| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > isnmhm | Structured version Visualization version GIF version | ||
| Description: A normed module homomorphism is a left module homomorphism which is also a normed group homomorphism. (Contributed by Mario Carneiro, 18-Oct-2015.) |
| Ref | Expression |
|---|---|
| isnmhm | ⊢ (𝐹 ∈ (𝑆 NMHom 𝑇) ↔ ((𝑆 ∈ NrmMod ∧ 𝑇 ∈ NrmMod) ∧ (𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝐹 ∈ (𝑆 NGHom 𝑇)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-nmhm 24574 | . . 3 ⊢ NMHom = (𝑠 ∈ NrmMod, 𝑡 ∈ NrmMod ↦ ((𝑠 LMHom 𝑡) ∩ (𝑠 NGHom 𝑡))) | |
| 2 | 1 | elmpocl 7610 | . 2 ⊢ (𝐹 ∈ (𝑆 NMHom 𝑇) → (𝑆 ∈ NrmMod ∧ 𝑇 ∈ NrmMod)) |
| 3 | oveq12 7378 | . . . . . 6 ⊢ ((𝑠 = 𝑆 ∧ 𝑡 = 𝑇) → (𝑠 LMHom 𝑡) = (𝑆 LMHom 𝑇)) | |
| 4 | oveq12 7378 | . . . . . 6 ⊢ ((𝑠 = 𝑆 ∧ 𝑡 = 𝑇) → (𝑠 NGHom 𝑡) = (𝑆 NGHom 𝑇)) | |
| 5 | 3, 4 | ineq12d 4180 | . . . . 5 ⊢ ((𝑠 = 𝑆 ∧ 𝑡 = 𝑇) → ((𝑠 LMHom 𝑡) ∩ (𝑠 NGHom 𝑡)) = ((𝑆 LMHom 𝑇) ∩ (𝑆 NGHom 𝑇))) |
| 6 | ovex 7402 | . . . . . 6 ⊢ (𝑆 LMHom 𝑇) ∈ V | |
| 7 | 6 | inex1 5267 | . . . . 5 ⊢ ((𝑆 LMHom 𝑇) ∩ (𝑆 NGHom 𝑇)) ∈ V |
| 8 | 5, 1, 7 | ovmpoa 7524 | . . . 4 ⊢ ((𝑆 ∈ NrmMod ∧ 𝑇 ∈ NrmMod) → (𝑆 NMHom 𝑇) = ((𝑆 LMHom 𝑇) ∩ (𝑆 NGHom 𝑇))) |
| 9 | 8 | eleq2d 2814 | . . 3 ⊢ ((𝑆 ∈ NrmMod ∧ 𝑇 ∈ NrmMod) → (𝐹 ∈ (𝑆 NMHom 𝑇) ↔ 𝐹 ∈ ((𝑆 LMHom 𝑇) ∩ (𝑆 NGHom 𝑇)))) |
| 10 | elin 3927 | . . 3 ⊢ (𝐹 ∈ ((𝑆 LMHom 𝑇) ∩ (𝑆 NGHom 𝑇)) ↔ (𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝐹 ∈ (𝑆 NGHom 𝑇))) | |
| 11 | 9, 10 | bitrdi 287 | . 2 ⊢ ((𝑆 ∈ NrmMod ∧ 𝑇 ∈ NrmMod) → (𝐹 ∈ (𝑆 NMHom 𝑇) ↔ (𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝐹 ∈ (𝑆 NGHom 𝑇)))) |
| 12 | 2, 11 | biadanii 821 | 1 ⊢ (𝐹 ∈ (𝑆 NMHom 𝑇) ↔ ((𝑆 ∈ NrmMod ∧ 𝑇 ∈ NrmMod) ∧ (𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝐹 ∈ (𝑆 NGHom 𝑇)))) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∩ cin 3910 (class class class)co 7369 LMHom clmhm 20902 NrmModcnlm 24444 NGHom cnghm 24570 NMHom cnmhm 24571 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-sbc 3751 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-iota 6452 df-fun 6501 df-fv 6507 df-ov 7372 df-oprab 7373 df-mpo 7374 df-nmhm 24574 |
| This theorem is referenced by: nmhmrcl1 24611 nmhmrcl2 24612 nmhmlmhm 24613 nmhmnghm 24614 isnmhm2 24616 idnmhm 24618 0nmhm 24619 nmhmco 24620 nmhmplusg 24621 nmhmcn 24996 |
| Copyright terms: Public domain | W3C validator |