| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > isnmhm | Structured version Visualization version GIF version | ||
| Description: A normed module homomorphism is a left module homomorphism which is also a normed group homomorphism. (Contributed by Mario Carneiro, 18-Oct-2015.) |
| Ref | Expression |
|---|---|
| isnmhm | ⊢ (𝐹 ∈ (𝑆 NMHom 𝑇) ↔ ((𝑆 ∈ NrmMod ∧ 𝑇 ∈ NrmMod) ∧ (𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝐹 ∈ (𝑆 NGHom 𝑇)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-nmhm 24626 | . . 3 ⊢ NMHom = (𝑠 ∈ NrmMod, 𝑡 ∈ NrmMod ↦ ((𝑠 LMHom 𝑡) ∩ (𝑠 NGHom 𝑡))) | |
| 2 | 1 | elmpocl 7587 | . 2 ⊢ (𝐹 ∈ (𝑆 NMHom 𝑇) → (𝑆 ∈ NrmMod ∧ 𝑇 ∈ NrmMod)) |
| 3 | oveq12 7355 | . . . . . 6 ⊢ ((𝑠 = 𝑆 ∧ 𝑡 = 𝑇) → (𝑠 LMHom 𝑡) = (𝑆 LMHom 𝑇)) | |
| 4 | oveq12 7355 | . . . . . 6 ⊢ ((𝑠 = 𝑆 ∧ 𝑡 = 𝑇) → (𝑠 NGHom 𝑡) = (𝑆 NGHom 𝑇)) | |
| 5 | 3, 4 | ineq12d 4171 | . . . . 5 ⊢ ((𝑠 = 𝑆 ∧ 𝑡 = 𝑇) → ((𝑠 LMHom 𝑡) ∩ (𝑠 NGHom 𝑡)) = ((𝑆 LMHom 𝑇) ∩ (𝑆 NGHom 𝑇))) |
| 6 | ovex 7379 | . . . . . 6 ⊢ (𝑆 LMHom 𝑇) ∈ V | |
| 7 | 6 | inex1 5255 | . . . . 5 ⊢ ((𝑆 LMHom 𝑇) ∩ (𝑆 NGHom 𝑇)) ∈ V |
| 8 | 5, 1, 7 | ovmpoa 7501 | . . . 4 ⊢ ((𝑆 ∈ NrmMod ∧ 𝑇 ∈ NrmMod) → (𝑆 NMHom 𝑇) = ((𝑆 LMHom 𝑇) ∩ (𝑆 NGHom 𝑇))) |
| 9 | 8 | eleq2d 2817 | . . 3 ⊢ ((𝑆 ∈ NrmMod ∧ 𝑇 ∈ NrmMod) → (𝐹 ∈ (𝑆 NMHom 𝑇) ↔ 𝐹 ∈ ((𝑆 LMHom 𝑇) ∩ (𝑆 NGHom 𝑇)))) |
| 10 | elin 3918 | . . 3 ⊢ (𝐹 ∈ ((𝑆 LMHom 𝑇) ∩ (𝑆 NGHom 𝑇)) ↔ (𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝐹 ∈ (𝑆 NGHom 𝑇))) | |
| 11 | 9, 10 | bitrdi 287 | . 2 ⊢ ((𝑆 ∈ NrmMod ∧ 𝑇 ∈ NrmMod) → (𝐹 ∈ (𝑆 NMHom 𝑇) ↔ (𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝐹 ∈ (𝑆 NGHom 𝑇)))) |
| 12 | 2, 11 | biadanii 821 | 1 ⊢ (𝐹 ∈ (𝑆 NMHom 𝑇) ↔ ((𝑆 ∈ NrmMod ∧ 𝑇 ∈ NrmMod) ∧ (𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝐹 ∈ (𝑆 NGHom 𝑇)))) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∩ cin 3901 (class class class)co 7346 LMHom clmhm 20954 NrmModcnlm 24496 NGHom cnghm 24622 NMHom cnmhm 24623 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3742 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-iota 6437 df-fun 6483 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-nmhm 24626 |
| This theorem is referenced by: nmhmrcl1 24663 nmhmrcl2 24664 nmhmlmhm 24665 nmhmnghm 24666 isnmhm2 24668 idnmhm 24670 0nmhm 24671 nmhmco 24672 nmhmplusg 24673 nmhmcn 25048 |
| Copyright terms: Public domain | W3C validator |