MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isnmhm Structured version   Visualization version   GIF version

Theorem isnmhm 24634
Description: A normed module homomorphism is a left module homomorphism which is also a normed group homomorphism. (Contributed by Mario Carneiro, 18-Oct-2015.)
Assertion
Ref Expression
isnmhm (𝐹 ∈ (𝑆 NMHom 𝑇) ↔ ((𝑆 ∈ NrmMod ∧ 𝑇 ∈ NrmMod) ∧ (𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝐹 ∈ (𝑆 NGHom 𝑇))))

Proof of Theorem isnmhm
Dummy variables 𝑡 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-nmhm 24598 . . 3 NMHom = (𝑠 ∈ NrmMod, 𝑡 ∈ NrmMod ↦ ((𝑠 LMHom 𝑡) ∩ (𝑠 NGHom 𝑡)))
21elmpocl 7630 . 2 (𝐹 ∈ (𝑆 NMHom 𝑇) → (𝑆 ∈ NrmMod ∧ 𝑇 ∈ NrmMod))
3 oveq12 7396 . . . . . 6 ((𝑠 = 𝑆𝑡 = 𝑇) → (𝑠 LMHom 𝑡) = (𝑆 LMHom 𝑇))
4 oveq12 7396 . . . . . 6 ((𝑠 = 𝑆𝑡 = 𝑇) → (𝑠 NGHom 𝑡) = (𝑆 NGHom 𝑇))
53, 4ineq12d 4184 . . . . 5 ((𝑠 = 𝑆𝑡 = 𝑇) → ((𝑠 LMHom 𝑡) ∩ (𝑠 NGHom 𝑡)) = ((𝑆 LMHom 𝑇) ∩ (𝑆 NGHom 𝑇)))
6 ovex 7420 . . . . . 6 (𝑆 LMHom 𝑇) ∈ V
76inex1 5272 . . . . 5 ((𝑆 LMHom 𝑇) ∩ (𝑆 NGHom 𝑇)) ∈ V
85, 1, 7ovmpoa 7544 . . . 4 ((𝑆 ∈ NrmMod ∧ 𝑇 ∈ NrmMod) → (𝑆 NMHom 𝑇) = ((𝑆 LMHom 𝑇) ∩ (𝑆 NGHom 𝑇)))
98eleq2d 2814 . . 3 ((𝑆 ∈ NrmMod ∧ 𝑇 ∈ NrmMod) → (𝐹 ∈ (𝑆 NMHom 𝑇) ↔ 𝐹 ∈ ((𝑆 LMHom 𝑇) ∩ (𝑆 NGHom 𝑇))))
10 elin 3930 . . 3 (𝐹 ∈ ((𝑆 LMHom 𝑇) ∩ (𝑆 NGHom 𝑇)) ↔ (𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝐹 ∈ (𝑆 NGHom 𝑇)))
119, 10bitrdi 287 . 2 ((𝑆 ∈ NrmMod ∧ 𝑇 ∈ NrmMod) → (𝐹 ∈ (𝑆 NMHom 𝑇) ↔ (𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝐹 ∈ (𝑆 NGHom 𝑇))))
122, 11biadanii 821 1 (𝐹 ∈ (𝑆 NMHom 𝑇) ↔ ((𝑆 ∈ NrmMod ∧ 𝑇 ∈ NrmMod) ∧ (𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝐹 ∈ (𝑆 NGHom 𝑇))))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1540  wcel 2109  cin 3913  (class class class)co 7387   LMHom clmhm 20926  NrmModcnlm 24468   NGHom cnghm 24594   NMHom cnmhm 24595
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-sbc 3754  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-iota 6464  df-fun 6513  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-nmhm 24598
This theorem is referenced by:  nmhmrcl1  24635  nmhmrcl2  24636  nmhmlmhm  24637  nmhmnghm  24638  isnmhm2  24640  idnmhm  24642  0nmhm  24643  nmhmco  24644  nmhmplusg  24645  nmhmcn  25020
  Copyright terms: Public domain W3C validator