MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reldmnmhm Structured version   Visualization version   GIF version

Theorem reldmnmhm 24628
Description: Lemma for module homomorphisms. (Contributed by Mario Carneiro, 18-Oct-2015.)
Assertion
Ref Expression
reldmnmhm Rel dom NMHom

Proof of Theorem reldmnmhm
Dummy variables 𝑠 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-nmhm 24625 . 2 NMHom = (𝑠 ∈ NrmMod, 𝑡 ∈ NrmMod ↦ ((𝑠 LMHom 𝑡) ∩ (𝑠 NGHom 𝑡)))
21reldmmpo 7480 1 Rel dom NMHom
Colors of variables: wff setvar class
Syntax hints:  cin 3896  dom cdm 5614  Rel wrel 5619  (class class class)co 7346   LMHom clmhm 20953  NrmModcnlm 24495   NGHom cnghm 24621   NMHom cnmhm 24622
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-br 5090  df-opab 5152  df-xp 5620  df-rel 5621  df-dm 5624  df-oprab 7350  df-mpo 7351  df-nmhm 24625
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator