ (𝑆 NGHom 𝑇)))) |
12 | 2, 11 | biadanii 819 | 1 ⊢ (𝐹 ∈ (𝑆 NMHom 𝑇) ↔ ((𝑆 ∈ NrmMod ∧ 𝑇 ∈ NrmMod) ∧ (𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝐹 ∈ (𝑆 NGHom 𝑇)))) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 396 = wceq 1540 ∈ wcel 2105 ∩ cin 3895 (class class class)co 7316 LMHom clmhm 20361 NrmModcnlm 23816 NGHom cnghm 23950 NMHom cnmhm 23951 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-sep 5237 ax-nul 5244 ax-pr 5366 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3404 df-v 3442 df-sbc 3726 df-dif 3899 df-un 3901 df-in 3903 df-ss 3913 df-nul 4267 df-if 4471 df-sn 4571 df-pr 4573 df-op 4577 df-uni 4850 df-br 5087 df-opab 5149 df-id 5506 df-xp 5613 df-rel 5614 df-cnv 5615 df-co 5616 df-dm 5617 df-iota 6417 df-fun 6467 df-fv 6473 df-ov 7319 df-oprab 7320 df-mpo 7321 df-nmhm 23954 |
This theorem is referenced by: nmhmrcl1 23991 nmhmrcl2 23992 nmhmlmhm 23993 nmhmnghm 23994 isnmhm2 23996 idnmhm 23998 0nmhm 23999 nmhmco 24000 nmhmplusg 24001 nmhmcn 24363 |
Copyright terms: Public domain | W3C validator |